The GW approximation in less than 60 minutes - molgw

Not easy to find improvement within DFT framework ... for. Mesures how an extra electron propagates from (r't') to (rt). .... How to calculate the Green's function?
1MB taille 5 téléchargements 209 vues
The GW approximation in less than 60 minutes F. Bruneval Service de Recherches de Métallurgie Physique CEA, DEN

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Outline

I. Standard DFT suffers from the band gap problem II. Introduction of the Green's function III. The GW approximation IV. The GW code in ABINIT and the G0W0 method V. Some applications F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Standard DFT has unfortunately some shortcomings

band gap

Band gap problem! after van Schilfgaarde et al PRL 96 226402 (2008)

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

A pervasive problem Effective masses for transport in semiconductors

Optical absorption

onset

Defect formation energy, dopant solubility

Photoemission

Exp.

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

How do go beyond within the DFT framework? Not easy to find improvement within DFT framework There is no such thing as a perturbative expansion Perdew's Jacob's ladder does not help for the band gap

after J. Perdew JCP (2005).

Need to change the overall framework! F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Outline

I. Standard DFT suffers from the band gap problem II. Introduction of the Green's function III. The GW approximation IV. The GW code in ABINIT and the G0W0 method V. Some applications F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Many-body perturbation theory

Historically older than the DFT (1940-50's)! Big names: Feynman, Schwinger, Hubbard, Hedin, Lundqvist

Green's functions = propagator

G r t , r ' t '=

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

The Green's function

∣N ,0 〉

Exact ground state wavefunction:

Creation, annihilation operator:

1

2



 r t ∣N ,0 〉



 r t  ,  r t

is a (N+1) electron wavefunction not necessarily in the ground state



 r ' t ' ∣N ,0 〉 is another (N+1) electron wavefunction Let's compare the two of them! F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Green's function definition



〈 N ,0∣ r t r ' t ' ∣N , 0 〉 2

1

e

=i G r t , r ' t ' 

for

tt '

Mesures how an extra electron propagates from (r't') to (rt).

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Green's function definition



〈 N ,0∣ r ' t '  r t ∣N , 0 〉 1

2

h

for

=i G r ' t ' , r t

t ' t

Mesures how a missing electron (= a hole) propagates from (rt) to (r't').

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Final expression for the Green's function

i G r t , r ' t ' = † 〈 N ,0∣T [ r t  r ' t ' ]∣ N , 0 〉 time-ordering operator

e

G r t , r ' t '=G  r t , r ' t '  h −G  r ' t ' , r t Compact expression that describes both the propagation of an extra electron and an extra hole F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Lehman representation

i G r , r ' , t−t ' = 〈 N ,0∣T [ r t  r ' t '  ]∣N ,0 〉 †

Closure relation

∑N ,i ∣ N , i 〉 〈 N ,i∣ Lehman representation:

G r , r ' , =∑ i

where

{

f i r  f  r '  −i±i

E  N 1,i−E  N ,0 i= E  N ,0−E  N −1,i

F. Bruneval

∗ i

Exact excitation energies!

1st Yarmouk school, Irbid 4 november 2010

Related to photoemission spectroscopy Ekin



Energy conservation:

before

after

h E  N ,0=E kinE  N −1, i Quasiparticle energy: F. Bruneval

i=E  N ,0−E  N −1, i=E kin−h  1st Yarmouk school, Irbid 4 november 2010

And inverse photoemission spectroscopy hν

Ekin

Energy conservation:

before

after

E kinE  N ,0=h E  N 1,i Quasiparticle energy: F. Bruneval

i=E  N 1,i−E  N ,0=E kin −h  1st Yarmouk school, Irbid 4 november 2010

Other properties of the Green's function Galitskii-Migdal formula for the total energy: 

E total =

1 d  Tr [ −h0  Im G  ] ∫  −∞

Expectation value of any 1 particle operator (local or non-local)

〈 O 〉=lim Tr [ OG ] t t '

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Outline

I. Standard DFT suffers from the band gap problem II. Introduction of the Green's function III. The GW approximation IV. The GW code in ABINIT and the G0W0 method V. Some applications F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

How to calculate the Green's function?

Feynman diagrams

Hedin's functional approach

F. Bruneval

PRA (1965).

1st Yarmouk school, Irbid 4 november 2010

Hedin's coupled equations 6 coupled equations:

1=r 1 t 1  1 

2= r 2 t 2  2 

G1,2=G 0 1,2∫ d34 G0 1,3  3,4G 4,2  1,2=i ∫ d34 G 1,3W 1,4  4,2 ,3  1,2 ,3= 1,2 1,3∫ d 4567

Dyson equation self-energy

  1,2 G 4,6G5,7  6,7 ,3  G 4,5

vertex

0 1,2=−i ∫ d34 G 1,3G 4,1 3,4 ,2

polarizability

 1,2=1,2−∫ d3 v 1,3 0 3,2

dielectric matrix

−1

W 1,2=∫ d3  1,3 v3,2

F. Bruneval

screened Coulomb interaction

1st Yarmouk school, Irbid 4 november 2010

Simplest approximation



 1,2=i G1 ,2v 1,2

t

Fock exchange

Dyson equation:

v 1,2

G=G0G 0  G G=G0G 0  G0...

G1 ,2

Not enough: Hartree-Fock is know to be quite bad for solids F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Hartree-Fock approximation for band gaps

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Hedin's coupled equations 6 coupled equations: G1,2=G 0 1,2∫ d34 G0 1,3  3,4G 4,2  1,2=i ∫ d34 G 1,3W 1,4  4,2 ,3  1,2 ,3= 1,2 1,3∫ d 4567

Dyson equation self-energy

  1,2 G 4,6G5,7  6,7 ,3  G 4,5

0 1,2=−i ∫ d34 G 1,3G 4,1 3,4 ,2  1,2=1,2−∫ d3 v 1,3 0 3,2 −1

W 1,2=∫ d3  1,3 v3,2

F. Bruneval

screened Coulomb interaction

1st Yarmouk school, Irbid 4 november 2010

Hedin's coupled equations 6 coupled equations: G1,2=G 0 1,2∫ d34 G0 1,3  3,4G 4,2  1,2=i ∫ d34 G 1,3W 1,4  4,2 ,3  1,2 ,3= 1,2 1,3∫ d 4567

Dyson equation self-energy

  1,2 G 4,6G5,7  6,7 ,3  G 4,5

0 1,2=−i ∫ d34 G 1,3G 4,1 3,4 ,2  1,2=1,2−∫ d3 v 1,3 0 3,2 −1

W 1,2=∫ d3  1,3 v3,2

F. Bruneval

screened Coulomb interaction

1st Yarmouk school, Irbid 4 november 2010

Hedin's coupled equations 6 coupled equations: G1,2=G 0 1,2∫ d34 G0 1,3  3,4G 4,2  1,2=i ∫ d34 G 1,3W 2 1,4 2  4,2 ,3  1,2 ,3= 1,2 1,3∫ d 4567

Dyson equation self-energy

  1,2 G 4,6G5,7  6,7 ,3  G 4,5

0 1,2=−i ∫ d34 G 1,3G 3,4 ,2 2 4,1 2  1,2=1,2−∫ d3 v 1,3 0 3,2 −1

W 1,2=∫ d3  1,3 v3,2

F. Bruneval

screened Coulomb interaction

1st Yarmouk school, Irbid 4 november 2010

Here comes the GW approximation

 1,2=i G1,2W 1,2

GW approximation

0 1,2=−i G1,2G 2,1

RPA approximation

 1,2=1,2−∫ d3 v 1,3 0 3,2

W 1,2=∫ d3 −1 1,3 v3,2

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

What is W? Interaction between electrons in vacuum: 2

1 e V  r , r ' = 4 0 ∣r −r '∣ Interaction between electrons in a homogeneous polarizable medium: 2

1 e W r , r '= 4  0  r ∣r−r '∣ Dielectric constant of the medium

Dynamically screened interaction between electrons in a general medium: 2

−1

e   r , r ' ' ,  W r , r ' , = d r ' ' ∫ 4  0 ∣r ' '−r '∣ F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

W is frequency dependent W can measured directly by Inelastic X-ray Scattering W q=0.80 a.u ,  Silicon Plasmon frequency

ω [eV] Zero below the band gap F. Bruneval

H-C Weissker et al. PRB (2010) 1st Yarmouk school, Irbid 4 november 2010

GW has a “super” Hartree-Fock GW Approximation

Hartree-Fock Approximation  x  r 1, r 2 =

 xc  r 1, r 2, =

i d ' G r 1, r 2, ' v r 1, r 2  ∫ 2  −∞

i d ' G r 1, r 2, ' W r 1, r 2, ' ∫ 2



= bare exchange

 x r 1, r 2  Bare exchange

 c r 1, r 2,  + correlation GW is nothing else but a “screened” version of Hartree-Fock.

F. Bruneval

Non Hermitian dynamic

1st Yarmouk school, Irbid 4 november 2010

Summary: DFT vs GW

Electronic density

r Local and static

exchange-correlation potential

v xc r  Approximations:

LDA, GGA, hybrids

Green's function

G r t , r ' t ' Non-local, dynamic Depends onto empty states

exchange-correlation operator = self-energy

 xc  r , r ' , GW approximation

 GW r t , r ' t '=iG  r t , r ' , t 'W  r t , r ' t ' F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

GW approximation gets good band gap

No more a band gap problem ! after van Schilfgaarde et al PRL 96 226402 (2008)

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Outline

I. Standard DFT suffers from the band gap problem II. Introduction of the Green's function III. The GW approximation IV. The GW code in ABINIT and the G0W0 method V. Some applications F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Available GW codes

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Available GW codes

has a GW code inside F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Code history Rex Godby

PRL 1986

Lucia Reining Giovanni Onida Valerio Olevano

Marc Torrent G.-M. Rignanese

Fabien Bruneval

M. Giantomassi

~ 1993

2001

Today F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

How to get G? Remember the Lehman representation:

f i r  f  r '  −i±i

G r , r ' , =∑ i

where the

∗ i

f i r  and the i are complicated quantities

But for independent electrons like Kohn-Sham electrons:

G r , r ' ,=∑ KS

KS i

KS ∗ i KS i

 r 

r' 

− ±i 

i

This can be considered as the best guess for G One can get F. Bruneval

W

and



GW

1st Yarmouk school, Irbid 4 november 2010

GW as a perturbation with respect to LDA GW quasiparticle equation:

[ h0 xc  ]∣ 〉= ∣ 〉 GW i

GW i

GW i

GW i

KS equation:

[h

0

v

Approximation :

F. Bruneval

LDA xc

]∣ 〉= ∣ 〉

GW i



LDA i

≈

LDA i

LDA i

LDA i

1st Yarmouk school, Irbid 4 november 2010

GW as a perturbation with respect to LDA GW quasiparticle equation:

〈  ∣[ h  LDA i

0

xc



GW i

]∣

LDA i

〉=

GW i

KS equation:

〈  ∣[ h v ]∣ 〉= LDA i



GW i

−

F. Bruneval

LDA i

=〈 

LDA xc

0

LDA i

∣[  xc 

LDA i

GW i

−v

LDA i

LDA xc

]∣ 〉 LDA i

1st Yarmouk school, Irbid 4 november 2010

Linearization of the energy dependance



GW i

−

LDA i

=〈 

∣[  xc 

LDA i

GW i

−v

LDA xc

]∣ 〉 LDA i

Not yet known

Taylor expansion: GW i

 xc 

= xc 

LDA i



GW i

LDA i

−

∂  xc  ... ∂

Final result:



GW i

=

LDA i

where F. Bruneval

Z i 〈 

∣[  xc 

LDA i



LDA i

∂  xc Z i =1/ 1− ∂



−v

LDA xc

]∣ 〉 LDA i

1st Yarmouk school, Irbid 4 november 2010

Quasiparticle equation A typical ABINIT ouptput for Silicon at Gamma point k = Band 4 5

0.000 0.000 0.000 E0 SigX SigC(E0) 0.506 -11.291 -12.492 0.744 3.080 -10.095 -5.870 -3.859

E^0_gap E^GW_gap



GW i

=

Z dSigC/dE Sig(E) 0.775 -0.291 -11.645 0.775 -0.290 -9.812

E-E0 -0.354 0.283

E 0.152 3.363

2.574 3.212

LDA i

F. Bruneval

Z i 〈 

∣[  xc 

LDA i

LDA i

−v

LDA xc

]∣ 〉 LDA i

1st Yarmouk school, Irbid 4 november 2010

Flow chart of a typical GW calculation DFT



LDA i

,

LDA i

occupied AND empty states

calculate W

If self-consistent GW GW ,  i i

F. Bruneval

Eigenvalues

calculate G * W



GW i

k 

1st Yarmouk school, Irbid 4 november 2010

Outline

I. Standard DFT suffers from the band gap problem II. Introduction of the Green's function III. The GW approximation IV. The GW code in ABINIT and the G0W0 method V. Some applications F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

GW approximation gets good band gap

No more a band gap problem ! after van Schilfgaarde et al PRL 96 226402 (2008)

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Clusters de sodium 



Na 4 e ⇔ Na 4  4

E 0 Na 4 −E 0 Na =

{

HOMO , Na4   LUMO , Na4 

+

Na4 /Na4 Bruneval PRL (2009) F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Calculs de défauts avec l'approximation GW Calcul d'un système à 215 atomes Carbure de Silicium cubique 3C-SiC

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Barrière de transformation

Exp : EA = 2.2 ± 0.3 eV

Bruneval et Roma soumis (2010) F. Bruneval

1st Yarmouk school, Irbid 4 november 2010

Band Offset at the interface between two semiconductors Very important for electronics!

Example: Si/SiO2 interface for transistors

GW correction with respect to LDA F. Bruneval

R. Shaltaf PRL (2008). 1st Yarmouk school, Irbid 4 november 2010

Summary ●





The GW approximation solves the band gap problem! The calculations are extremely heavy, so that we resort to many additional technical approximations: method named G0W0 The complexity comes from ●

Dependance upon empty states



Non-local operators





Dynamic operators that requires freq. convolutions

There are still some other approximations like the Plasmon-Pole model... that I'll discuss during the practical session...

F. Bruneval

1st Yarmouk school, Irbid 4 november 2010