SuperNEMO status - medex'11

Jun 17, 2011 - Bi : < 300µBq/kg in the ββ foils. 214. Bi : ≤10µBq/kg. Rn : 5 mBq/m3 ... R&D developments - Principle of the BiPo detector. 210Tl. 214Bi. 210Pb.
6MB taille 7 téléchargements 305 vues
SuperNEMO status Arnaud Chapon on behalf of the NEMO/SuperNEMO collaboration LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

17 June 2011

s u p e r n e m o

collaboration

A. Chapon

SuperNEMO status

1 / 18

Contents

1

2

3

A. Chapon

Double beta decay The two decay processes Experimental principle The SuperNEMO experiment SuperNEMO design R&D developments Conclusion Summary

SuperNEMO status

2 / 18

Double beta decay The two decay processes

The allowed 2ν process (2ν2β)

The 0ν process beyond the SM (0ν2β)

(A,Z) → (A,Z+2) + 2e− + 2ν¯e

(A,Z) → (A,Z+2) + 2e−

∆L = 0

∆L = 2

ν 6= ν¯

ν ≡ ν¯

2ν −1 (T1/2 ) = G2ν |M2ν |2

0ν −1 (T1/2 ) = G0ν |M0ν |2 |mββ |2

2ν T1/2 ≈ 1019 − 1021 years

0ν T1/2 & 1024 years

u d d

u d u

W− W− d d u

u d d

e− ν¯e ν¯e e−

W− W− u d u

d d u

Fig.: 2ν2β mechanism A. Chapon

u d u

e− νe = ν¯e e− u d u

Fig.: 0ν2β mechanism SuperNEMO status

3 / 18

Double beta decay Experimental principle

1.0

0.8

0.6

0.4 2ν2β spectrum

0ν2β signal

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(Ee − +Ee − )/Qββ 1

2

Ideally a 0ν2β experiment should : measure the energy of the 2 electrons with very good energy resolution identify individually the 2 electrons emitted (Ee1 , Ee2 & cos θ)

A. Chapon

SuperNEMO status

4 / 18

Double beta decay Experimental principle

The tracko-calo technique enables : Reconstruction of final state topology :

Source is separated from the detector : can measure several ββ isotopes

A. Chapon

ca

lor

im

et er

β−

~ B

te d

Background rejection and measurement through particle identification : e − , e + , γ, α

β−

en

I

m

I

Particle individual energy and TOF

Se g

I

Charged particle trajectory

ck Hig in h g gr vo a n lu ul m ar e ity

I

Decay vertex

tra

I

e ± individual energy charged particle trajectory time of flight magnetic field curvature angular distribution vertex

β β Mo so dul ur ar ce th fo in il

I

SuperNEMO status

5 / 18

The SuperNEMO experiment SuperNEMO design

1 disfavoured by 0ν2β

SuperNEMO limits 2 ∆m23 0

10-3 99% C.L. (1 dof) 10-4 -4 10 10-3 10-2 10-1 lightest neutrino mass in eV

A. Chapon

SuperNEMO goals : disfavoured by cosmology

|mee | in eV

10-1

reach a sensitivity ≈ 50 meV on the effective neutrino mass test the inverted hierarchy

1

SuperNEMO status

6 / 18

The SuperNEMO experiment SuperNEMO design

 ≥ k. A

0ν T1/2

Experimentally :

s

M.t Nbgr .r

ln2.NA : constant,  : efficiency, A : molecular weight, M : source mass, 1.64 t : time of measurement, Nbgr : background events and r : energy resolution with k =

high Qββ I I

208

Eγ ( Tl) = 2.6 MeV Qβ (214 Bi) = 3.3 MeV

high G0ν (low

Qββ

nat. ab.

2ν T1/2

G0ν

isotope

(keV)

(%)

(years)

(10−25 yr−1 )

4272

0.187

4.2×1019

2.44

2995

8.73

9.2×1019

1.08

3350

2.8

20.0×1018

2.24

3034

9.63

7.1×1018

1.75

2805

7.49

3.0×1019

1.89

130

Te

2528.9

33.8

9.0×1020

1.70

136

Xe

2479

8.9

8.5×1021

1.81

150

Nd

3368.1

5.6

7.0×1018

8.00

48

Ca

82

Se

96

Zr

2ν high T1/2 (low 2ν2β)

100

high mass :

116

I I I

A. Chapon

0ν T1/2 )



natural abundance low atomic mass A enrichment feasibility

Mo Cd

SuperNEMO status

7 / 18

The SuperNEMO experiment SuperNEMO design

NEMO3

SuperNEMO 82

100

Mo

Se

isotope

or 48Ca or 150Nd

7kg

isotope mass

100kg

18%

efficiency

30%

internal contaminations in the ββ foils Rn in the tracker

Tl : ≤2µBq/kg Bi : ≤10µBq/kg Rn : ≤ 0.15 mBq/m3

8% @ 3MeV

calorimeter resolution

4% @ 3MeV

0ν T1/2 & 1 × 1024 yr hmν i < (0.3 - 0.9) eV

sensitivity

0ν T1/2 & 1 × 1026 yr hmν i < (0.04 - 0.11) eV

208

Tl : ≈ 100µBq/kg Bi : < 300µBq/kg Rn : 5 mBq/m3

214

A. Chapon

SuperNEMO status

208

214

8 / 18

The SuperNEMO experiment SuperNEMO design

20 modules surrounded by passive shielding

20 modules Source I

I

I

5kg per module ( 4 × 2.7 m2 , 40 mg/cm2 ) 82 2ν Se first (High Qββ , long T1/2 , proven enrichment technology) 48 Ca and 150Nd under consideration

Tracking detector I

Drift wire chamber in Geiger mode (2000 cells)

Calorimeter I

Fig.: SuperNEMO module

A. Chapon

600 plastic scintillators coupled to low radioactivity PMTs

SuperNEMO status

9 / 18

The SuperNEMO experiment R&D developments - The 82Se sources production

SuperNEMO baseline with Enriched Selenium I

I

I

82

Se :

3.5 kg from ILIAS European Program (Tomsk facility) 1.0 kg currently being measured in NEMO3 2.0 kg will be bought by JINR Dubna in 2012

Fig.: Enriched

82

Se in a quartz bottle

Purified Selenium I

I

Chemical purification of 1.0 kg natural Se at INEEL (US) Purification by distillation of 1.0 kg 82Se in Russia

Mass Production I

A. Chapon

Possibility to enrich 100 kg 82Se in Russia by centrifugation within the timescale

Fig.: Enriched 40 mg/cm2 SuperNEMO status

82

Se foil 10 / 18

The SuperNEMO experiment R&D developments - Principle of the BiPo detector 232

238

Th

212 60.5 m (65 %) 212

Bi 208

BiPo detector1 214

Po

19.9 m (99.98 %)

299 ns

60.5 m (35 %) 3.1 m 208

U

214

Bi 19.9 m (0.02 %) 1.3 m

Pb 210

Tl

beta

Po

Dedicated detector for qualification of SuperNEMO source background

164.3 µs

210

Pb

Sandwich of a thin source foil between two radiopure plastic scintillators coupled to light-guides and low radioactivity PMTs BiPo decay cascade :

Tl

Scintillator Source

alpha

I t0

Radiopurity requirements :

t 212

BiPo

(t ~ 300 ns)

214

β + delayed α

I

BiPo

(t ~ 164 us) t

I

208

Tl : < 2 µBq/kg Bi : < 10 µBq/kg

214

1 Methods in Physics Research A 622 (2010) 120–128 A. Chapon

SuperNEMO status

11 / 18

The SuperNEMO experiment R&D developments - BiPo sensitivity

BiPo sensitivity (3.24 m2 ) Surface background measurement : I

I

A(208Tl)BiPo1 ∼ 1.5 µBq/m2 (258 days.m2 @ LSM) 0.6 < A(214Bi)BiPo3 < 23.0 µBq/m2 (5.34 days.m2 @ LSC)

BiPo-3 sensitivity for SuperNEMO I I

82

Se sources :

208

A( Tl) < 2 µBq/kg in 6 months A(214Bi) < 10 µBq/kg in 6 month 18

55

bkg = 5.4 µBq/kg bkg = 1.5 µBq/kg bkg = 0.5 µBq/kg SuperNEMO sensitivity target

16

bkg = 23 µBq/kg bkg = 5.3 µBq/kg bkg = 0.6 µBq/kg SuperNEMO sensitivity target

50

BiPo3 sensitivity − 214Bi (µBq/kg)

BiPo3 sensitivity −

208

Tl (µBq/kg)

45 14 12 10 8 6 4

40 35 30 25 20 15 10

2

5

0

0 0

A. Chapon

2

4 6 8 duration of measurement (months)

10

12

0

SuperNEMO status

2

4 6 8 duration of measurement (months)

10

12

12 / 18

The SuperNEMO experiment R&D developments - tracker

Tracker Basic 90 cells prototype developed I I

 = 44 mm L = 3.7 m

Required performances demonstrated using cosmic muon data σT ∼ 0.7 mm σL ∼ 1 cm Geiger > 98%

Fig.: Robot for automatic wiring

A. Chapon

SuperNEMO status

13 / 18

The SuperNEMO experiment R&D developments - calorimeter

Calorimeter requirements large size detector (scintillator block + 8" PMT) Plastic scintillator : low back-scattering radiopurity PMT : linearity better than 1% between 0 and 3 MeV time resolution of 250 ps at 1 MeV low radioactive background : I I I

A. Chapon

40

K < 0.1 Bq/kg Bi < 0.04 Bq/kg 208 Tl < 0.003 Bq / kg 214

SuperNEMO status

14 / 18

The SuperNEMO experiment R&D developments - calorimeter

250

experimental spectrum gaussian fit

N (count/10keV)

200

150

100

50

0 0

0.5

1 Energy (MeV)

1.5

2

Calorimeter Required resolution demonstrated with cubic PVT (256×256 mm2 entrance surface, ≥12cm thick) directly coupled to a 8" PMT (R5912MOD) FWHM = 7.3% @ 1MeV FWHM = 4.2% @ 3MeV

A. Chapon

SuperNEMO status

15 / 18

The SuperNEMO experiment R&D developments

Integration The SuperNEMO demonstrator will be installed @ LSM, after NEMO3 removal The final SuperNEMO detector should be installed in the LSM extension

Fig.: Integration of the SuperNEMO demonstrator @ LSM

A. Chapon

SuperNEMO status

16 / 18

Conclusion Summary

Nemo experiments use "tracking + calorimetry" technique I I I I

Full event reconstruction Clear ββ event signature Excellent background rejection New physics studies1 using event topology (Mass mechanism, RHC, excited states. . . )

SuperNEMO is next generation experiment I I I

I

R&D objectives reached Demonstrator module sensitive to Klapdor claim by 2015 Full detector sensitivity by 2019 : 0ν 82 T1/2 ( Se) > 1 × 1026 yr (hmν (82Se)i < (0.04 - 0.11) eV) Possibility to probe 0ν2β mechanism

BiPo-3 is installing at LSC and should be running before 2012 with required sensitivity for SuperNEMO 82Se sources : I I

A(214Bi) < 10 µBq/kg in 6 month A(208Tl) < 2 µBq/kg in 6 months

1 Eur.Phys.J.C70 :927-943,2010 A. Chapon

SuperNEMO status

17 / 18

Conclusion Thanks

Thank you for your attention. A. Chapon

SuperNEMO status

18 / 18

Backgrounds for ββ decays Backup slide

External γ I I

208

Origin : natural radioactivity of the detector or neutrons Main background for 2ν2β but negligible for 0ν2β (100Mo and 82Se : Qββ ≈ 3MeV > Eγ (208Tl) = 2.6MeV)

Tl and

214

Bi contamination inside the ββ source foils

Radon inside the tracking detercor I I

A. Chapon

Deposits on the wires near the ββ foils Deposits on the surface of the ββ foils SuperNEMO status

19 / 18

Radon trapping facility Backup slide

Radon trapping facility 1 ton of charcoal @ -50o C, 9 bars air flux = 150 m3/h Input : A(222 Rn) 15 Bq/m3 Output : A(222 Rn) < 15 mBq/m3 ! ! ! reduction factor of 1000 Inside the NEMO3 tent : factor of 100 - 300 Inside NEMO3 : almost factor of 10 A(222 Rn) : 6 mBq/m3

A. Chapon

SuperNEMO status

20 / 18

Source production (150 Nd) Backup slide

A. Chapon

SuperNEMO status

21 / 18

Chemical source purification (82Se) Backup slide

Weigh Se Add quartz distilled 6M HNO3 to dissolve Se Heat until dryness Add nanopure H2 O Add quartz distilled 2M HCl Add barium solution Add H2 SO4 , precipitate carries Ra Filter solution Add barium solution Filter solution, improves separation from Ra Add saturated Na2 SO52 , reduce Se to metal which precipitates Let the solution stand Filter Se Combine filtrates and reduce volume, precipitate Se metal Add Se to quartz boats, place boats in furnace, dry Se under He purge Weigh ultra-purified Se Add ultra-purified Se to clean shipping container A. Chapon

SuperNEMO status

22 / 18

The BiPo detector - BiPo-3 prototype Backup slide

BiPo-3 prototype The BiPo-3 detector (3.24 m2 ) can measure 1.3 kg of SuperNEMO foil (40 mg/cm2 ) with 6.5% efficiency 2 identical modules of 2.7×0.6 m2 each high radiopurity module consists of 18×2 light lines (total 72) I

I

I I I

82

Se

300×300×2 mm3 Polystyrene scintillators [POPOP + pTp] entrance face aluminized with 200 nm of ultra pure aluminum PMMA light guides side reflector in Tyvek (0.2 mm) 5" Hamamatsu R6594-MOD low background PMTs

lead and pure iron shielding, radon free air flushing matacq VME digitizer boards : 2.5 µs @ 1 GHz, 1 V & 12 bit trigger boards for longer delays (214Bi) A. Chapon

SuperNEMO status

23 / 18

Energy resolution of the calorimeter Backup slide 250

experimental spectrum gaussian fit

N (count/10keV)

200

150

100

50

0 0

0.5

1 Energy (MeV)

18

1.5

2

experimental spectrum 7.96 / sqrt(E)

16

FWHM (%)

14

12

10

8

6

4 0.2

0.4

0.6

0.8

1 1.2 Energy (MeV)

1.4

1.6

1.8

2

PVT cubic block (256×256 mm2 entrance surface) coupled to a R5912MOD PMT

A. Chapon

SuperNEMO status

24 / 18

Probing new physics1 Backup slide

In case of observaton, measure energy difference and cosine of separating angle between electrons to identify mechanism of 0ν2β. Fig.:

pure MM

70% MM + 30 % RHCA admixture

Fig.:

Fig.:

pure RHCA

Combination of half-life measurement (blue contour) and topological parameter reconstruction (green contours) leads to parameter space restriction (red contour) at 1 standard deviation. 1 Eur.Phys.J.C70 :927-943,2010 A. Chapon

SuperNEMO status

25 / 18

Schedule Backup slide

2010

NEMO3 running

2011

2012

2013

2014

2015

2016

2017

2018

2019

NEMO3 dismantled

SuperNEMO demonstrator commissioning

SuperNEMO demonstrator running 7kg 82Se - T1/2 > 6.5 × 1024 Confirm Klapdor claim ?

full SuperNEMO construction full sensitivity by 2019 mν ≈ 0.05 eV

A. Chapon

SuperNEMO status

26 / 18