Real-time, probabilistic and evolutionary earthquake location for

[2005], which we extend and generalize by: a. starting the location procedure after only one station has triggered. Real-Time Earthquake Location (RTLoc) ...
5MB taille 24 téléchargements 163 vues
Real-time, probabilistic and evolutionary earthquake location for seismic early warning by Claudio Satriano (I), Anthony Lomax (III) and Aldo Zollo (II) (I) RISSC-Lab, AMRA scarl, Italy (II) RISSC-Lab, Università di Napoli, Italy (III) Anthony Lomax Scientific Software, France

Introduction •

A regional early warning system is based on the ability of a seismic network to provide estimates of the location and size of a potentially destructive earthquake within a few seconds after the event is first detected.



This information is then used to characterize the earthquake, and to estimate its severity for the selected target in order to take mitigating actions.

C. Satriano - 2007/07/11

ElarmS • Earthquakes are located using the arrival times of

P-waves. • When the first station triggers an event is located at that station with a depth typical of events in the region. • The earthquake is then located between the first two, and then the first three stations to trigger. • Once four stations have triggered a grid search method is used to locate the event, minimizing the misfit between predicted and observed arrival times.

from Allen, 2005 (www.elarms.org)

C. Satriano - 2007/07/11

Real-time location at NIED, Japan

Tnow − Ti (x, t) < 0

An Automatic Processing System for Broadcasting Earthquake Alarms

from Horiuchi et al., 2005

Figure 2.

Schematic map showing the method of the grid search in the hypocenter location. A threeC. Satriano dimensional grid with 3 ! 3 ! 3 " 27 points (a

-

window order to having s The neously the case or when bances. about 75 entering pocente P-wave produce of Hase timing o roneous is ineffe 2007/07/11 It is ess

Real-Time Earthquake Location (RTLoc) Our methodology is related to that of Horiuchi et al. [2005], which we extend and generalize by:

C. Satriano - 2007/07/11

Real-Time Earthquake Location (RTLoc) Our methodology is related to that of Horiuchi et al. [2005], which we extend and generalize by: a. starting the location procedure after only one station has triggered

C. Satriano - 2007/07/11

Real-Time Earthquake Location (RTLoc) Our methodology is related to that of Horiuchi et al. [2005], which we extend and generalize by: a. starting the location procedure after only one station has triggered b. using the Equal Differential Time (EDT) approach throughout to incorporate the triggered arrivals and the not-yet-triggered stations

C. Satriano - 2007/07/11

Real-Time Earthquake Location (RTLoc) Our methodology is related to that of Horiuchi et al. [2005], which we extend and generalize by: a. starting the location procedure after only one station has triggered b. using the Equal Differential Time (EDT) approach throughout to incorporate the triggered arrivals and the not-yet-triggered stations c. estimating the hypocenter probabilistically as a pdf instead of as a point

C. Satriano - 2007/07/11

Real-Time Earthquake Location (RTLoc) Our methodology is related to that of Horiuchi et al. [2005], which we extend and generalize by: a. starting the location procedure after only one station has triggered b. using the Equal Differential Time (EDT) approach throughout to incorporate the triggered arrivals and the not-yet-triggered stations c. estimating the hypocenter probabilistically as a pdf instead of as a point d. applying a full, non-linearized, global-search for each update of the location estimate.

C. Satriano - 2007/07/11

Equal Differential Time (EDT) approach If the hypocenter is exactly determined, the difference between calculated travel times tt0 and tt1 from the hypocenter to two stations S0 and S1 is equal to the difference between the observed arrival times t0 and t1 at the two stations, since the observed arrival times share the common earthquake origin time:

tt1 − tt0 = t1 − t0 from Font et al., 2004

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 1/7 stations

Voronoi cell boundaries

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 2/7 ttB − ttA = 0

B

A

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 3/7 ttB − ttA ≥ 0

“conditional” EDT surface volume defined by stations without arrivals

hypocenter B

A wavefront

First station detects arrival constraint is Voronoi cells

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 4/7 ttB − ttA ≥ tnow − tA “conditional” EDT surface

B

A

Wavefront expands EDT surfaces deform, constraint improves

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 5/7

ttB − ttA = tB − tA “true” EDT surface

B

A

Second station detects arrival constraint includes EDT surface

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 6/7

Third station detects arrival constraint is mainly EDT surfaces

C. Satriano - 2007/07/11

Evolutionary Earthquake Location - 7/7

Fourth station detects arrival location is well constrained

C. Satriano - 2007/07/11

RTLoc: Algorithm (1/2) We consider N operational stations (S0, …, SN), a gridded search volume V containing the network and target earthquake source regions, and pre-computed travel times from each station to each grid point (i,j,k) in V computed for a given velocity model. When the first station Sn triggers, we compute for each grid point the quantity:

(pn )i,j,k =

!

1 0

if if

(ttSk − ttSn )i,j,k ≥ δtn,k ; k #= n (ttSk − ttSn )i,j,k < δtn,k

δtn,k = tnow − tSn

ttB − ttA ≥ tnow − tA

B A

C. Satriano - 2007/07/11

RTLoc: Algorithm (1/2) We consider N operational stations (S0, …, SN), a gridded search volume V containing the network and target earthquake source regions, and pre-computed travel times from each station to each grid point (i,j,k) in V computed for a given velocity model. When the first station Sn triggers, we compute for each grid point the quantity:

(pn )i,j,k =

!

1 0

if if

(ttSk − ttSn )i,j,k ≥ δtn,k ; k #= n (ttSk − ttSn )i,j,k < δtn,k

δtn,k = tnow − tSn

ttB − ttA ≥ tnow − tA

B A

When a new station triggers, we re-evaluate (pm)i,j,k for all the pairs Sn (triggered) - Sk (not-yet-triggered). C. Satriano - 2007/07/11

RTLoc: Algorithm (2/2) For each pair Sn, Sm of triggered stations, we compute at each grid point (i, j, k), the quantity:

(qm )i,j,k

!

[(ttSm − ttSn ) − (tSm − tSn )]2i,j,k = exp − 2σ 2

"

; m "= n

ttB − ttA = tB − tA B A

C. Satriano - 2007/07/11

RTLoc: Algorithm (2/2) For each pair Sn, Sm of triggered stations, we compute at each grid point (i, j, k), the quantity:

(qm )i,j,k

!

[(ttSm − ttSn ) − (tSm − tSn )]2i,j,k = exp − 2σ 2

"

; m "= n

ttB − ttA = tB − tA

Eventually, for each grid point we define:

Pi,j,k

1 = M

!

"

(pn )i,j,k +

n

Qi,j,k = (Pi,j,k )N

" m

(qm )i,j,k

B

#

A

where M is the number of equations. The quantity Qi,j,k forms a relative probability density function (with values between 0 and 1) for the hypocenter location within the grid cell (i, j, k). C. Satriano - 2007/07/11

RTLoc test at the ISNet

The Irpinia Seismic Network (ISNet) C. Satriano - 2007/07/11

RTLoc test at the ISNet

The Irpinia Seismic Network (ISNet) C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.00 s

30

tnow = 3.03 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.20 s

30

tnow = 3.23 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.40 s

30

tnow = 3.43 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.60 s

30

tnow = 3.63 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.80 s

30

tnow = 3.83 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 1.00 s

30

tnow = 4.03 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.00 s

30

tnow = 5.40 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.20 s

30

tnow = 5.60 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.40 s

30

tnow = 5.80 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 0.80 s

30

tnow = 6.20 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 1.00 s

30

tnow = 6.40 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 1.20 s

30

tnow = 6.60 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 1.40 s

30

tnow = 6.80 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 1.60 s

30

tnow = 7.00 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 1.80 s

30

tnow = 7.20 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 2.00 s

30

tnow = 7.40 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 2.20 s

30

tnow = 7.60 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 2.40 s

30

tnow = 7.80 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 2.60 s

30

tnow = 8.00 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

RTLoc test at the ISNet X(km) −40

−20

Z(km)

0

20

40

0

10

20

30

40

40

40 RSA3

SSB3

BSC3

LPI3

CLT3

Y(km)

LIO3 MNT3 NSC3

20

AND3 RDM3

TEO3

CSG3 SFL3

0 VDS3

SNR3

0

AVG3

BEL3 SCL3

COL3 CMP3

Y(km)

RSF3

20

PCR3 VDP3

−20

−20 PGN3

PST3

CGG3 STN3 SRN3

−40

−40

0

10

20

30

40

Z(km)

0

Z(km)

10 20

Δt = 3.00 s

30

tnow = 8.40 s

40 −40

−20

0

20

40

X(km) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location Probability

0.8

0.9

1.0

C. Satriano - 2007/07/11

Magnitude 6.8 - SOUTHERN GREECE, 2006 January 8 11:34:55 UTC

Z(km)

X(km) −300

−200

−100

0

100

200

0

20

40

60

80 100

100

100

Athens

0

ITM

−100

APE

−100

Y(km)

Y(km)

0

VLI SANT −200

−200

VAM

−300

IDI

−300

LAST 0

20

40

60

80 100

Z(km) 0

Z(km)

20 40 60

Δt = 0.00 s

80 100 −300

−200

−100

0

100

200

tnow = 14.90 s

X(km)

tSAthens = −40.00 s 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Location Probability

RTLoc C. Satriano - 2007/07/11

Magnitude 6.8 - SOUTHERN GREECE, 2006 January 8 11:34:55 UTC

Z(km)

X(km) −300

−200

−100

0

100

200

0

20

40

60

80 100

100

100

Athens

0

ITM

−100

APE

−100

Y(km)

Y(km)

0

VLI SANT −200

−200

VAM

−300

IDI

−300

LAST 0

20

40

60

80 100

Z(km) 0

Z(km)

20 40 60

Δt = 4.00 s

80 100 −300

−200

−100

0

100

200

tnow = 18.90 s

X(km)

tSAthens = −36.00 s 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Location Probability

RTLoc C. Satriano - 2007/07/11

Magnitude 6.8 - SOUTHERN GREECE, 2006 January 8 11:34:55 UTC

Z(km) 0

100

200

0

20

40

60

100

Athens

Y(km)

0

ITM

−100

Z(km)

X(km) 80 100

APE

−300

100

100

0

0

−100

−200

−100

0

100

200

VAM

−300

0

ITM

−100

APE

−100

IDI

−200

−200

−300

−300

−200

VAM

LAST 20

40

60

IDI

−300

LAST

80 100

0

0

0

20

20

40 60

Δt = 6.00 s

80

−100

0

100

200

0.4

0.5

0.6

0.7

0.8

Location Probability

NLLoc

0.9

1.0

60

80 100

60

Δt = 6.00 s

80 100 −300

−200

−100

0

100

200

tnow = 20.90 s

X(km)

tSAthens = −34.00 s 0.3

40

40

tnow = 20.90 s

X(km)

20

Z(km)

Z(km)

Z(km)

Z(km)

0.2

80 100

SANT

0

0.1

60

Athens

SANT

0.0

40

VLI

−200

−200

20

100

VLI

100 −300

0

Y(km)

−100

Y(km)

−200

Y(km)

X(km) −300

tSAthens = −34.00 s 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Location Probability

RTLoc

Lomax, et al., 2000 C. Satriano - 2007/07/11

Magnitude 6.8 - SOUTHERN GREECE, 2006 January 8 11:34:55 UTC

Z(km) 0

100

200

0

20

40

60

100

Athens

Y(km)

0

ITM

−100

Z(km)

X(km) 80 100

APE

−300

100

100

0

0

−100

−200

−100

0

100

200

VAM

−300

0

ITM

−100

APE

−100

IDI

−200

−200

−300

−300

−200

VAM

LAST 20

40

60

IDI

−300

LAST

80 100

0

0

0

20

20

40 60

Δt = 12.00 s

80

−100

0

100

200

0.4

0.5

0.6

0.7

Location Probability

NLLoc

0.8

0.9

1.0

60

80 100

60

Δt = 12.00 s

80 100 −300

−200

−100

0

100

200

tnow = 26.90 s

X(km)

tSAthens = −28.00 s 0.3

40

40

tnow = 26.90 s

X(km)

20

Z(km)

Z(km)

Z(km)

Z(km)

0.2

80 100

SANT

0

0.1

60

Athens

SANT

0.0

40

VLI

−200

−200

20

100

VLI

100 −300

0

Y(km)

−100

Y(km)

−200

Y(km)

X(km) −300

tSAthens = −28.00 s 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Location Probability

RTLoc C. Satriano - 2007/07/11

Magnitude 6.8 - SOUTHERN GREECE, 2006 January 8 11:34:55 UTC

Z(km) 0

100

200

0

20

40

60

100

Athens

Y(km)

0

ITM

−100

Z(km)

X(km) 80 100

APE

−300

100

100

0

0

−100

−200

−100

0

100

200

VAM

−300

0

ITM

−100

APE

−100

IDI

−200

−200

−300

−300

−200

VAM

LAST 20

40

60

IDI

−300

LAST

80 100

0

0

0

20

20

40 60

Δt = 14.00 s

80

−100

0

100

200

0.4

0.5

0.6

0.7

Location Probability

NLLoc

0.8

0.9

1.0

60

80 100

60

Δt = 14.00 s

80 100 −300

−200

−100

0

100

200

tnow = 28.90 s

X(km)

tSAthens = −26.00 s 0.3

40

40

tnow = 28.90 s

X(km)

20

Z(km)

Z(km)

Z(km)

Z(km)

0.2

80 100

SANT

0

0.1

60

Athens

SANT

0.0

40

VLI

−200

−200

20

100

VLI

100 −300

0

Y(km)

−100

Y(km)

−200

Y(km)

X(km) −300

tSAthens = −26.00 s 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Location Probability

RTLoc C. Satriano - 2007/07/11

Magnitude 6.8 - SOUTHERN GREECE, 2006 January 8 11:34:55 UTC

Z(km) 0

100

200

0

20

40

60

100

Athens

Y(km)

0

ITM

−100

Z(km)

X(km) 80 100

APE

−300

100

100

0

0

−100

−200

−100

0

100

200

VAM

−300

0

ITM

−100

APE

−100

IDI

−200

−200

−300

−300

−200

VAM

LAST 20

40

60

IDI

−300

LAST

80 100

0

0

0

20

20

40 60

Δt = 16.00 s

80

−100

0

100

200

0.4

0.5

0.6

0.7

Location Probability

NLLoc

0.8

0.9

1.0

60

80 100

60

Δt = 16.00 s

80 100 −300

−200

−100

0

100

200

tnow = 30.90 s

X(km)

tSAthens = −24.00 s 0.3

40

40

tnow = 30.90 s

X(km)

20

Z(km)

Z(km)

Z(km)

Z(km)

0.2

80 100

SANT

0

0.1

60

Athens

SANT

0.0

40

VLI

−200

−200

20

100

VLI

100 −300

0

Y(km)

−100

Y(km)

−200

Y(km)

X(km) −300

tSAthens = −24.00 s 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Location Probability

RTLoc C. Satriano - 2007/07/11

New Pick

Event association (binding) NO

RM SSi

Is there an event?

M ! 1 2 = [(ttSi − ttSj ) − (tSi − tSj )] M j=1

YES Temporarily associate the pick to the event i

Re-locate event i

NO RMS < RMSmax ?

Declare a new event j

YES Permanently associate the pick to the event i

Compute the location probability for j

Save to disk the new location map for event i

Save to disk the location map for event j

C. Satriano - 2007/07/11

Real-Time Hazard Evaluation/Mitigation

fˆP GA (pga) =

!

M

from Iervolino et al., 2006

!

fP GA|M,R (pga|m, r)fˆM (m)fˆR (r)dmdr

R

C. Satriano - 2007/07/11

Real-Time Hazard Evaluation/Mitigation

fˆP GA (pga) =

!

M

from Iervolino et al., 2006

!

fP GA|M,R (pga|m, r)fˆM (m)fˆR (r)dmdr

R

C. Satriano - 2007/07/11

Real-Time Hazard Evaluation/Mitigation

fˆP GA (pga) =

!

M

!

R

fP GA|M,R (pga|m, r)fˆM (m)fˆR (r)dmdr EEW (function of time)

from Iervolino et al., 2006

C. Satriano - 2007/07/11

Real-Time Hazard Evaluation/Mitigation

fˆP GA (pga) =

!

M

from Iervolino et al., 2006

!

R

fP GA|M,R (pga|m, r)fˆM (m)fˆR (r)dmdr Attenuation Law

EEW (function of time)

C. Satriano - 2007/07/11

Real-Time Hazard Evaluation/Mitigation

fˆP GA (pga) =

!

M

from Iervolino et al., 2006

!

R

fP GA|M,R (pga|m, r)fˆM (m)fˆR (r)dmdr Attenuation Law

EEW (function of time)

C. Satriano - 2007/07/11

Real-Time Hazard Evaluation/Mitigation

fˆP GA (pga) =

!

M

!

R

fP GA|M,R (pga|m, r)fˆM (m)fˆR (r)dmdr Attenuation Law

EEW (function of time)

Estimation of Engineering Demand Parameters (EDP):

fˆEDP (edp) = from Iervolino et al., 2006

!

IM

fEDP |P GA (edp|pga)fˆP GA (pga)dpga C. Satriano - 2007/07/11

Discussion •

We have developed a probabilistic, real-time evolutionary location technique (RTLoc) based on the equal differential-time (EDT) formulation.



At each time step, this algorithm makes use of both the information from triggered arrivals and not-yet-triggered stations.



Constraint on the hypocenter location is obtained as soon as the first station has triggered and is updated at fixed time intervals or when a new station triggers.

C. Satriano - 2007/07/11

Discussion •



We have developed a probabilistic, real-time evolutionary location technique (RTLoc) based on the equal differential-time (EDT) formulation.



At each time step, this algorithm makes use of both the information from triggered arrivals and not-yet-triggered stations.



Constraint on the hypocenter location is obtained as soon as the first station has triggered and is updated at fixed time intervals or when a new station triggers.

The hypocenter location is estimated as a probability density function defined within a pre-defined search volume.



This probabilistic description of the location results is easy to incorporate into a system for real-time hazard evaluation and mitigation.

C. Satriano - 2007/07/11

Discussion •



We have developed a probabilistic, real-time evolutionary location technique (RTLoc) based on the equal differential-time (EDT) formulation.



At each time step, this algorithm makes use of both the information from triggered arrivals and not-yet-triggered stations.



Constraint on the hypocenter location is obtained as soon as the first station has triggered and is updated at fixed time intervals or when a new station triggers.

The hypocenter location is estimated as a probability density function defined within a pre-defined search volume.

• •

This probabilistic description of the location results is easy to incorporate into a system for real-time hazard evaluation and mitigation.

Both synthetic and real data show that useful locations can be obtained within 1-2 seconds for a local earthquake and 6-10 seconds at a regional scale C. Satriano - 2007/07/11