Prof. Kenzo Nonami Department of Mechanical Engineering Division

small scale helicopter, Micro Air Vehicle to name a few. ... transmitted to a ground station, an operator can also perform posture control of a power line monitoring.
43KB taille 1 téléchargements 216 vues
Prof. Kenzo Nonami Department of Mechanical Engineering Division of Artificial Systems Science Graduate School, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522, JAPAN [email protected] Dr. Kenzo Nonami has a Doctorate degree (1979) in Mechanical Engineering from Tokyo Metropolitan University. He worked as an Associate Professor at Chiba University from 1988 to 1994 and as full professor in the Department of Mechanical Engineering and Electronics from 2004. He won the NRC research fellowship at NASA (USA) in 1985 and did research on various fields like robots, unmanned small scale helicopter, Micro Air Vehicle to name a few. He is a member of Japan Society of Mechanical Engineers, Robotics Society of Japan, IEEE, ASME, etc. He has published more than 300 journal papers and seven textbooks. He has guided 36 Ph.D students. He will be taking over as VicePresident of Chiba University in April 2008. He has many awards to his credit from Japan and American Society of Mechanical Engineers. Autonomy in Robots There is a widespread & rapid development of unmanned aircraft (UAV & MAV) equipped with autonomous control systems, called “robotic aircraft” in recent years. Although they can be used for both civil and military applications, remarkable development has taken place for applications in military use. However, by exploiting the outstanding characteristics of these devices, there are infinite possibilities of making use of them for civilian use even though applications are not obvious. In the light of the present scenario, we present here the recent research & development of these autonomous uninhabited aircraft for civilian use. Chiba University UAV group started research on autonomous control from 1998, continued advanced joint research with Hirobo, Ltd. from 2001 and realized in a small-scale hobby helicopter fully autonomous control. We describe here the power line monitoring application of UAV called SKYSURVEYOR. The helicopter with a gross weight of 48kgs, payload of 20kgs and with various cameras mounted on them, with cruising time of one hour, catches power line, regardless of the shake of the helicopter. We have also developed another autonomous controlled hobby helicopter SST-eagle2-EX with a gross weight of 5kg - 7kg, payload of 1kg and cruising time of 20 minutes. This is a cheap, simple system, which can be flown by a single person and can be used for spraying chemicals to fields, gardens, to orchards etc. It can also be used for aerial photographing, for surveillance and for disaster prevention rescues. This system automated the hobby commercial radio control helicopter. Chiba University and GH Craft are continuing research and development of autonomous control of the four rotor-tilt-wing aircraft. This QTW (Quad Tilt Wing) UAV is about 30kg in gross load, take-off and landing is made in helicopter mode and the high-speed cruising flight is carried out in airplane mode. Although Bell company in the US were the first to make this system and the first flight of the QTR(Quad Tilt Rotor)-UAV was carried out in January, 2006, QTW-UAV is not existing in the world now. Scientific observation flights in South pole –the Antartica Exploration using the above system is being done at a fast pace and there has been considerable development. Chiba University and Seiko Epson have jointly tackled the autonomous control of micro flying robot of the smallest size in the world, weighing 12.3g. This offers an opportunity as a light weight MAV with

autonomous control in the interior of a room for image processing using a camera. Chiba University with Hirobo, Ltd.has also succeeded in the development of a similar robot, though heavier by 170g. The configuration of the autonomous control system in the power line monitoring helicopter has been successfully demonstrated in this presentation. Generally, the autonomous UAV used for civilian purpose consists of a power line monitoring helicopter SKYSURVEYOR as indicated earlier. The various systems which are carried on a Civil used UAV are (i) sensors for autonomous control such as GPS receiver, an attitude sensor and a compass (ii) on- board computer and (iii) a powerline monitoring device. These will be dealt in detail in the presentation. The flight of the compound inertial navigation of GPS/INS or 3D stereo vision base is also possible if needed. From the ground station operator assisted flight is also possible. In addition, although a power line surveillance image is recorded on the video camera of UAV loading in automatic capture mode and it is simultaneously transmitted to a ground station, an operator can also perform posture control of a power line monitoring camera and zooming by interruption at any time. Also, the autonomy ground robot like a hexapod robot, a dual manipulator robots, and the autonomy marine robot like a robotic boat are briefly introduced in this presentation.