Newton, Lagrange, Hamilton and Hamilton-Jacobi Mechanics of

Jun 6, 2017 - PDE: Numerical solution of the 1D time-dependent Schrödinger ...... x2 + V = t; we check both variants. In[862]:=. NIntegrate Conjugate x, x,x x,.
6MB taille 2 téléchargements 258 vues
Newton, Lagrange, Hamilton and Hamilton-Jacobi Mechanics of Classical Particles with Mathematica.nb

Newton, Lagrange, Hamilton and HamiltonJacobi Mechanics of Classical Particles with Mathematica Dr. Luigi E. Masciovecchio email: [email protected] First published and available as notebook and PDF on http://sites.google.com/site/luigimasciovecchio/ 2017.06.06 In[1]:=

Print@"Document revision: ", IntegerPart@Date@DDD Document revision: 82017, 10, 17, 6, 57, 57
0D - k x@tD - m x¢¢ @tD Š 0

Out[229]=

Out[231]=

99x@tD ® a CosA

I- 1 + b12 M Ha - xL2

k tE== m

In[232]:=

FirstIntegrals@L, x@tD, tD

2 Ha - xL

=

=

34

Newton, Lagrange, Hamilton and Hamilton-Jacobi Mechanics of Classical Particles with Mathematica.nb

Out[232]=

9FirstIntegral@tD ®

1 2

Ik x@tD2 + m x¢ @tD2 M=

Ÿ 2D nonlinear pendulum In[233]:=

Remove@"Global`*"D T = m  2 Ix¢ @tD2 + y¢ @tD2 M;

In[234]:=

V = m g y@tD; L = T-V Out[236]=

- g m y@tD +

1 2

m Ix¢ @tD2 + y¢ @tD2 M

8x ® H- l Sin@Θ@ð DD &L, y ® H- l Cos@Θ@ð DD &L 0 && m > 0D

In[237]:=

Out[238]=

g l m Cos@Θ@tDD +

1 2

m Il2 Cos@Θ@tDD2 Θ¢ @tD2 + l2 Sin@Θ@tDD2 Θ¢ @tD2 M

Out[239]=

9FirstIntegral@tD ®

1 2

l m I- 2 g Cos@Θ@tDD + l Θ¢ @tD2 M=

g Sin@Θ@tDD + l Θ¢¢ @tD Š 0

Out[241]=

In[242]:=

Print@"Linearization..."D %% . Sin ® HSeries@Sin@ð D, 8ð , 0, 1