Nonlinear Thermoelectricity : Cooling, Catastrophes and Carnot

Currently: best bulk semiconductors ZT ∼ 1.5 − 2. ♧ Theory proposals: ZT ∼ 10. Casati, Mejıa-Monasterio, Prosen (2008). Nozaki, Sevinçli, Li, Gutiérrez, ...
532KB taille 4 téléchargements 254 vues
Laboratoire de Physique et Modelisation ´ des Milieux Condenses ´ Univ. Grenoble & CNRS, Grenoble, France

Nonlinear Thermoelectricity : Cooling, Catastrophes and Carnot Robert S. Whitney

Pl´ eni` ere — GDR Physique Quantique M´ esoscopique [Aussois Oct 2012]

SUMMARY PART 0:

What is thermoelectricty — and why care?

♠ good refrigerator rarely in linear-response regime

PART I:

“Cooling & Catastrophes”

R.W. arXiv:1208.6130

♠ NON-LINEAR scattering theory: fridge with point-contacts ♠ RESULT = catatstrophe aids cooling “thermoelectric quality” 6= figure-of-merit

PART II:

“Carnot and other Constraints”

R.W. work in progress

♠ Thermodynamic & quantum constraints for refrigeration in “arbitrary” quantum systems

WHAT is THERMOELECTRICITY? Power-generation: heat flow → electrical current

Refrigeration: electrical current → heat flow

revisionworld.co.uk

ENERGY-DEPENDENCE of TRANSMISSION L lead HOT

n−type semi− conductor

HOT Fermi sea

R lead COLD

sub-Kelvin expt: semicond→supercond

T hot

semiconductor density of states 0000 1111

1111 0000 0000 1111 0000 1111 0000 1111 1111 0000 0000 1111 0000 1111 0000 1111

COLD Fermi sea

S-N-S THERMOELECTRIC COOLING n−type

heat

Rajauria, Luo, Fournier,Hekking, Courtois, and Pannetier (2007) p−type sub-Kelvin : S-N-S Courtois and co−workers (2007−2009) Point being cooled heat

metal

charge current

superconductor

superconductor

Refrigeration : 300mK → 100mK real semiconductor fridge element

nature.com

TEXT-BOOK THEORY for REFRIGERATION

I

minimal energy-conserving theory ⇒ nearly-linear response e.g. Goldsmid (2009) “Intro. to Thermoelectricity”

ambient temp,

T0

JC

thermo− electric device

heat flow at cold: JC = Θ (T0 − TC ) − Π I |{z}

+

Peltier effect (1834)

1.2

TC /T0

COLD side,

TC

1 2 2 RI

| {z }

Joule heating (1840s)

1.0 COOLING 0.8 0.6

• non-linear • non-conserving

0.4

minimum: TC /T0 = 1 − 12 ZT0

0.2 HEATING 0.0 0.0

0.5

1.0

1.4

I

with ZT0 = Π2 /(RΘT0 )

REFRIGERATION and ZT ZT =

GΠ2 (Θelectron + Θother )T

Π is Peltier coefficient G & Θ are electric & thermal conductance

♣ Currently: best bulk semiconductors ZT ∼ 1.5 − 2 ♣ Theory proposals: ZT ∼ 10

Casati, Mej´ıa-Monasterio, Prosen (2008) Nozaki, Sevin¸ cli, Li, Guti´ errez, Cuniberti (2010) Saha, Markussen, Thygesen, Nikoli´ c (2011) Wierzbicki, Swirkowicz (2011) Karlstr¨ om, Linke, Karlstr¨ om, Wacker (2011) Gunst, Markussen, Jauho, Brandbyge (2011) Rajput, Sharma (2011). Trocha, Barna´ s (2012)

... but good fridges rarely in linear-response regime ♣ Non-linear theory for refrigeration with S-N-S Rajauria, Gandit, Hekking, Pannetier, Courtois (2007). Vasenko, Bezuglyi, Courtois, Hekking, (2009).

PART I

— COOLING & CATASTROPHES —

NON-LINEAR scattering theory Fridge made out of point-contacts

SCATTERING THEORY BEYOND LINEAR RESPONSE Linear response :

charge conductance Landauer & B¨ uttiker (1957-1980s) heat conductance Enquist & Anderson (1981) thermoelectric Sivan & Imry (1986), Butcher (1990)

decoherence as “extra leads” B¨uttiker (1980s)

beyond linear response: Hartree-like interactions included self-consistently point-contact Moskalets (1995) general Christen-B¨ uttiker (1996)

Ji =

Z



−∞

  dǫ ǫ − eVj (ǫ − eVi ) Tij (ǫ) f h kB Tj

Self-consistent loop:

Sij (ǫ)

  † Sij Tij (ǫ) = tr Sij

potential-distrib. in system

FRIDGE using POINT-CONTACTS at PINCH-OFF Expt: suspended structures e.g. Heron, Fournier, Mingo, Bourgeois (2009)

I

e-

-eVL

J1

e-

I temperature Tisl

temperature T0

Long point-contact only parameter = Epc (minimal tunnelling)

⇒ interactions only modifies Epc

-eVL

-aeVL

screening by gates

potential's peak energy=Epc

FRIDGE using POINT-CONTACTS at PINCH-OFF nearly-linear “text-book” theory 1.2

Tisl /T0 1.0

L G AL N RO W

COOLING 0.8 0.6 0.4 0.2

HEATING 0.0 0.0

0.5

1.0

1.4

Fully non-linear theory: Exact result. 2 hJ π 2 Tisl = − 2 2 (kB T0 ) 12T 0   h(Imax (Tisl ) − I) −Li2 1−exp ekB T0

I

with I ≤ I max (Tisl ) = ekB Tisl ln[2]/h

Mathematically: “fold catastrophe” at IC . In principle: cooling to absolute zero (beyond catastrophe)

EFFECTS SUPPRESSING REFRIGERATION Effect of phonons/photons

ga

1.0 1.0

inc r ea sin

0.8 0.8

4 Jph = a(T04 − Tisl )

0.6 0.6

Stefan-Boltzmann Law

0.4 0.4

2

similar curves for T -photons

0.2 0.2

Pascal, Courtois, Hekking (2011)

0.0 0.0 0.0 0.0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

mimicked by point-contact in parallel with resistance

Noting point-contact has ZT = 1.4 i.e. not a strong thermoelectric Proposed nanodevices have ZT ∼ 10

1.0 1.0 0.8 0.8 0.6 0.6

inc rea sin

Less strong thermoelectric effects

gg

hI/(ek BT0 )

g=1/4 nearly-linear approx. for g=1/4

0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.0

g=0

0.2

nearly-linear approx. for g=0

0.4 0.4 0.6 0.8 0.8 1.0 1.2 1.2 1.4

hI/(ek BT0 )

0.5 0.5

PART II

— CARNOT & OTHER FUNDAMENTAL CONSTRAINTS —

FUNDAMENTAL CONSTRAINTS on THERMOELECTRICITY ZEROTH LAW EQUILIBRIUM

FIRST LAW P d i (Ji + Vi Ii ) = 0 dt E = SECOND LAW :

d dt S

=

P

i

Ji /Ti ≥ 0

two-leads Bruneau, Jakˇsic, Pillet (2012)

many leads including superconductor

QUANTUM CONSTRAINT : Ji ≥ − Stefan-Boltzmann for fermions:

π2 Ni (kB Ti )2 6h

N◦ channels,

Ni ∼

lead cross−section (wavelength)2

QUANTUM VS THERMODYNAMIC CONSTRAINTS CONSTRAINTS on heat flow out of object being refrigerated Carnot efficiency: Quantum:

Ex. I:

−JC ≤ Psupplied −JC ≤

Carnot

Ex. II:

⇒ −Jc ≤ 0.1pW ⇒ −Jc ≤ 0.01pW

kitchen freezer.

Carnot Quantum

Carnot (1824)

π2 NC (kB TC )2 6h

few channel nanostructure.

Quantum

TC T0 − TC

⇒ −Jc ≤ 13W ⇒ −Jc ≤ 3.6W per square-cm

Psupplied ≃ 1pW TC ≃ 0.1K & T0 ≃ 1K

Psupplied ≃ 100W TC ≃ 260K & T0 ≃ 300K NC ≃ 1010 per square-cm

SUMMARY PART 0:

What is thermoelectricty — and why care?

♠ good refrigerator rarely in linear-response regime

PART I:

“Cooling & Catastrophes”

R.W. arXiv:1208.6130

♠ NON-LINEAR scattering theory: fridge with point-contacts ♠ RESULT = catatstrophe aids cooling “thermoelectric quality” 6= figure-of-merit

PART II:

“Carnot and other Constraints”

R.W. work in progress

♠ Thermodynamic & quantum constraints for refrigeration in “arbitrary” quantum systems

— — — EXTRAS — — —

Appendix : Calculation for FRIDGE using POINT-CONTACTS Method.

Scattering theory gives:

(a) non-linear heat current J in terms of temperature Tisl & voltage, V (b) non-linear charge current I in term of temperature Tisl & voltage, V Invert (b) & substitute for V in (a)

⇒ J in terms of temperature Tisl & current I. Exact result.    2 h π 2 Tisl h(Imax (Tisl ) − I) J =− − Li2 1 − exp (kB T0 )2 12T02 ekB T0 with I ≤ I max (Tisl ) = ekB Tisl ln[2]/h