New and updated convex shape models of ... - DBR Astronomie

Oct 21, 2015 - in-time data increased the number of available shape models by a factor of 4 (ˇDurech ... grade and retrograde rotators symmetric with respect to the cen- ter of the family is ..... as well as the user manual. 4. Results and ...... 4.775377. 58. 12. 540. ˇDurech et al. (2007). 511 Davida. 298. 22. 5.129365. 58. 17.
233KB taille 2 téléchargements 299 vues
Astronomy & Astrophysics manuscript no. hanus_2015_models_AA_final October 21, 2015

c ESO 2015

New and updated convex shape models of asteroids based on optical data from a large collaboration network 3 , D.A. Oszkiewicz4 , R. Behrend5 , B. Carry2 , M. Delbo’2 , O. Adam6 , V. Afonina7 , ˇ J. Hanuš1,2∗ , J. Durech 8 9 R. Anquetin , P. Antonini , L. Arnold6 , M. Audejean10 , P. Aurard6 , M. Bachschmidt6 , B. Baduel6 , E. Barbotin11 , P. Barroy8 , P. Baudouin12 , L. Berard6 , N. Berger13 , L. Bernasconi14 , J-G. Bosch15 , S. Bouley8 , I. Bozhinova16 , J. Brinsfield17 , L. Brunetto18 , G. Canaud8 , J. Caron19,20 , F. Carrier21 , G. Casalnuovo22 , S. Casulli23 , M. Cerda24 , S. Charbonnel25 , B. Chinaglia22 , A. Cikota26 , F. Colas8 , J-F. Coliac27 , A. Collet6 , J. Coloma28,29 , M. Conjat2 , E. Conseil30 , R. Costa28,31 , R. Crippa32 , M. Cristofanelli33 , Y. Darmedji34 , A. Debackere35 , A. Decock34 , Q. Déhais36 , T. Déléage35 , S. Delmelle34 , C. Demeautis37 , M. Drozdz38 , G. Dubos8 , T. Dulcamara6 , M. Dumont34 , R. Durkee39 , R. Dymock40 , N. Esseiva41 , R. Esseiva41 , M. Esteban24,42 , T. Fauchez34 , M. Fauerbach43 , M. Fauvaud44,45 , S. Fauvaud44,45,8 , E. Forné28,46 †, D. Fradet8 , J. Garlitz47 , O. Gerteis6 , C. Gillier48 , M. Gillon34 , R. Giraud34 , J-P. Godard8 , R. Goncalves49 , H. Hamanowa50 , H. Hamanowa50 , K. Hay16 , S. Hellmich51 , S. Heterier52,53 , D. Higgins54 , R. Hirsch4 , G. Hodosan16 , M. Hren26 , A. Hygate16 , N. Innocent6 , H. Jacquinot55 , S. Jawahar56 , E. Jehin34 , L. Jerosimic26 , A. Klotz57,58,6 , W. Koff59 , P. Korlevic26 , E. Kosturkiewicz38 , P. Krafft6 , Y. Krugly60 , F. Kugel19 , O. Labrevoir6 , J. Lecacheux8 , M. Lehký61 , A. Leroy8,62,63 , B. Lesquerbault6 , M.J. Lopez-Gonzales64 , M. Lutz6 , B. Mallecot8 , J. Manfroid34 , F. Manzini32 , A. Marciniak4 , A. Martin65,66 , B. Modave6 , R. Montaigut8,48,63 , J. Montier52,53 , E. Morelle27 , B. Morton16 , S. Mottola51 , R. Naves67 , J. Nomen26 , J. Oey68 , W. Ogloza38 , M. Paiella33 , H. Pallares28,69 , A. Peyrot58 , F. Pilcher70 , J-F. Pirenne6 , P. Piron6 , M. Polinska4 , M. Polotto6 , R. Poncy71 , J.P. Previt53 , F. Reignier72 , D. Renauld6 , D. Ricci34 , F. Richard45 , C. Rinner73 , V. Risoldi33 , D. Robilliard53 , D. Romeuf74 , G. Rousseau75 , R. Roy76 , J. Ruthroff77 , P.A. Salom24,42 , L. Salvador6 , S. Sanchez26 , T. Santana-Ros4 , A. Scholz16 , G. Séné6 , B. Skiff78 , K. Sobkowiak4 , P. Sogorb79 , F. Soldán80 , A. Spiridakis35 , E. Splanska6 , S. Sposetti81 , D. Starkey82 , R. Stephens83 , A. Stiepen34 , R. Stoss26 , J. Strajnic6 , J-P. Teng58 , G. Tumolo84 , A. Vagnozzi33 , B. Vanoutryve6 , J.M. Vugnon45 , B.D. Warner83 , M. Waucomont6 , O. Wertz34 , M. Winiarski38 †, and M. Wolf3

(Affiliations can be found after the references) Received x-x-2012 / Accepted x-x-2012 ABSTRACT

Context. Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. This amount already provided a deep insight into physical properties of main-belt asteroids or large collisional families. Going into finer details (e.g., smaller collisional families, asteroids with sizes .20 km) requires knowledge of physical parameters of more objects. Aims. We aim to increase the number of asteroid shape models and rotation states. Such results are an important input for various further studies such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides, in combination with known masses, bulk density estimates, but constrains also theoretical collisional and evolutional models of the Solar System. Methods. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as an input for the convex inversion method, and derive 3D shape models of asteroids, together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that one hundred observers who submit their optical data to publicly available databases. Results. We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature or their masses will be most likely determined from their gravitational influence on smaller bodies, which orbital deflection will be observed by the ESA Gaia astrometric mission. This was achieved by using additional optical data from recent apparitions for the shape optimization. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and 3 near-Earth asteroids.

1. Introduction Asteroid modeling efforts in the last decade resulted in an extensive dataset of almost 400 convex shape models and rotaˇ tion states (see the review by Durech et al. 2015a). The majority of these models was determined by the lightcurve inversion method (LI) developed by Kaasalainen & Torppa (2001) and Kaasalainen et al. (2001). About one hundred models are based

on disk-integrated dense-in-time optical data (e.g., Torppa et al. 2003; Slivan et al. 2003; Michałowski et al. 2005; Marciniak et al. 2009, 2011). Combining dense-in-time data with sparse-intime measurements from large sky surveys, or using only sparsein-time data increased the number of available shape models by ˇ a factor of 4 (Durech et al. 2009; Hanuš et al. 2011, 2013a,c). Future data from Gaia, PanSTARRS, and LSST should result in

1

J. Hanuš et al.: New and updated shape models of asteroids

an increase of shape models by an order of at least one magˇ nitude (Durech et al. 2005). The methods that will be used for analysis of these future data of unprecedented amount and quality by the means of complex shape modeling are similar to those applied here and developed within the scope of our recent studies. Most asteroid shape models derived by the lightcurve inversion method and their optical data are available in the Database of Asteroid Models from Inversion Techniques (DAMIT1 , ˇ Durech et al. 2010). We would like to emphasize and acknowledge that the shape modeling stands on the shoulders of 100s of observers, often amateurs, that are regularly obtaining photometric data with their small and mid-sized telescopes, which significantly contributed to the large progress of the shape modeling field in the last decade. Although there is much more sparse than dense data available, the latter will always remain important, because their much higher photometric accuracy and rotation coverage leads to higher quality shape models. This is a typical example of great interaction between the professional and amateur community (Mousis et al. 2014). Knowing the rotational parameters and shapes of asteroids is very important for numerous applications. The large amount of currently known asteroid models provided already a deep insight into physical properties of main-belt asteroids and large collisional families: (i) an excess of prograde rotators within mainbelt asteroids (MBAs) larger than ∼50 km in diameter, predicted by numerical simulations (Johansen & Lacerda 2010), was confirmed by Kryszczy´nska et al. (2007); Hanuš et al. (2011); (ii) an excess of retrograde rotators within near-Earth asteroids (NEAs) is consistent with the fact that most of the NEAs come from the ν6 resonance (La Spina et al. 2004). To enter the ν6 resonance via Yarkovsky effect2 the object must be a retrograde rotator; (iii) an anisotropy of spin-axis directions of MBAs asteroids with diameters . 30 km and NEAs was revealed and explained by the YORP effect3 , collisions and mass shedding (Hanuš et al. 2011; Pravec et al. 2012); (iv) a bi-modality of prograde and retrograde rotators symmetric with respect to the center of the family is caused by the combined Yarkovsky, YORP and collisional dynamical evolution (Kryszczy´nska 2013; Hanuš et al. 2013a); (v) the larger dispersion of spin-axis directions of smaller (D .50 km) prograde asteroids than the retrograde ones suggest that spin states of prograde rotators are affected by resonances (Hanuš et al. 2013c); or (vi) the disruption of asteroid pairs4 was most likely the outcome of the YORP effect that spunup the original asteroid (Polishook 2014). By using convex shape models in combination with asteroidal stellar occultations and disk-resolved images obtained by space telescopes or ground-based telescopes equipped with adaptive optics (AO) systems, the size of the model can be constrained, making it possible to determine the asteroid volume. Note that even when the object is considerably nonconvex, the scaled convex model from occultations and AO data tends to

compensate by average fitting to the disk-resolved data. As a result, the overestimation in the volume is smaller than would correspond to the convex hull. The volume can then provide, in combination with mass estimates, realistic values of bulk densiˇ ties (Durech et al. 2011; Hanuš et al. 2013b). The mass is one of the most challenging parameter to measure for an asteroid. Mass estimates are now available for 280 asteroids, but only 113 of these are more precise than 20% (Carry 2012; Scheeres et al. 2015). However, the situation is expected to improve significantly in a near future. The observations of the ESA Gaia astrometric satellite will provide masses accurate to better than 50% for ≈150 asteroids (and for ≈50 with an accuracy better than 10%, Mouret et al. 2007, 2008) by the orbit deflection method. The advantage of the masses determined by Gaia is in the uniqueness of the mission: we should obtain a comprehensive sample with well-described biases (e.g., the current mass estimates are currently strongly biased towards the inner main belt). To maximize the possible outcome by the means of density determinations, we focus on determination of shape models for asteroids, for which accurate mass estimates are available or will most likely be determined by Gaia. Moreover, it is also important to update shape models for such asteroids by using recently obtained optical data. Doing so, we can provide better constraints on the rotational phase (i.e., on the asteroid orientation, which is important for scaling the size) of these asteroids due to the improvement of the rotation period, and more accurate rotation state and shape parameters. Convex models, together with thermal infrared observations, have also been used as inputs for thermophysical modeling, enabling the determination of geometric visible albedo, size and surface properties (e.g., Müller et al. 2011; Hanuš et al. 2015). This application is particularly important because it can make use of the large sample of infrared data for more than 100 000 asteroids acquired by the NASA’s Wide-field Infrared Survey Explorer (WISE). The missing input here are shape models of sufficient quality (Delbo’ et al. 2015). Moreover, convex models or at least rotational states are usually necessary inputs for more complex shape modeling, which can be performed if additional data such as stellar occultations, adaptive optics (AO) images or interferometry containing information about the non-convexities (Kaasalainen & Viikinkoski 2012; Carry et al. 2010a,b, 2012; Viikinkoski et al. 2015; Tanga et al. 2015) are available. Finally, large flat areas/facets on convex shape models, represented by polyhedra, usually indicate possible concavities (Devogèle et al. 2015). Candidates for highly irregular bodies can be identified for further studies. In Sect. 2, we introduce the dense- and sparse-in-time optical disk-integrated data, which we used for the shape model determinations, we describe the lightcurve (convex) inversion method in Sect. 3, present updated and new shape model determinations in Sects. 4.1 and 4.2, comment several individual solution in Sect. 4.3, and conclude our work in Sect. 5.

1

http://astro.troja.mff.cuni.cz/projects/asteroids3D A thermal recoil force affecting rotating asteroids (Bottke et al. 2001). 3 Yarkovsky–O’Keefe–Radzievskii–Paddack effect, a torque caused by the recoil force from anisotropic thermal emission, which can alter the rotational periods and orientation of spin axes; see, e.g., Rubincam (2000); Vokrouhlický et al. (2003). 4 An asteroid pair consists of two unbound objects with almost identical heliocentric orbital elements that were originally parts of a bound system. 2

2

2. Optical disk-integrated photometry Similarly to Hanuš et al. (2011, 2013a,c), we use two different types of optical disk-integrated data: (i) dense-in-time photometry, i.e., classical continuous multi-hour observations, and (ii) sparse-in-time photometry consisting of a few hundred individual calibrated measurements from several astrometric observatories, typically covering ∼15 years.

J. Hanuš et al.: New and updated shape models of asteroids

Dense photometry was acquired from publicly available databases, from those of our collaborators, or directly from several individual observers. The “historical” data from the second half of the twentieth Century are mainly stored in the Asteroid Photometric Catalogue (APC5 , Piironen et al. 2001). Currently, the common practice, which is used mostly by observers from the United States, is a regular data submission to the Minor Planet Center in the Asteroid Lightcurve Data Exchange Format (ALCDEF6 , Warner et al. 2011). Such data are publicly available and often also published in the Minor Planet Bulletin7 , where the synodic rotation period is reported. Many European observers send their data to the Courbes de rotation d’astéroïdes et de comètes database (CdR8 ), maintained by Raoul Behrend at Observatoire de Genève. Composite lightcurves with best-fitting synodic rotation periods are then published on the web page. First type of sparse-in-time photometric data we use were obtained from the AstDyS site (Asteroids – Dynamic Site9 ) and processed according to Hanuš et al. (2011). We solely employ sparse data from the USNO–Flagstaff station (IAU code 689) and the Catalina Sky Survey Observatory (IAU code 703, Larson et al. 2003), weighting them with respect to dense data (unity weight) by 0.3 and 0.15, respectively. As an alternative to this type of sparse-in-time data, we use the Lowell Photometric Database (Oszkiewicz et al. 2011; Bowell et al. 2014). The photometry from several astrometric surveys, including both USNOFlagstaff and Catalina Sky Survey, reported to the Minor Planet Center (MPC), was reprocessed; e.g., systematic effects in the magnitude calibration were removed. This enormous dataset typically consists of several hundreds of individual measurements for each of the ∼320 000 asteroids that were processed so far. Although the accuracy of the re-calibrated photometry is improved, note, that the dataset for each asteroid still is a mixture of measurements from several observatories with different photometric quality. Compared to the data of USNOFlagstaff and Catalina observatories downloaded from AstDyS, Lowell data provide an increased quantity of measurements from more observing geometries. These data, however, are, in average, of poor photometric quality, as they also contain measurements from observatories that were originally rejected in Hanuš et al. (2011) due to low accuracy. We assigned to Lowell data weight of 0.1. A subset of Lowell data was already analyzed ˇ by Durech et al. (2013) and a complex analysis of the reliability of shape models, based solely on these data, is underˇ way (Durech et al., submitted to A&A). On top of that, the volunteer project Asteroids@home10, which makes use of distributed computing and runs in the framework of Berkeley Open Infrastructure for Network Computing (BOINC), currently emˇ ploys shape model computations based on Lowell data (Durech et al. 2015b). Thousands of individual home computational stations of volunteers are currently participating in the project. Tabs. 1 and 2 include the information about the optical data used for the shape model determination such as the number of dense-in-time lightcurves and apparitions covered by dense-intime observations, and the number of sparse-in-time measurements from corresponding astrometric surveys. Tab. 3 provides references to the dense data used for the shape model determinations and Tab. 4 links the observers to their observatories. 5 6 7 8 9 10

3. Convex inversion and reproducibility In this work, we use the lightcurve inversion method of Kaasalainen & Torppa (2001) and Kaasalainen et al. (2001), which is already a well documented, investigated and employed technique for asteroid shape modeling (for more details see the ˇ review by Durech et al. 2015a). The main advantage of using convex inversion is, that convex models are usually the only stable or unambiguous inversion reˇ sult (Durech & Kaasalainen 2003); they best portray the resolution level or information content of disk-integrated photometry. To demonstrate this more intuitively, consider an asteroid with a large planar region (or many regions) on the surface (e.g., an ellipsoid with a sizable chunk or chunks chopped off), and a large crater (say, half the size of the plane) at one end of the plane. Then it is impossible to tell from lightcurve data (no matter how large solar phase angles, i.e., shadows) where the crater is in the plane, or whether it is two craters half the size, or even myriads of small craters on the surface that have the same combined area as the big one (even if the crater filled most of the plane). In other words, one simply cannot say whether the lightcurves are caused just by small-scale surface roughness on a convex shape, or by huge nonconvexities that would be obvious in any disk-resolved data. So any nonconvex model from disk-integrated photometric data is inevitably ambiguous while the convex model is unambiguous. This also explains why the assumption of the nonconvexity represented by a large plane in the convex model (e.g., Devogèle et al. 2015), while often a good guess because of physical constraints, cannot usually be more than an assumption. Convex inversion was successfully used for shape model determinations of almost 400 asteroids. On top of that, several convex models were validated by disk-resolved and delay-Doppler images or by direct comparison with images obtained by space probes (e.g., Kaasalainen et al. 2001; Carry et al. 2012). The parameter space of shape, rotation period, spin vector orientation and scattering properties (simple three-parameter empirical model) is systematically investigated in the means of a χ2 metric: χ2 =

X ||L(i) − L(i) || OBS MOD i

σ2i

,

(1)

where the i-th brightness measurement L(i) OBS (with an uncertainty of σi ) is compared to the corresponding modeled brightness L(i) MOD . The best-fitting parameter set is searched for. A significant minimum in the parameter space indicates a unique solution. Visual examination of the fit in the period subspace is performed, as well as the comparison between observed and modeled lightcurves. Additionally, the pole-ecliptic latitudes should be similar within the two pole solutions, which are typically determined due to the ambiguity (symmetry) presented in most lightcurve inversion models (Kaasalainen & Lamberg 2006). On the other hand, the pole-ecliptic longitudes of these “mirror” solutions should differ by ∼180 degrees. The pole ambiguity is present in the majority of our shape models. Moreover, we also compute the principal moments of inertia of each shape model, assuming an homogeneous mass distribuhttp://asteroid.astro.helsinki.fi/ tion, and compare them with the moment of inertia along the http://www.minorplanet.info/alcdef.html http://www.minorplanet.info/minorplanetbulletin.html rotation axis. A reliable solution should rotate within ∼10–20 degrees of the axis with the largest moment of inertia. http://obswww.unige.ch/~behrend/page_cou.html If available, we use a priori information about the rotahttp://hamilton.dm.unipi.it/ tion period of the asteroid from the Minor Planet Lightcurve https://asteroidsathome.net/ 3

J. Hanuš et al.: New and updated shape models of asteroids

Database11 (Warner et al. 2009) to significantly reduce – usually by at least two orders of magnitude – computation requirements. So, we investigate the parameter space only in the proximity of the expected rotation period. It should be kept in mind that none of the shape models should be taken as granted – each asteroid model containes an uncertainty (both in shape and rotation state), which increases with decreasing amount, variety and quality of the optical data. It was already shown in Hanuš et al. (2015) that by varying shape model within its uncertainty, one can get significantly different fits to the thermal infrared data by the thermophysical modeling, thus the shape uncertainty plays an important role for the interpretation of the thermal infrared data. This demonstrates the need of accounting for the shape model uncertainties in all further shape model applications. Also, the overall shape model based mostly on sparse data usually contains many flat facets (areas) with rather sharp edges, thus most of the low-detail topography is hidden (i.e., we have a large uncertainty in the shape). The more dense data we use, the smoother and with more details the shape becomes. This limits the application of the lowerresolution shape models based mostly on sparse data. In the ecliptic coordinate frame, the typical pole direction uncertainties are: (i) .5◦ in latitude β and .5◦ /cos β in longitude λ for asteroid models based on large multi-apparition dense lightcurve datasets; (ii) ∼5−10◦ in β and ∼5−10◦/cos β in λ for models based on combined multi-apparition dense data and sparse-in-time measurements; and finally, (iii) ∼10−30◦ in β and ∼10−30◦/cos β in λ for models based on combined fewapparition dense data with sparse-in-time measurements or only sparse-in-time data. To sum up, we follow here the same procedure for the shape model determinations as in Hanuš et al. (2011, 2013a,c). Finally, we would like to emphasize that our work can be easily reproduced by anyone who is interested. The lightcurve inversion code and the lightcurve data are available in DAMIT, as well as the user manual.

4. Results and Discussions 4.1. Updated shape models

We updated shape models of 36 asteroids with known mass estimates or for which masses will be most likely determined by the orbit deflection method from the Gaia astrometric observations (Mouret et al. 2007, 2008, and personal communication with Francois Mignard). For each one of these asteroids, there were new available optical dense data (see Tab. 3). We combined these new data with Lowell data and the already available dense photometry from DAMIT. If applicable, we replaced the original sparse data from AstDyS by the Lowell data. In most cases, rotational states of updated shape models are similar to those of the original models in the DAMIT database. The only exceptions, individually commented in Sect. 4.3, are asteroids (27) Euterpe, and (532) Herculina. Note that we performed the lightcurve inversion independently from any previous shape modeling results (e.g., we did not use information about the spin axis). Updated models provide better constraints on the rotational phase, thus allow, for example, to better link recently obtained AO and occultation profiles with the orientation of the shape model at the time of the observation. This is essential for a potential scaling of the sizes of shape models in order to compute the 11 http://cfa-www.harvard.edu/iau/lists/LightcurveDat.html

4

volume, and consequently bulk densities. Obviously, the uncertainties in rotation period, spin axis direction, and shape model should be improved as there are more data used for the modeling. Optimized rotation state parameters and information about optical data are listed in Tab. 1. References to the optical densein-time data can be found in Tab. 3. 4.2. New shape models

The majority of our new shape model determinations is obtained by combining dense-in-time data with sparse-in-time measurements from the Lowell database. However, the fact that Lowell data contain for each asteroid a mixture of measurements from several observatories, makes it difficult to find a representative weight with respect to the dense data. Indeed, a specific single value of the weight can result in an overestimation for some asteroids, while it can underestimate others. Despite these issues, we decided to use a weight of 0.1 for the Lowell data as a whole and to present corresponding shape models. As a consequence, we sometimes obtained a unique shape solution if we combined dense data and the sparse data from AstDyS (i.e., from USNO and Catalina), but not if we used the Lowell data instead. We present these shape models as well. Moreover, 57 out of 250 shape models are based only on sparse data from USNO-Flagstaff and Catalina Sky Survey observatories. That such models can nevertheless be reliable was ˇ already shown in Hanuš & Durech (2012) and Hanuš et al. (2013c). As suggested there, we ran the lightcurve inversion search for shape and rotation state parameters with two different shape resolutions: (i) standard one, and (ii) lower one, which serves as a test of the solution stability. For the case the asteroid’s synodic rotation period is also available in the Minor Planet Lightcurve Database (LCDB Warner et al. 2009), an additional test for the reliability can be performed. A rotation period derived by the lightcurve inversion (a period interval of 2– 1000 hours is typically scanned) that matches the one already reported, points to a secure solution. In practice, all shape solutions based solely on sparse data that fulfilled our stability tests had rotation periods in an agreement with synodic periods from LCDB. This also demonstrates that our other unique solutions, for which a previous period estimate is not available, are reliable. We present 9 such shape and rotation state solutions in Tab. 2 (they are labeled). We present shape models of three near-Earth asteroids, all with negative values of their pole latitudes β, and obliquities larger than 90◦ . The fact that they all show retrograde rotation supports the consensus that about half of the NEAs migrated through the ν6 secular resonance, which causes an observed excess of retrograde rotators (La Spina et al. 2004). We further present shape models of 13 asteroids that are classified as Hungarias. Majority of them (10 out of 13) exhibit retrograde rotation, which is in an agreement with the findings of Warner et al. (2014), who reported, in a sample of 53 asteroids, a 75% representation of retrograde rotators. 31 of the derived shape models are those asteroids whose density will be measure in future or was already obtained. While for some of them, estimations on their masses are already available, the masses of the others will be determined from Gaia astrometric measurements. Constraining the model sizes of these asteroids using disk-resolved images, stellar occultation data or thermophysical modeling will directly allow estimations on bulk densities. Rotation state parameters and information about used optical data for all new shape model determinations are listed in

J. Hanuš et al.: New and updated shape models of asteroids

Tab. 2. References to the optical dense-in-time data can be found in Tab. 3. 4.3. Individual asteroids

(27) Euterpe – The lightcurve amplitude of this asteroid is quite low (. 0.1 mag) and the dense data are covering multiple apparitions. Thus, we decided to exclude the Lowell data from the shape modeling because they were dominated by noise. Our derived rotation period (10.40193 h) is slightly different than the one derived by Stephens et al. (2012) (10.40825 h), which resulted in a different pole solution of (λ, β)=(82, 44)◦ and (λ, β)=(265, 39)◦ for the mirror solution. Note that the solution in longitude λ is similar to the one of Stephens et al. (2012), but their latitude has a different sign (−39 and −30, respectively). (532) Herculina – Our (single) pole solution differs only by ∼180◦ in longitude λ from the one reported by Kaasalainen et al. (2002), thus it corresponds to their mirror solution. In contrast to their solution, our model is based on additional data from 2005 and 2010 apparitions. (537) Pauly – The rotation period of 14.15 hours from the LCDB is in contradiction with our shape modeling result: our period of 16.2961 hours fits the data significantly better and thus is preferred. (596) Scheila – The observations taken on December 11th, 2010 with the Catalina Schmidt telescope exhibited a comet-like appearance (Larson 2010). This behavior was later confirmed by Jewitt et al. (2011) from the HST observations on December 27th, 2010 and on January 4th, 2011 and interpreted as caused most likely by a collision with a 35m asteroid. All photometric data used for the shape modeling date prior to this event. So, the shape model does not reflect any potential changes in the shape, period, or spin orientation, induced by the collision (Bodewits et al. 2014). (8567) 1996 HW1 – The shape model of this near-Earth asteroid was already determined by Magri et al. (2011) from a combination of dense lightcurves and radar Doppler images. We derived a consistent shape model and rotational state solution from combined dense and sparse data. The main difference between these two models is the fact that the Doppler images contain non-convex signatures that were translated into their shape model. Even if our shape model is purely convex, it reliably represents the overall shape of the real asteroid. This case once again demonstrates the reliability of the convex inversion method. (9563) Kitty – We derived the shape model of this asteroid without knowledge of a previous period estimate. However, Chang et al. (2015) recently reported period P=5.35±0.03 h based on the optical data from the Intermediate Palomar Transient Factory that is in perfect agreement with our independent determination of P=5.38191±0.00005 h.

5. Conclusions The results of this paper can be briefly summarized as follows. – We updated shape models of 36 asteroids with mass estimates by including new optical dense-in-time data in the shape modeling. – For 250 asteroids, including 13 Hungarias and 3 near-Earth asteroids, we derived their convex shape models and rotation states from combined disk-integrated dense- and sparse-intime photometric data or from only sparse-in-time data. This effort was achieved with the help of the community of ∼ 100

individual observers who shared their lightcurves. All new models are now included in the DAMIT database and are available to anyone for additional studies. – For 9 asteroids, we provide, together with the shape models and the pole orientations, their first rotation period estimates. Our work is a typical example where a contribution of hundreds of observers, that are regularly obtaining photometric data with their small and mid-sized telescopes, was necessary in order to achieve presented results. The initial motivation of the observers is to derive the synodic rotation period (sometimes this is an object of a publication in the Minor Planet Bulletin), however, the shape modeling provides a welcome additional opportunity for the usage of their optical data. We acknowledge all the observers that submit their observations to the public databases and invite others to do so as well. Such practice allows us an easy and straightforward access to the data and largely avoids an overlook of the precious data. The shape models can be used as inputs for various studies, such as spin-vector analysis, detection of concavities, thermophysical modeling with the varied-shape approach by Hanuš et al. (2015), non-convex modeling, size optimization by diskresolved images or occultation data, or density determinations. Shape models based only on sparse data (or combined with a few dense lightcurves) are convenient candidates for follow up observations, both to confirm the rotation periods and to improve the shape models, which is necessary, e.g., for the thermophysical modeling. Finally, we maintain a web page with a list of asteroids, for which mass estimates are available and the shape model determination still requires additional photometric data (Hanuš 2015). Such objects are candidates for accurate density determination and any lightcurve support is welcome. Acknowledgements. JH greatly appreciates the CNES post-doctoral fellowship program. JH and MD were supported by the project under the contract 11-BS56008 (SHOCKS) of the French Agence National de la Recherche (ANR), JD by grant GACR 15-04816S of the Czech Science Foundation, DO by the grant NCN 2012/S/ST9/00022 of Polish National Science Center, and A. Marciniak by grant 2014/13/D/ST9/01818 of Polish National Science Center. We thank the referee, Mikko Kaasalainen, for his thorough review of our manuscript and his constructive comments and suggestions that led to a significant improvement of the text. The computations have been done on the “Mesocentre” computers, hosted by the Observatoire de la Côte d’Azur, and on the computational cluster Tiger at the Astronomical Institute of Charles University in Prague (http://sirrah.troja.mff.cuni.cz/tiger). Data from Pic du Midi Observatory were partly obtained with the 0.6 m telescope, a facility operated by observatoire Midi-Pyrènèes and Association T60, an amateur association. The Joan Oró Telescope (TJO) of the Montsec Astronomical Observatory (OAdM) is owned by the Catalan Government and operated by the Institute for Space Studies of Catalonia (IEEC).

References Alkema, M. S. 2013a, Minor Planet Bulletin, 40, 133 Alkema, M. S. 2013b, Minor Planet Bulletin, 40, 68 Alton, K. B. 2011, Minor Planet Bulletin, 38, 8 Benishek, V. 2014, Minor Planet Bulletin, 41, 126 ˇ Berthier, J., Vachier, F., Marchis, F., Durech, J., & Carry, B. 2014, Icarus, 239, 118 Bodewits, D., Vincent, J.-B., & Kelley, M. S. P. 2014, Icarus, 229, 190 Bottke, W. F., Vokrouhlický, D., Brož, M., Nesvorný, D., & Morbidelli, A. 2001, Science, 294, 1693 Bowell, E., Oszkiewicz, D. A., Wasserman, L. H., et al. 2014, Meteoritics and Planetary Science, 49, 95 Brinsfield, J. W. 2007a, Minor Planet Bulletin, 34, 58 Brinsfield, J. W. 2007b, Minor Planet Bulletin, 34, 108 Brinsfield, J. W. 2008a, Minor Planet Bulletin, 35, 179 Brinsfield, J. W. 2008b, Minor Planet Bulletin, 35, 86 Brinsfield, J. W. 2009, Minor Planet Bulletin, 36, 64

5

J. Hanuš et al.: New and updated shape models of asteroids Brinsfield, J. W. 2010a, Minor Planet Bulletin, 37, 19 Brinsfield, J. W. 2010b, Minor Planet Bulletin, 37, 50 Brinsfield, J. W. 2011, Minor Planet Bulletin, 38, 73 Brinsfield, J. W. 2012, Minor Planet Bulletin, 39, 55 Buchheim, R. K. 2005, Minor Planet Bulletin, 32, 79 Buchheim, R. K. 2007, Minor Planet Bulletin, 34, 13 Buchheim, R. K. 2014, Minor Planet Bulletin, 41, 241 Cantu, S., Adolphson, M., Montgomery, K., & Renshaw, T. 2015, Minor Planet Bulletin, 42, 28 Carry, B. 2012, Planet. Space Sci., 73, 98 Carry, B., Dumas, C., Kaasalainen, M., et al. 2010a, Icarus, 205, 460 Carry, B., Kaasalainen, M., Leyrat, C., et al. 2010b, A&A, 523, A94 Carry, B., Kaasalainen, M., Merline, W. J., et al. 2012, Planet. Space Sci., 66, 200 Chang, C.-K., Ip, W.-H., Lin, H.-W., et al. 2015, ApJS, 219, 27 Clark, M. 2010, Minor Planet Bulletin, 37, 89 Delbo’, M., Mueller, M., Emery, J., Rozitis, B., & Capria, M. T. 2015, Asteroids IV. In press Descamps, P., Marchis, F., Durech, J., et al. 2009, Icarus, 203, 88 Devogèle, M., Rivet, J. P., Tanga, P., et al. 2015, MNRAS, 453, 2232 ˇ Durech, J., Carry, B., Delbo’, M., Kaasalainen, M., & Viikinkoski, M. 2015a, Asteroids IV. In press ˇ Durech, J., Grav, T., Jedicke, R., Denneau, L., & Kaasalainen, M. 2005, Earth Moon and Planets, 97, 179 ˇ Durech, J., Hanuš, J., & Vanˇco, R. 2015b, Astronomy and Computing, in press ˇ Durech, J., Hanuš, J., Vanˇco, R., Oszkiewicz, D., & Bowell, E. 2013, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 45, AAS/Division for Planetary Sciences Meeting Abstracts, #304.05 ˇ Durech, J. & Kaasalainen, M. 2003, A&A, 404, 709 ˇ Durech, J., Kaasalainen, M., Herald, D., et al. 2011, Icarus, 214, 652 ˇ Durech, J., Kaasalainen, M., Warner, B. D., et al. 2009, A&A, 493, 291 ˇ Durech, J., Sidorin, V., & Kaasalainen, M. 2010, A&A, 513, A46 Ferrero, A., Klinglesmith, III, D. K., & Pilcher, F. 2014, Minor Planet Bulletin, 41, 33 ˇ Hanuš, J., Delbo’, M., Durech, J., & Alí-Lagoa, V. 2015, Icarus, 256, 101 Hanuš, J. 2015, Minor Planet Bulletin, 42, 208 ˇ Hanuš, J., Brož, M., Durech, J., et al. 2013a, A&A, 559, A134 ˇ Hanuš, J., Durech, J., Brož, M., et al. 2011, A&A, 530, A134 ˇ Hanuš, J., Marchis, F., & Durech, J. 2013b, Icarus, 226, 1045 ˇ Hanuš, J. & Durech, J. 2012, Planet. Space Sci., 73, 75 ˇ Hanuš, J., Durech, J., Brož, M., et al. 2013c, A&A, 551, A67 Higgins, D. 2008, Minor Planet Bulletin, 35, 30 Higgins, D. & Goncalves, R. M. D. 2007, Minor Planet Bulletin, 34, 16 Higgins, D. & Pilcher, F. 2009, Minor Planet Bulletin, 36, 143 Higgins, D., Pravec, P., Kusnirak, P., et al. 2006a, Minor Planet Bulletin, 33, 89 Higgins, D., Pravec, P., Kusnirak, P., et al. 2006b, Minor Planet Bulletin, 33, 8 Higgins, D., Pravec, P., Kusnirak, P., Reddy, V., & Dyvig, R. 2006c, Minor Planet Bulletin, 33, 64 Higgins, D. & Warner, B. D. 2009, Minor Planet Bulletin, 36, 159 Jehin, E., Gillon, M., Queloz, D., et al. 2011, The Messenger, 145, 2 Jewitt, D., Weaver, H., Mutchler, M., Larson, S., & Agarwal, J. 2011, ApJ, 733, L4 Johansen, A. & Lacerda, P. 2010, MNRAS, 404, 475 Kaasalainen, M. & Lamberg, L. 2006, Inverse Problems, 22, 749 Kaasalainen, M. & Torppa, J. 2001, Icarus, 153, 24 Kaasalainen, M., Torppa, J., & Muinonen, K. 2001, Icarus, 153, 37 Kaasalainen, M., Torppa, J., & Piironen, J. 2002, Icarus, 159, 369 Kaasalainen, M. & Viikinkoski, M. 2012, A&A, 543, A97 Klinglesmith, D. A., DeHart, A., Hanowell, J., & Hendrickx, S. 2015, Minor Planet Bulletin, 42, 101 Klinglesmith, III, D. A., Hanowell, J., Risley, E., et al. 2014, Minor Planet Bulletin, 41, 139 Koff, R. A. 2001, Minor Planet Bulletin, 28, 77 Koff, R. A. 2002, Minor Planet Bulletin, 29, 25 Koff, R. A. 2004, Minor Planet Bulletin, 31, 58 Koff, R. A. 2005, Minor Planet Bulletin, 32, 32 Koff, R. A. 2006, Minor Planet Bulletin, 33, 31 Koff, R. A. & Brincat, S. M. 2000, Minor Planet Bulletin, 27, 49 Koff, R. A. & Brincat, S. M. 2001, Minor Planet Bulletin, 28, 67 Koff, R. A., Brincat, S. M., Stephens, R. D., & Pravec, P. 2001, Minor Planet Bulletin, 28, 46 Kryszczy´nska, A. 2013, A&A, 551, A102 Kryszczy´nska, A., La Spina, A., Paolicchi, P., et al. 2007, Icarus, 192, 223 La Spina, A., Paolicchi, P., Kryszczy´nska, A., & Pravec, P. 2004, Nature, 428, 400 Larson, S., Beshore, E., Hill, R., et al. 2003, in Bulletin of the American Astronomical Society, Vol. 35, AAS/Division for Planetary Sciences Meeting Abstracts #35, 982

6

Larson, S. M. 2010, IAU Circ., 9188, 1 Magri, C., Howell, E. S., Nolan, M. C., et al. 2011, Icarus, 214, 210 Marchis, F., Lainey, V., Descamps, P., et al. 2010, Icarus, 210, 635 Marciniak, A., Bartczak, P., Santana-Ros, T., et al. 2012, A&A, 545, A131 Marciniak, A., Michałowski, T., Hirsch, R., et al. 2009, A&A, 498, 313 Marciniak, A., Michałowski, T., Poli´nska, M., et al. 2011, A&A, 529, A107 Martinez, L. E. 2012, Minor Planet Bulletin, 39, 25 Michałowski, T., Kaasalainen, M., Marciniak, A., et al. 2005, A&A, 443, 329 Miles, R. & Warner, B. D. 2009, Minor Planet Bulletin, 36, 66 Mouret, S., Hestroffer, D., & Mignard, F. 2007, A&A, 472, 1017 Mouret, S., Hestroffer, D., & Mignard, F. 2008, Planet. Space Sci., 56, 1819 Mousis, O., Hueso, R., Beaulieu, J.-P., et al. 2014, Experimental Astronomy, 38, 91 ˇ Müller, T. G., Durech, J., Hasegawa, S., et al. 2011, A&A, 525, A145 Oey, J. 2006, Minor Planet Bulletin, 33, 96 Oey, J. 2008, Minor Planet Bulletin, 35, 132 Oey, J. 2009a, Minor Planet Bulletin, 36, 4 Oey, J. 2009b, Minor Planet Bulletin, 36, 162 Oey, J., Pilcher, F., Benishek, V., Higgins, D., & Pravec, P. 2012, Minor Planet Bulletin, 39, 86 Oey, J., Vilagi, J., Gajdos, S., Kornos, L., & Galad, A. 2007, Minor Planet Bulletin, 34, 81 Oszkiewicz, D. A., Muinonen, K., Bowell, E., et al. 2011, Journal of Quantitative Spectroscopy & Radiative Transfer, 112, 1919 Owings, L. E. 2009, Minor Planet Bulletin, 36, 51 Owings, L. E. 2013a, Minor Planet Bulletin, 40, 104 Owings, L. E. 2013b, Minor Planet Bulletin, 40, 8 Piironen, J., Lagerkvist, C., Torppa, J., Kaasalainen, M., & Warner, B. 2001, in Bulletin of the American Astronomical Society, Vol. 33, Bulletin of the American Astronomical Society, 1562 Pilcher, F. 2008a, Minor Planet Bulletin, 35, 51 Pilcher, F. 2008b, Minor Planet Bulletin, 35, 71 Pilcher, F. 2008c, Minor Planet Bulletin, 35, 135 Pilcher, F. 2009a, Minor Planet Bulletin, 36, 133 Pilcher, F. 2009b, Minor Planet Bulletin, 36, 25 Pilcher, F. 2009c, Minor Planet Bulletin, 36, 100 Pilcher, F. 2010a, Minor Planet Bulletin, 37, 98 Pilcher, F. 2010b, Minor Planet Bulletin, 37, 167 Pilcher, F. 2010c, Minor Planet Bulletin, 37, 119 Pilcher, F. 2010d, Minor Planet Bulletin, 37, 148 Pilcher, F. 2010e, Minor Planet Bulletin, 37, 45 Pilcher, F. 2010f, Minor Planet Bulletin, 37, 21 Pilcher, F. 2011a, Minor Planet Bulletin, 38, 183 Pilcher, F. 2011b, Minor Planet Bulletin, 38, 76 Pilcher, F. 2011c, Minor Planet Bulletin, 38, 50 Pilcher, F. 2011d, Minor Planet Bulletin, 38, 156 Pilcher, F. 2012a, Minor Planet Bulletin, 39, 57 Pilcher, F. 2012b, Minor Planet Bulletin, 39, 220 Pilcher, F. 2013a, Minor Planet Bulletin, 40, 33 Pilcher, F. 2013b, Minor Planet Bulletin, 40, 189 Pilcher, F. 2013c, Minor Planet Bulletin, 40, 85 Pilcher, F. 2013d, Minor Planet Bulletin, 40, 161 Pilcher, F. 2014a, Minor Planet Bulletin, 41, 155 Pilcher, F. 2014b, Minor Planet Bulletin, 41, 47 Pilcher, F. 2014c, Minor Planet Bulletin, 41, 250 Pilcher, F. 2015a, Minor Planet Bulletin, 42, 190 Pilcher, F. 2015b, Minor Planet Bulletin, 42, 280 Pilcher, F. 2015c, Minor Planet Bulletin, 42, 91 Pilcher, F., Alvarez, E. M., Ferrero, A., et al. 2014, Minor Planet Bulletin, 41, 70 Pilcher, F., Benishek, V., Delos, S., et al. 2012a, Minor Planet Bulletin, 39, 46 Pilcher, F., Delos, S., Ahrendts, G., & Barker, T. 2012b, Minor Planet Bulletin, 39, 204 Pilcher, F., Ferrero, A., Klinglesmith, III, D. A., & Hanowell, J. 2015, Minor Planet Bulletin, 42, 90 Pilcher, F., Ferrero, A., & Oey, J. 2012c, Minor Planet Bulletin, 39, 228 Pilcher, F. & Franco, L. 2014, Minor Planet Bulletin, 41, 35 Pilcher, F. & Higgins, D. 2011, Minor Planet Bulletin, 38, 32 Pilcher, F. & Jardine, D. 2009, Minor Planet Bulletin, 36, 52 Polishook, D. 2009, Minor Planet Bulletin, 36, 119 Polishook, D. 2014, Icarus, 241, 79 Polishook, D., Ofek, E. O., Waszczak, A., et al. 2012, MNRAS, 421, 2094 Pravec, P., Scheirich, P., Vokrouhlický, D., et al. 2012, Icarus, 218, 125 Pravec, P., Wolf, M., & Šarounová, L. 1998, Icarus, 136, 124 Pray, D. P. 2004a, Minor Planet Bulletin, 31, 34 Pray, D. P. 2004b, Minor Planet Bulletin, 31, 6 Rubincam, D. P. 2000, Icarus, 148, 2 Ruthroff, J. C. 2010, Minor Planet Bulletin, 37, 158 Ruthroff, J. C. 2011, Minor Planet Bulletin, 38, 86

J. Hanuš et al.: New and updated shape models of asteroids Scheeres, D. J., Britt, D., Carry, B., & Holsapple, K. A. 2015, Asteroids IV. In press Shevchenko, V. G., Chiorny, V. G., Gaftonyuk, N. M., et al. 2008, Icarus, 196, 601 Skiff, B. A., Bowell, E., Koehn, B. W., et al. 2012, Minor Planet Bulletin, 39, 111 Slivan, S. M., Binzel, R. P., Crespo da Silva, L. D., et al. 2003, Icarus, 162, 285 Stephens, R. D. 2001, Minor Planet Bulletin, 28, 5 Stephens, R. D. 2003, Minor Planet Bulletin, 30, 1 Stephens, R. D. 2005, Minor Planet Bulletin, 32, 2 Stephens, R. D. 2006, Minor Planet Bulletin, 33, 100 Stephens, R. D. 2007a, Minor Planet Bulletin, 34, 31 Stephens, R. D. 2007b, Minor Planet Bulletin, 34, 102 Stephens, R. D. 2007c, Minor Planet Bulletin, 34, 64 Stephens, R. D. 2008, Minor Planet Bulletin, 35, 60 Stephens, R. D. 2009, Minor Planet Bulletin, 36, 59 Stephens, R. D. 2010a, Minor Planet Bulletin, 37, 28 Stephens, R. D. 2010b, Minor Planet Bulletin, 37, 122 Stephens, R. D. 2012, Minor Planet Bulletin, 39, 226 Stephens, R. D. 2013, Minor Planet Bulletin, 40, 92 Stephens, R. D. 2014a, Minor Planet Bulletin, 41, 92 Stephens, R. D. 2014b, Minor Planet Bulletin, 41, 226 Stephens, R. D. 2014c, Minor Planet Bulletin, 41, 171 Stephens, R. D. 2015a, Minor Planet Bulletin, 42, 70 Stephens, R. D. 2015b, Minor Planet Bulletin, 42, 104 Stephens, R. D., Coley, D., & Warner, B. D. 2014, Minor Planet Bulletin, 41, 8 Stephens, R. D., Malcolm, G., Koff, R. A., Brincat, S. M., & Warner, B. 2001, Minor Planet Bulletin, 28, 1 Stephens, R. D. & Warner, B. D. 2008, Minor Planet Bulletin, 35, 84 Stephens, R. D. & Warner, B. D. 2013, Minor Planet Bulletin, 40, 93 Stephens, R. D., Warner, B. D., Megna, R., & Coley, D. 2012, Minor Planet Bulletin, 39, 2 Strabla, L., Quadri, U., & Girelli, R. 2011, Minor Planet Bulletin, 38, 169 Strabla, L., Quadri, U., & Girelli, R. 2012, Minor Planet Bulletin, 39, 177 Strabla, L., Quadri, U., & Girelli, R. 2013, Minor Planet Bulletin, 40, 232 Tanga, P., Carry, B., Colas, F., et al. 2015, MNRAS, 448, 3382 Torppa, J., Kaasalainen, M., Michałowski, T., et al. 2003, Icarus, 164, 346 ˇ Durech, J., Kaasalainen, M., Marciniak, A., et al. 2007, A&A, 465, 331 Viikinkoski, M., Kaasalainen, M., & Durech, J. 2015, A&A, 576, A8 Vokrouhlický, D., Nesvorný, D., & Bottke, W. F. 2003, Nature, 425, 147 Warner, B. 2000, Minor Planet Bulletin, 27, 4 Warner, B. 2001, Minor Planet Bulletin, 28, 4 Warner, B. D. 1999, Minor Planet Bulletin, 26, 31 Warner, B. D. 2005a, Minor Planet Bulletin, 32, 29 Warner, B. D. 2005b, Minor Planet Bulletin, 32, 54 Warner, B. D. 2005c, Minor Planet Bulletin, 32, 4 Warner, B. D. 2006a, Minor Planet Bulletin, 33, 82 Warner, B. D. 2006b, Minor Planet Bulletin, 33, 58 Warner, B. D. 2006c, Minor Planet Bulletin, 33, 85 Warner, B. D. 2006d, Minor Planet Bulletin, 33, 35 Warner, B. D. 2007a, Minor Planet Bulletin, 34, 72 Warner, B. D. 2007b, Minor Planet Bulletin, 34, 104 Warner, B. D. 2008a, Minor Planet Bulletin, 35, 56 Warner, B. D. 2008b, Minor Planet Bulletin, 35, 163 Warner, B. D. 2009a, Minor Planet Bulletin, 36, 109 Warner, B. D. 2009b, Minor Planet Bulletin, 36, 7 Warner, B. D. 2009c, Minor Planet Bulletin, 36, 172 Warner, B. D. 2010a, Minor Planet Bulletin, 37, 112 Warner, B. D. 2010b, Minor Planet Bulletin, 37, 24 Warner, B. D. 2010c, Minor Planet Bulletin, 37, 57 Warner, B. D. 2010d, Minor Planet Bulletin, 37, 127 Warner, B. D. 2011a, Minor Planet Bulletin, 38, 142 Warner, B. D. 2011b, Minor Planet Bulletin, 38, 25 Warner, B. D. 2011c, Minor Planet Bulletin, 38, 63 Warner, B. D. 2012a, Minor Planet Bulletin, 39, 158 Warner, B. D. 2012b, Minor Planet Bulletin, 39, 16 Warner, B. D. 2012c, Minor Planet Bulletin, 39, 69 Warner, B. D. 2012d, Minor Planet Bulletin, 39, 245 Warner, B. D. 2013a, Minor Planet Bulletin, 40, 71 Warner, B. D. 2013b, Minor Planet Bulletin, 40, 137 Warner, B. D. 2014a, Minor Planet Bulletin, 41, 27 Warner, B. D. 2014b, Minor Planet Bulletin, 41, 144 Warner, B. D. 2015a, Minor Planet Bulletin, 42, 54 Warner, B. D. 2015b, Minor Planet Bulletin, 42, 115 Warner, B. D. 2015c, Minor Planet Bulletin, 42, 132 Warner, B. D., Behrend, R., Poncy, R., & Coliac, J.-F. 2008a, Minor Planet Bulletin, 35, 25 Warner, B. D., Durech, J., Fauerbach, M., & Marks, S. 2008b, Minor Planet

Bulletin, 35, 167 Warner, B. D., Harris, A. W., & Pravec, P. 2009, Icarus, 202, 134 Warner, B. D., Harris, A. W., Stephens, R. D., & Coley, D. 2014, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 46, AAS/Division for Planetary Sciences Meeting Abstracts, #509.12 Warner, B. D., Shepard, M. K., Harris, A. W., et al. 2006, Minor Planet Bulletin, 33, 102 Warner, B. D., Stephens, R. D., & Harris, A. W. 2011, Minor Planet Bulletin, 38, 172

7

J. Hanuš et al.: New and updated shape models of asteroids Table 1. Rotational states and summary of used photometry for asteroids for which we updated their shape models based on new disk-integrated optical data. We also provide the reference to the original model and in two cases to the plausible non-convex model as well. Asteroid 3 7 16 17 19 20 22 23 27 29 39 40 41 42 45 54 64 76 87 88 94 95 107 110 121 129 130 354 360 372 386 409 423 511 532 776

Juno Iris Psyche Thetis Fortuna Massalia Kalliope Thalia Euterpe Amphitrite Laetitia Harmonia Daphne Isis Eugenia Alexandra Angelina Freia Sylvia Thisbe Aurora Arethusa Camilla Lydia Hermione Antigone Elektra Eleonora Carlova Palma Siegena Aspasia Diotima Davida Herculina Berbericia

λ1 [deg] 104 19 32 240 96 304 196 159 82 136 322 22 199 113 125 152 135 138 82 82 65 119 72 148 1 211 176 162 3 234 289 2 351 298 100 346

β1 [deg] 20 19 −7 22 56 76 4 −40 44 −20 30 34 −30 45 −34 19 6 12 64 69 9 23 51 −39 16 55 −89 43 56 −5 25 28 4 22 9 25

λ2 [deg]

β2 [deg]

198

5

124

81

265

39

315 319

5 17

242

−7

340

−57

143 51

67 54

P [hours] 7.209532 7.138843 4.195948 12.26603 7.44322 8.09759 4.148201 12.31241 10.40193 5.390119 5.138238 8.90848 5.98798 13.58364 5.699151 7.02264 8.75171 9.97306 5.183641 6.04132 7.22619 8.70221 4.843928 10.92581 5.550881 4.957160 5.224663 4.277184 6.18959 8.57964 9.76503 9.02145 4.775377 5.129365 9.40494 7.66701

Nlc

Napp

NLOW

38 39 118 57 48 36 102 50 54 66 68 23 33 31 101 38 24 57 55 28 22 15 34 53 48 52 56 64 9 38 83 22 58 58 74 59

11 14 19 10 11 9 17 12 6 15 26 7 8 8 16 8 4 12 12 8 8 2 10 11 9 11 13 13 4 8 12 8 12 17 11 11

332 372 567 690 565 380 343 466 323 448 405 508 499 574 506 450 463 545 554 550 417 543 398 536 535 358 482 435 406 460 438 540 588 410 402

Original model published by Kaasalainen et al. (2002) Kaasalainen et al. (2002) Kaasalainen et al. (2002) ˇ Durech et al. (2009) Torppa et al. (2003) Kaasalainen et al. (2002) Kaasalainen et al. (2002) Torppa et al. (2003) Stephens et al. (2012) Kaasalainen et al. (2002) Kaasalainen et al. (2002) Hanuš et al. (2011) Kaasalainen et al. (2002) Hanuš et al. (2011) Hanuš et al. (2013b) Warner et al. (2008b) ˇ Durech et al. (2011) Marciniak et al. (2012) Kaasalainen et al. (2002); Berthier et al. (2014) Torppa et al. (2003) Marciniak et al. (2011) ˇ Durech et al. (2011) Torppa et al. (2003) ˇ Durech et al. (2007) Descamps et al. (2009) Torppa et al. (2003) ˇ Durech et al. (2007) Hanuš et al. (2011) ˇ Durech et al. (2009) Hanuš et al. (2011) Marciniak et al. (2012) Warner et al. (2008b); Hanuš et al. (2013b) ˇ Durech et al. (2007) Torppa et al. (2003) Kaasalainen et al. (2002) ˇ Durech et al. (2007)

Notes. The table gives ecliptic coordinates λ1 and β1 of the best-fitting pole solution, ecliptic coordinates λ2 and β2 for the possible second (mirror) pole solution, sidereal rotational period P, the number of dense lightcurves Nlc spanning Napp apparitions, the number of sparse-in-time measurements from Lowell NLOW , and the reference to the original model.

8

J. Hanuš et al.: New and updated shape models of asteroids Table 2. New asteroid shape model determinations from disk-integrated optical data. Asteroid

λ1 [deg]

β1 [deg]

256 266 283

−14 −21 −34

Hungaria Sequoia Einstein Noviomagum Bernardus Bambery Joneberhart Lupo Buzzi 1993 VM1 1991 PN10 2000 PG26 1999 TK207

109 60 87 12 227 53 219 248 227 321 234 149 28

67 −59 −43 −57 −32 59 −36 −16 −75 −44 −64 69 −60

Victoriaa Melpomenea Themisa Proserpina Euphrosynea Leukothea Atalante Dorisa Nemausaa Meletea Maja Niobe Ianthea Dike Hera Klymenea Iphigeniaa Lomiaa Lachesisa Gerda Austria Vibiliaa Nuwaa Berthaa Scylla Eva Ophelia Klytaemnestraa Garumna Lambertaa Phthiaa Isabellaa Medeaa Weringia Asterope Coelestina Vera Asporina Eukrate Ilse Augusta Dresda Anahita Penthesilea Philagoria Nephthys Brasilia

174 11 331 88 88 15 45 297 169 103 49 88 286 233 85 112 101 312 256 201 117 248 359 28 201 54 144 65 41 153 26 100 40 284 132 42 265 235 103 3 179 99 15 225 328 356 103

−17 14 52 −52 66 7 −49 61 −62 −27 −70 −33 18 50 24 2 −66 −40 39 22 53 56 25 34 69 −10 29 −6 −64 −56 35 −14 −24 −14 36 14 −51 −10 −22 85 −52 54 −50 49 −71 36 −7

3752 Camillo 5332 1990 DA 8567 1996 HW1 434 1103 2001 2495 3266 4490 4764 6087 6517 7660 11058 67404 86257 12 18 24 26 31 35 36 48 51 56 66 71 98 99 103 104 112 117 120 122 136 144 150 154 155 164 171 179 180 187 189 210 212 226 233 237 245 246 247 249 254 263 270 271 274 287 293

λ2 β2 P [deg] [deg] [hours] Near-Earth asteroids 37.881 5.80285 8.76239 Hungarias 26.4879 3.037976 5.48503 6.65168 10.75954 5.82345 5.48411 4.71654 8.64468 5.91818 6.51669 5.39877 32.4029 Main-belt asteroids 8.66034 11.57031 137 59 8.37419 13.10977 290 6 5.529597 196 0 31.9009 190 −55 9.92692 108 47 11.89010 347 −68 7.78484 282 −5 18.1482 225 −68 9.73570 35.8521 16.4801 18.1191 270 40 23.7427 292 −4 8.98059 286 −50 31.4625 117 −18 9.12417 82 55 46.5508 23 20 10.68724 357 81 11.49662 54 48 13.82516 177 22 8.13456 234 32 25.2285 356 53 7.95880 13.66380 329 23 6.66454 248 −9 11.17342 196 −64 23.8592 328 −62 10.66703 197 45 22.3416 278 −26 6.67190 220 −33 10.28414 11.14849 322 59 19.6981 230 30 29.1758 96 −50 14.35651 47 −36 16.25222 12.09480 222 41 84.995 25 −53 5.89505 272 61 16.8139 207 −59 15.05906 42 53 18.7875 154 −65 17.9410 158 39 7.60411 274 −34 8.17410

Nlc

Napp

N689

N703

NLOW

9 6 45

1 3 2

77 190 333

40 13 13 4 15 15 8 7 17 8 7 7 13

5 3 4 1 4 5 3 2 4 2 2 2 2

331 320 382 190 321 323 313

53 64 46 29 29 52 30 31 60 37 16 49 9 29 29 12 7 19 35 17 4 43 33 18 7 18 37 3 23 20 15

8 8 7 7 8 7 6 4 17 6 5 7 2 4 3 3 1 4 4 6 1 4 5 3 1 4 4 1 2 5 3

46 24 13 10 3 6 41 29 6 12 12 7 12 8 4

8 4 3 1 1 1 3 3 2 4 4 1 3 3 1

78 337 333 96 275 201 352 326 713 563 366 417 369 591 446 400 436 426 382 410 516 519 416 459 467 553 401 417 543 431 110

108 390 453 391 467 482

135 176

60 64 397 485 427 366 351 438 315 461 371 605 492

129

83

291

90

460 411

9

J. Hanuš et al.: New and updated shape models of asteroids Table 2. continued. Asteroid 296 313 315 317 327 343 353 361 365 381 389 391 394 402 407 419 455 474 480 482 489 490 497 502 520 526 537 562 564 565 567 586 596 622 625 632 639 644 660 670 681 682 686 687 692 698 706 742 746 749 756 757 758 762 784 797 798 802 830 856 870 872 873 877 881 908

10

Phaetusa Chaldaeaa Constantia Roxane Columbia Ostara Ruperto−Carola Bononia Cordubaa Myrrhaa Industria Ingeborg Arduina Chloe Arachne Aureliaa Bruchsaliaa Prudentia Hansa Petrina Comacina Veritasa Iva Sigune Franziska Jena Pauly Salome Dudu Marbachia Eleutheria Thekla Scheilaa Esther Xenia Pyrrha Latona Cosima Crescentia Ottegebe Gorgo Hagar Gersuind Tinette Hippodamia Ernestina Hirundo Edisona Marlu Malzovia Lilliana Portlandia Mancuniaa Pulcovaa Pickeringiaa Montana Ruth Epyaxa Petropolitana Backlunda Manto Holda Mechthild Walkure Athene Buda

λ1 [deg] 146 219 162 220 52 103 183 294 255 219 98 354 195 312 241 0 242 301 352 281 265 56 121 178 282 5 31 78 73 334 317 232 264 248 307 74 204 278 68 128 310 56 125 271 233 213 92 46 202 55 201 263 111 194 282 6 84 347 217 42 96 77 249 262 115 40

β1 [deg] 53 34 56 −62 43 64 −58 13 33 72 −38 −65 −61 −49 −63 48 −13 −54 18 61 −16 34 −22 −36 −79 36 32 41 −51 −22 33 36 −18 −60 9 −72 10 −31 11 75 −50 −78 53 18 −53 −66 66 −54 −66 46 31 −69 48 −42 35 61 27 −87 36 44 30 24 −52 71 −77 5

λ2 [deg] 330 45 353 40 238 294 43 115 80 37 291

β2 [deg] 52 10 45 −70 26 48 −64 45 4 43 −29

56 160 43 174 73 136 173 94 88 231 303

−79 −37 −58 42 −21 −64 −32 24 −43 43 −32

114 183 211 275 213 163 131 55 89

−45 48 51 28 −36 −47 53 32 −9

122 253 25 100 236

7 −74 12 −30 49

150 255 260 100

−50 −57 58 43

76 244 175 64 246 53 90 306 17 103 179

−49 54 −43 −27 55 36 −56 44 −14 68 45

34 226 283 253 51 47 338 225

41 73 35 32 −61 66 −43 16

P [hours] 4.53809 8.38993 5.34750 8.16961 5.93183 110.028 2.738963 13.80634 12.7054 6.57196 8.49520 26.4146 16.6217 10.66844 22.6263 16.8 11.8401 8.57227 16.1894 11.79214 9.02321 7.92811 4.620850 10.92666 16.5045 9.51664 16.2961 6.35031 8.88504 4.58782 7.71743 13.6816 15.8666 47.5039 21.0122 4.11686 6.19127 7.55709 7.91036 10.03991 6.46063 4.85042 6.31240 7.39710 8.99690 5.03660 22.0160 18.5833 7.78887 5.92748 7.83250 6.58112 12.72011 5.83977 13.16998 4.54619 8.55068 4.39012 37.347 12.02894 122.166 5.94052 11.00639 17.4217 13.8943 14.57498

Nlc

Napp

5 21 3 16

1 5 1 2

13 6 5 49 10 9 24 8 13 5 47 15 5 8 42 5 10 8 23 9 3 7 9 3 7 19 3 7 5 3 5 5 16 18 4 4 6 5 3 3

2 1 2 5 4 3 2 1 3 1 9 2 1 3 5 3 1 2 3 2 1 3 3 1 2 4 1 1 1 1 1 2 2 3 1 1 1 1 1 1

6 15 11 5 21 12 26 8 1

1 3 2 1 4 2 3 2 1

18 4

5 2

2 44 12 9 3

1 2 2 2 1

6

2

N689

N703

NLOW 340 390

49

115

161

108

106 183

80 73

504 348 446 496 505 409 395 375 433 429 374 200

64 337 434 435 359 378 384

151

44 472 425 327 452 395 432

153

76 431 415 487

160

42 461 438 540 319 334 400 297 396

140

76

141

115

365 373 423 372 566 461 408 437 145

124

92 151 155

50 51 103

169

77

426

363 391 596 92

89 303

J. Hanuš et al.: New and updated shape models of asteroids Table 2. continued. Asteroid 928 944 986 898 1010 1021 1023 1080 1110 1119 1125 1135 1137 1150 1175 1192 1204 1244 1278 1310 1312 1352 1360 1366 1368 1424 1430 1449 1459 1486 1508 1534 1546 1621 1648 1665 1672 1676 1730 1735 1746 1750 1772 1789 1793 1816 1820 1825 1837 1838 1892 1902 1925 1946 2306 2313 2358 2381 2382 2393 2659 2713 2725 2741 2785 2791

Hildrun Hidalgo Amelia Hildegard Marlene Flammarioa Thomana Orchis Jaroslawa Euboea China Colchis Raissa Achaia Margo Prisma Renzia Deira Kenya Villigera Vassar Wawel Tarka Piccolo Numidia Sundmania Somalia Virtanen Magnya Marilyn Kemi Nasi Izsak Druzhba Shajna Gaby Gezelle Kariba Marceline ITA Brouwer Eckert Gagarin Dobrovolsky Zoya Liberia Lohmann Klare Osita Ursa Lucienne Shaposhnikov Franklin−Adams Walraven Bauschinger Aruna Bahner Landi Nonie Suzuki Millis Luxembourg David Bender Valdivia Sedov Paradise

λ1 [deg] 247 277 80 344 299 32 86 255 236 79 132 139 220 169 184 133 142 314 164 3 251 200 323 352 201 51 297 307 72 88 352 82 124 240 117 261 45 74 264 39 21 176 183 319 238 73 264 2 36 42 26 326 277 259 0 80 360 220 205 80 109 164 198 269 206 100

β1 [deg] −29 16 30 27 42 22 −65 27 75 75 −46 −58 −66 −69 −43 −78 −50 −46 −66 63 −23 59 −55 49 −62 76 42 58 −59 −66 108 23 32 71 54 41 79 74 68 −46 −67 60 22 30 64 −68 65 −58 −52 64 −40 37 57 −80 −64 −75 57 −36 52 53 −49 4 −37 −31 48 −16

λ2 [deg] 86 -999 282 164 106 216 272 71

β2 [deg] −63 -999 30 8 47 55 −42 28

282 305 330 40 347 353

55 −49 −81 −77 −62 −17

305 107 281 240

−45 −56 −77 26

32

61

201

55

275 128 99 207 267 166 268 322

58 47 58 −51 −66 73 13 60

306 66

53 32

281 82 178 158 -999 358 137 62

60 44 −52 −71 -999 5 34 64

69

55

228 284 213 144 66 80 225

−58 29 −61 79 48 −59 −65

193 14

52 −66

222 288 343 58 103 26

38 −48 4 −57 −59 54

P [hours] 14.1163 10.05822 9.51856 24.8544 31.0651 12.15186 17.5611 16.0657 97.278 11.3981 5.36863 23.4830 143.644 61.072 6.01375 6.55836 7.88695 216.98 187.60 7.83001 7.93190 16.9543 8.86606 16.1834 3.640739 94.537 6.90907 30.5005 4.67911 4.56695 9.19182 7.93161 7.33200 99.100 6.41369 67.911 40.6824 3.167338 3.836544 12.6103 19.7255 377.5 10.93791 4.811096 5.751872 3.086156 14.0449 4.74288 3.81880 16.1635 9.31556 20.9959 2.978301 10.2101 21.6704 8.88620 10.8528 3.986041 15.1117 9.2875 6.12464 3.58132 9.95798 4.09668 5.47761 9.80729

Nlc

Napp

15 4 15 8 10 8 13 50

4 1 2 1 2 1 1 2

2

1

33

N689

N703

146 0 147 0

114 0 110 0

132

147

142

97

67

98

1 1 1 1 1 1 1 1 2 3 1 1 1 1

5 6 3 3 1

1 2 1 1 1

1 12 3 2

1 2 1 1

4 23 3 3 5

1 1 1 2 2

16 5 4

1 1 1

1 15 2

1 4 1

6

1

13 6 7

1 1 2

2

1

99 242 364 368 486 447 307 357

2

4 5 1 21 27 4 4 5 10 9 3 16 6 11

NLOW

408 395 193 528 331 466 319 317 356 242 136 129

110 83 490 409 354

137

96

0

0

80

80

75

136

492 246 362 365 296 366 342 268

148 88 0 46

107 64 0 110

193 380 398

86

104 281 336 337

102

91 286 459 270

101

73 63 103 69 364 354 92

3 4 3

1 1 1

566 37

97 115 482 127 40

11

J. Hanuš et al.: New and updated shape models of asteroids Table 2. continued. Asteroid 2802 2948 2962 3247 3258 3285 3301 3428 3455 3478 3544 3693 3725 3773 3786 3787 3918 4080 4265 4284 4554 4570 4917 5008 5111 5208 5231 5317 5489 5596 5776 6000 6026 6192 6406 6410 6755 6905 7233 8043 8860 9542 9563 10064 14197 16173 16468 18487 28736 28887 31060 32776 33116 34484 42923

Weisell Amosov Otto Di Martino Somnium Ruth Wolfe Jansje Roberts Kristensen Fanale Borodino Barringer Valsecchi Smithsonian Yamada Aivazovskij Brel Galinskij Kani Kaho Fanynka Runcorn Yurilvoviab Miyazawakenjib Jacliff Royer Verne Verolacqua Oberkochen Morbidelli 1989 UT2b United Nations Xenophanesb 1990 KB1 1992 MJ Fujiwara Solov’yanenko Miyazaki Majella Fukuharab Rohloffb Eryanb Kitty 1988 UOb 1998 XK72 2000 AC98 1990 HW1b 1996 AU3 2000 GE133 2000 KQ58 1996 TB6 Nriag 1998 BO12 2000 SR124 1999 SR18

λ1 [deg] 255 267 230 53 119 142 361 63 9 95 294 243 77 257 84 75 71 209 106 6 220 123 224 144 259 258 175 224 195 173 360 13 266 61 20 243 224 33 298 96 37 200 272 78 192 37 119 245 249 182 216 239 244 116 46

β1 [deg] −50 −64 −58 −70 −47 33 28 49 10 64 −60 −43 −54 −51 52 59 58 −74 60 −21 55 57 20 −52 −45 74 −45 −51 −41 −80 −72 −84 −54 67 −63 −85 54 7 −87 −41 −58 −5 −28 −45 −74 −48 −84 −45 −52 −35 −66 −59 69 −59 69

λ2 [deg] 112 33

β2 [deg] −63 −73

231 274

−75 −71

173 231 186 297 157

40 49 10 62 −57

242 81 218 238 238

−53 −50 48 57 47

310 193 64 287 48 322

54 0 63 31 1 −25

54 359

37 −88

13

−66

80 239 221

−56 75 −55

47 214 80

58 −4 −71

21 91 240 38 209

−22 −34 −57 −62 −37

91 134 354 74 102 45 268

−70 −84 −78 −39 −76 54 −80

P [hours] 37.705 7.39889 2.53632 5.44517 5.33803 3.93494 9.42533 3.27835 8.09218 3.244843 5.43460 6.62564 3.56973 6.98132 4.03295 2.980807 3.09679 7.35845 5.72755 4.05763 4.77502 20.1514 4.17744 49.239 2.83990 3.88494 4.32058 3.02181 5.62439 5.40043 4.34079 3.26191 3.78170 78.631 6.81818 7.00669 8.1680 2.733348 3.81240 22.7606 18.8411 2.79473 5.38191 12.1277 10.6453 6.48550 94.13 6.59077 4.65442 6.84315 5.10432 3.98679 6.34669 6.17516 8.3889

Nlc

7 3 8

Napp

N689

N703

27

156 120 111 87

1 1 1

567 75 630 24

5 7

NLOW

129 129

1 2

627 515 81 83

5 3

1 1

1

1

4

1

11

622 463 138 114 162 730

1

20 3

1

470 21

16 3 2

79 84 87 90 101 107 138 76 119

2 1 1

78 133 143 100 91 508 552 101 120 77 117 114 120 111 122

4

1

1

1

3 6

1 1

4

1

441 97 72 120 118 368 108 141 122 99 155

Notes. The table provides ecliptic coordinates λ1 and β1 of the best-fitting pole solution, ecliptic coordinates λ2 and β2 for the possible second (mirror) pole solution, sidereal rotational period P, the number of dense lightcurves Nlc spanning Napp apparitions, and the number of sparse-intime measurements from three sources: N689 (USNO-Flagstaff), N703 (Catalina Sky Survey) and NLOW (Lowell). (a) Reliable mass estimate exists or the mass will be most likely detetermined from Gaia astrometric measurements. (b) First rotation period estimate.

12

J. Hanuš et al.: New and updated shape models of asteroids Table 3. New observations used for updating the shape models and observations that are not included in the UAPC used for new shape model determinations. Asteroid 3 Juno 7 Iris 16 Psyche 17 Thetis 19 Fortuna 20 Massalia 22 Kalliope

23 Thalia

27 Euterpe 29 Amphitrite

39 Laetitia

40 Harmonia 41 Daphne 42 Isis 45 Eugenia

Date 2013 09 – 2013 09 2010 12 – 2010 12 2013 08 – 2013 08 2003 05 – 2003 05 2003 05 – 2003 05 2007 04 – 2007 04 2011 02 – 2011 02 2011 03 – 2011 03 2011 04 – 2011 04 2011 04 – 2011 04 2012 03 – 2012 05 2012 06 – 2012 06 2004 06 – 2004 06 2004 06 – 2004 06 2004 06 – 2012 02 2006 11 – 2006 11 2006 12 – 2006 12 2007 02 – 2007 03 2007 02 – 2007 03 2007 03 – 2007 03

NLC 1 2 1 2 2 1 3 1 1 2 13 2 2 3 10 4 1 5 9 1

2007 03 – 2007 03 2012 01 – 2012 01 2012 02 – 2012 02 2012 02 – 2012 02 2012 02 – 2012 02 2009 08 – 2009 09 2010 12 – 2011 01 2011 01 – 2011 02 2015 02 – 2015 02

1 4 1 1 1 8 3 4 1

2000 07 – 2011 08 2010 06 – 2010 07 2010 07 – 2010 07 2006 10 – 2006 11 2007 11 – 2007 11 2008 02 – 2008 02 2009 04 – 2009 04

43 5 1 9 1 1 2

2009 04 – 2009 04

2

2009 04 – 2009 04

2

2009 04 – 2009 04

2

2012 02 – 2012 02 1998 03 – 1998 03 2003 03 – 2003 03 2003 03 – 2003 03 2004 05 – 2005 07 2010 10 – 2010 11 2012 02 – 2012 02 2003 01 – 2003 01 2003 05 – 2003 05 2008 12 – 2010 06 2001 11 – 2001 11 2011 01 – 2011 02 1998 12 – 1999 01 1998 12 – 2005 06 2005 06 – 2005 07 2007 11 – 2009 05 2010 07 – 2010 07

3 1 1 1 4 3 2 1 3 10 4 5 2 5 3 15 1

Observer Maurice Audejean Gérald Rousseau Patrick Sogorb Eric Barbotin Laurent Bernasconi Arnaud Leroy Ramón Naves Quentin Déhais Ramón Naves Gérald Rousseau David Higgins Frederick Pilcher Alain Klotz René Roy, Raoul Behrend René Roy Hiromi Hamanowa, Hiroko Hamanowa Jean-François Coliac Enric Forné Warner (2007a) Arnaud Leroy, Sylvain Bouley Guillaume Dubos, Raoul Behrend Ramón Costa Emmanuel Conseil Jacques Montier Jean-François Colliac Maurice Audejean Pilcher (2010f) Gérald Rousseau Ramón Naves Greg Tumolo, Veronika Afonina Alexander Scholz, Sharat Jawahar Stephens et al. (2001); Stephens (2001); Stephens et al. (2012) Pilcher (2011c) Jacques Montier, Serge Heterier Hiromi Hamanowa, Hiroko Hamanowa Enric Forné Polishook (2009) Arnaud Stiepen, Olivier Wertz Davide Ricci, Yassine Damerdji René Giraud, Raoul Behrend Jean-François Pirenne, Pierre Piron Damien Renauld, Lucas Salvador Benjamin Vanoutryve, Raoul Behrend Mathieu Waucomont, Alice Decock Sophie Delmelle, Maïte Dumont Thomas Fauchez, Raoul Behrend Olivier Adam, Arnaud Collet Benjamin Modave, Niyonzima Innocent Raoul Behrend François Kugel, Jerme Caron Yurij Krugly Claudine Rinner Stéphane Charbonnel Josep Coloma Ramón Naves Maurice Audejean Alain Klotz Laurent Bernasconi Pilcher (2009a, 2010b) Laurent Bernasconi René Roy Federico Manzini, Raoul Behrend Federico Manzini Matthieu Conjat Marchis et al. (2010) René Roy

13

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. Asteroid

54 Alexandra

64 Angelina 76 Freia

88 Thisbe 94 Aurora 95 Arethusa 107 Camilla

110 Lydia

121 Hermione

129 Antigone

130 Elektra

354 Eleonora

14

Date 2014 05 – 2014 06

NLC 3

2014 06 – 2014 06 2014 06 – 2014 06

2 2

2014 06 – 2014 06 2005 06 – 2005 06 2006 12 – 2007 01 2007 02 – 2007 02

3 5 5 2

2008 01 – 2008 01 2009 03 – 2009 05 2005 01 – 2005 01 2005 09 – 2005 09 2000 09 – 2000 10 2007 12 – 2007 12 2009 03 – 2009 03 2012 06 – 2012 07

5 8 3 1 6 3 2 6

2014 12 – 2015 04 2015 04 – 2015 04

5 3

2007 01 – 2007 01 2012 02 – 2012 02 2010 03 – 2010 03 2006 07 – 2006 07 2006 08 – 2006 08 2006 08 – 2006 08 2004 09 – 2004 11 2008 05 – 2008 06 2010 07 – 2010 07 2010 07 – 2010 07 2003 12 – 2003 12 2003 12 – 2012 10 2006 06 – 2006 06 2008 12 – 2015 05 2012 10 – 2014 01 2003 12 – 2003 12 2003 12 – 2003 12 2003 12 – 2004 02 2004 01 – 2004 01 2004 01 – 2004 01 2004 02 – 2004 02 2004 02 – 2005 02 2007 03 – 2007 09 2009 11 – 2009 11 2011 01 – 2011 02 2004 02 – 2004 03 2005 01 – 2005 01 2005 04 – 2005 04 2010 05 – 2010 05 2010 05 – 2010 05 2010 06 – 2010 07 2009 12 – 2009 12

1 4 1 4 1 4 2 3 1 2 11 5 2 8 6 1 1 4 1 2 2 4 19 4 3 4 1 2 1 5 3 1

2011 03 – 2011 03 2011 04 – 2011 04 2011 04 – 2011 04 2001 04 – 2001 04 2002 06 – 2002 06 2006 06 – 2006 06 2006 06 – 2006 06 2006 07 – 2006 08 2011 05 – 2011 05 2011 05 – 2011 05 2011 05 – 2011 05 2011 05 – 2011 05

3 1 1 1 2 1 2 4 3 3 4 1

Observer Jean-Paul Teng, André Peyrot Alain Klotz, Raoul Behrend Ramón Naves Romain Montaigut, Arnaud Leroy Raoul Behrend Nicolas Esseiva, Raoul Behrend Jean-Paul Teng, Raoul Behrend Michael Fauerbach Stéphane Fauvaud, Marcel Fauvaud Jean-Marie Vugnon Warner et al. (2008b) Higgins & Warner (2009) Laurent Bernasconi Pierre Antonini Shevchenko et al. (2008) Stephens & Warner (2008) Christophe Demeautis Emmanuel Jehin, Jean Manfroid Michael Gillon Nicolas Esseiva, Raoul Behrend Robin Esseiva, Nicolas Esseiva Raoul Behrend René Roy Maurice Audejean Raymond Poncy Laurent Bernasconi Jean-Gabriel Bosch Raymond Poncy Laurent Bernasconi Polishook (2009) Fabien Reignier Jacques Montier, Serge Heterier Pray (2004a) Stephens & Warner (2013) Roberto Crippa, Federico Manzini Maurice Audejean Warner (2014b) Laurent Brunetto Philippe Baudouin René Roy Stefano Sposetti Jean Lecacheux, François Colas Federico Manzini Laurent Bernasconi Descamps et al. (2009) Robert Buchheim Jeróme Caron Josep Coloma, Raoul Behrend Yassine Darmedji René Roy John Ruthroff Axel Martin Jeróme Caron Pére Antoni Salom, Mateu Esteban Raoul Behrend Jacques Montier, Raoul Behrend Giovanni Casalnuovo, B. Chinaglia Giovanni Casalnuovo Stefano Sposetti Silvano Casulli Hilari Pallares Josep Coloma Enric Forné Etienne Morelle, Raoul Behrend Maurice Audejean Giovanni Casalnuovo, B. Chinaglia Giovanni Casalnuovo

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. Asteroid 360 Carlova 372 Palma

Date 2012 01 – 2012 02 2005 08 – 2005 08 2005 08 – 2005 09 2011 09 – 2011 10 2007 02 – 2007 03 2004 02 – 2004 02 2008 01 – 2008 01 2008 02 – 2008 02 2008 02 – 2008 02 2008 02 – 2008 02 2010 10 – 2010 11 2005 01 – 2005 01 2009 11 – 2009 11 2009 11 – 2009 11 2005 06 – 2005 06

NLC 3 2 5 4 7 1 5 1 1 1 3 1 3 4 2

2010 05 – 2010 06 2010 06 – 2010 06 2015 04 – 2015 04 2015 04 – 2015 04

6 3 1 1

2015 04 – 2015 05 2015 04 – 2015 05 2015 05 – 2015 05 2015 05 – 2015 05 2015 05 – 2015 05 2005 01 – 2005 04 2005 02 – 2005 02 2010 04 – 2010 04

2 1 1 1 1 4 1 1

2010 05 – 2010 05 2010 05 – 2010 05 2010 05 – 2010 06 2010 06 – 2010 06

1 2 3 1

776 Berbericia

2003 11 – 2003 11 2005 02 – 2005 02 2005 03 – 2005 03 2006 06 – 2010 03 2008 12 – 2008 12 2010 02 – 2010 04 2015 03 – 2015 03 2015 04 – 2015 04

2 2 2 8 2 11 2 1

12 Victoria

2000 10 – 2000 10 2010 07 – 2010 07 2010 07 – 2010 07 2011 11 – 2011 11 2011 11 – 2011 11 2012 02 – 2012 02 2012 02 – 2012 02 2013 01 – 2013 03 2012 08 – 2014 01 2012 07 – 2012 08

9 1 3 1 2 1 5 7 16 3

2012 07 – 2012 07 2012 10 – 2014 04 2011 11 – 2011 11 2007 12 – 2009 06 2010 07 – 2010 07

5 9 1 11 1

2010 08 – 2010 08 2010 09 – 2010 09 2012 03 – 2012 03 2008 04 – 2013 04 2011 09 – 2011 09 2011 10 – 2011 10

2 2 2 18 1 1

386 Siegena 409 Aspasia

423 Diotima 511 Davida

532 Herculina

18 Melpomene

24 Themis 26 Proserpina

31 Euphrosyne

Observer Maurice Audejean Pierre Antonini Laurent Bernasconi Eric Barbotin Stephens (2007c) Laurent Bernasconi Warner et al. (2008b) Arnaud Leroy Christophe Demeautis Jean-François Coliac Raymond Poncy Roger Dymock Maurice Audejean Pére Antoni Salom, Mateu Esteban Reiner Stoss, Jaime Nomen Salvador Sanchez, Raoul Behrend Maurice Audejean Joe Garlitz Christophe Gillier Inna Bozhinova, Alexander Scholz Alex Hygate René Roy, Raoul Behrend René Roy David Romeuf Pierre Antonini, Raoul Behrend Pierre Antonini Josep Coloma Hilari Pallares Florian, Corentin Titouan, Raoul Behrend Jacques Montier, Jean-Pierre Previt René Roy Maurice Audejean Jacques Montier, Serge Heterier Jean-Pierre Previt Pray (2004a) Federico Manzini Laurent Bernasconi Stephens (2010b) Mateu Cerda, Pére Antoni Salom Axel Martin René Roy David Romeuf New models López-Gonzáles René Roy, Raoul Behrend Donn Starkey EU-HOU/Comenius, Raoul Behrend Anna Marciniak Maurice Audejean, Raoul Behrend Maurice Audejean Pilcher (2013d) Pilcher (2013a, 2014a) Ewa Kosturkiewicz, Waldemar Ogłoza Marek Dró˙zd˙z Stefano Mottola Pilcher (2013c, 2014c) Toni Santana-Ros Pilcher (2008c, 2013b) Axelle Spiridakis, Tanguy Déléage André Debackére, Raoul Behrend Jacques Montier Pierre Antonini Anna Marciniak, Toni Santana-Ros Pilcher & Jardine (2009); Pilcher (2012a, 2013b) Pierre Farissier Arnaud Leroy

15

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. Asteroid 35 Leukothea 36 Atalante

48 Doris

51 Nemausa

56 Melete

66 Maja 71 Niobe 98 Ianthe 99 Dike

103 Hera 104 Klymene 112 Iphigenia 117 Lomia

120 Lachesis 122 Gerda

144 Vibilia

150 Nuwa

16

Date 2004 12 – 2004 12 2007 10 – 2010 02 2012 09 – 2012 09 1978 08 – 1978 08 2007 02 – 2012 04 2007 03 – 2007 03 2007 03 – 2008 06 2010 10 – 2010 09 2009 05 – 2009 06 2010 07 – 2010 07

NLC 6 40 3 1 11 2 3 6 8 1

2010 07 – 2010 08 2010 07 – 2010 09 2010 08 – 2010 08 2010 08 – 2010 08

3 3 1 1

2010 08 – 2010 09 2007 03 – 2007 03 2008 08 – 2012 09 2009 10 – 2009 10 2011 05 – 2011 06 2014 03 – 2014 03

6 1 6 1 13 1

2003 05 – 2003 05 2007 04 – 2007 05 2008 10 – 2008 11 2012 09 – 2012 11 2007 03 – 2007 03 2009 08 – 2011 04 2011 01 – 2011 01 2006 02 – 2006 03 2009 11 – 2010 03 2007 10 – 2007 11 2007 03 – 2007 04 2007 04 – 2007 04 2007 04 – 2007 04 2011 03 – 2011 04 2010 06 – 2010 11 2010 07 – 2010 07 2011 04 – 2011 04 2011 05 – 2011 05 2007 10 – 2007 12 2003 03 – 2003 03 2003 03 – 2003 03 2003 03 – 2003 03 2003 03 – 2003 04 2006 11 – 2006 11 2013 03 – 2013 03 2008 12 – 2012 09 2005 08 – 2005 09 2006 12 – 2006 12 2008 02 – 2008 02 2009 04 – 2009 04 2011 11 – 2011 11 2006 12 – 2006 12 2011 01 – 2011 01 2011 01 – 2011 02 2011 12 – 2012 04 2012 03 – 2012 04

6 8 8 4 1 8 1 14 13 5 6 1 9 8 19 1 2 3 7 1 2 3 3 3 4 30 3 2 2 3 2 3 1 6 16 4

2005 01 – 2005 01 2006 02 – 2006 02 2009 10 – 2009 10 2009 10 – 2009 10

3 3 1 2

Observer Laurent Bernasconi Pilcher (2008a); Pilcher & Jardine (2009); Pilcher (2010c) Maurice Audejean David Higgins Gérald Rousseau Warner (2007a) Brinsfield (2007a) Pierre Antonini Higgins & Pilcher (2009) Jacques Montier, Serge Heterier Raoul Behrend Gérald Rousseau Jacques Montier, Serge Heterier Arnaud Leroy Romain Montaigut, Rémi Anquetin Pierre Barroy, Bruno Mallecot Pierre Antonini Josef Hanus, Marek Wolf Maurice Audejean Pére Antoni Salom, Mateu Esteban Axel Martin Pierre Aurard, Thomas Dulcamara Lucas Berard, Bryan Baduel Marine Lutz, Gwendoline Séné Emilia Splanska, Olivier Labrevoir Raoul Behrend Laurent Bernasconi Warner (2007b) Pilcher & Jardine (2009) Maurice Audejean Jean-Gabriel Bosch Maurice Audejean Jérome Caron Warner et al. (2006) Pilcher (2010a) Pilcher (2008b) Jean-Gabriel Bosch Enric Forné Axel Martin Pilcher (2011a) Pilcher & Higgins (2011) David Higgins Gérald Rousseau Stefano Mottola Pilcher (2008b) Nathanal Berger Claudine Rinner René Roy Stéphane Charbonnel Raymond Poncy Maurice Audejean Pilcher (2009c) Buchheim (2007) Raymond Poncy Hervé Jacquinot Pilcher (2009a) René Roy René Roy Arnaud Leroy Pierre Antonini Stephan Hellmich Krzysztof Sobkowiak, Roman Hirsch Toni Santana-Ros Laurent Bernasconi Raymond Poncy Sergison Mendicini

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. Asteroid

Date 2009 10 – 2009 10 2009 10 – 2009 11 2009 10 – 2009 11 2009 11 – 2009 11 2010 12 – 2011 01 2011 02 – 2011 02 2006 11 – 2006 11 2007 01 – 2007 01 2011 09 – 2011 10 2008 11 – 2008 12 2008 05 – 2008 06 2012 04 – 2012 05

NLC 2 4 7 1 5 2 1 5 10 7 6 3

2005 03 – 2005 04 2005 03 – 2006 07 2005 04 – 2005 04 2005 04 – 2005 04 2005 06 – 2005 06 2006 03 – 2006 04 2006 04 – 2006 04

5 11 2 2 1 6 1

2011 04 – 2011 04 2011 04 – 2011 04 2011 04 – 2011 04 2004 02 – 2011 09 2004 03 – 2004 03 2004 03 – 2004 03 2004 03 – 2004 03 2007 12 – 2007 12 2011 10 – 2011 11 2004 02 – 2004 02 2006 10 – 2007 01 2006 11 – 2006 11 2006 11 – 2006 11 2006 11 – 2007 01 2011 11 – 2011 11

1 1 5 9 1 2 4 4 19 1 3 1 1 3 2

189 Phthia 212 Medea

2008 07 – 2008 09 2004 09 – 2013 06 2004 10 – 2004 11 2004 11 – 2004 11 2004 11 – 2006 02 2010 11 – 2011 03 2010 12 – 2011 02 2011 01 – 2011 01 2014 09 – 2014 09

13 7 4 1 3 8 4 8 1

226 Weringia

2007 08 – 2008 12 2012 09 – 2012 11 2009 09 – 2009 09 2010 11 – 2012 05 2012 01 – 2012 05 2014 11 – 2015 02 2014 10 – 2014 11 2009 01 – 2009 02 2004 02 – 2004 02 2005 04 – 2005 05 2010 02 – 2010 04 2006 04 – 2006 04 2006 04 – 2006 06 2010 09 – 2010 10 2003 02 – 2003 03 2003 03 – 2003 04

15 7 10 26 10 22 5 7 2 4 6 1 3 5 5 3

2004 07 – 2004 07

4

154 Bertha 155 Scylla 164 Eva 171 Ophelia

180 Garumna

187 Lamberta

237 Coelestina 247 Eukrate 249 254 271 274

Ilse Augusta Penthesilea Philagoria

293 Brasilia 296 Phaetusa 313 Chaldaea

Observer Vincent Crow Miles Faillace Pilcher (2011d) René Roy Raymond Poncy Warner (2007a) Pilcher (2012a) Pilcher & Jardine (2009) Warner (2009b) Anna Marciniak, Roman Hirsch Magdalena Polinska Pierre Antonini Rui Goncalves Yassine Damerdji Federico Manzini Rui Goncalves, Raoul Behrend Oey (2006) Arnaud Leroy, Giller Canaud Denis Fradet, Jean-Paul Godard Raoul Behrend Jacques Montier, Denys Robilliard Jacques Montier Christophe Demeautis Clark (2010) Donn Starkey Stefano Sposetti, Raoul Behrend René Roy Stephens (2008) Pilcher et al. (2012a) Laurent Bernasconi Hilari Pallares Enric Forné, Luis Miguel Enric Forné, Ramón Costa Enric Forné Stéphane Fauvaud, Marcel Fauvaud Franck Richard Pilcher (2009b) René Roy Koff (2005) Rui Goncalves Raymond Poncy Fabien Reignier Fabien Reignier, Raoul Behrend Hiromi Hamanowa, Hiroko Hamanowa Olivier Gerteis, Paul Krafft Michel Polotto, Benoit Lesquerbault Luc Arnold, Matthieu Bachschmidt Oey (2008, 2009b) Pilcher (2013c) Stephens (2010a) Joe Garlitz Pilcher et al. (2012b) Pilcher (2015a) Pilcher (2015c) Pilcher (2009c) René Roy Pierre Antonini Pilcher (2010d) Stephens (2006) Oey (2006) Pilcher (2011c) Silvano Casulli Antonio Vagnozzi, Marco Cristofanelli Marco Paiella, Vairo Risoldi Laurent Bernasconi

17

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. Asteroid 315 Constantia 317 Roxane 343 Ostara 353 Ruperto-Carola 365 Corduba

381 Myrrha

386 Siegena

391 Ingeborg 402 Chloe 419 Aurelia 434 Hungaria 455 Bruchsalia 474 Prudentia 475 Ocllo 482 Petrina 489 490 497 502

Comacina Veritas Iva Sigune

520 Franziska 562 Salome 565 Marbachia 567 Eleutheria

586 596 625 632 639 644

Thekla Scheila Xenia Pyrrha Latona Cosima

660 Crescentia

18

Date 2008 07 – 2008 07 2013 12 – 2013 12 2014 02 – 2014 02 2008 10 – 2008 11 2006 02 – 2006 02 1994 12 – 2012 07 2006 04 – 2006 05 2007 07 – 2007 08 2012 07 – 2012 07 2012 07 – 2012 07 2012 07 – 2012 08 2005 08 – 2005 08

NLC 3 2 4 11 6 25 3 8 2 2 8 1

2005 08 – 2005 08

3

2010 07 – 2010 07 2015 03 – 2015 03

2 1

1998 04 – 2010 04 2004 07 – 2007 03 2011 12 – 2011 12 2011 02 – 2011 03 2012 02 – 2012 04 2012 03 – 2012 03 2012 03 – 2012 03 2000 08 – 2000 12 2009 02 – 2009 02 2014 05 – 2014 05 2006 12 – 2006 12 2007 01 – 2007 01 2008 02 – 2011 02 2009 07 – 2014 03 2005 11 – 2005 12 2008 05 – 2008 06 2014 08 – 2014 08 2010 11 – 2010 12 2014 11 – 2014 11 2007 07 – 2007 08 2010 02 – 2010 02 2012 05 – 2013 10 2001 04 – 2001 04 2001 02 – 2001 03 2009 01 – 2009 01 2007 06 – 2014 03 2014 04 – 2014 04 2013 12 – 2014 01 2006 10 – 2006 10 2012 11 – 2012 11 2000 03 – 2000 03 2013 08 – 2013 09 2006 10 – 2006 10 2010 04 – 2010 04 2010 04 – 2010 06 2012 11 – 2012 11 2013 11 – 2013 11 2013 12 – 2013 12 1999 10 – 1999 11 2005 12 – 2006 01 2010 02 – 2010 02 2011 02 – 2011 03 2007 09 – 2007 10 2012 12 – 2013 02 2013 02 – 2013 02 2009 03 – 2009 03 2014 04 – 2014 05 2014 06 – 2014 06

40 16 3 7 11 1 4 20 4 3 1 1 31 30 6 9 5 4 4 10 1 29 1 10 3 19 3 7 4 4 4 3 2 6 6 1 2 2 3 7 3 5 3 6 8 5 6 4

Observer Oey (2009a) Stéphane Fauvaud Stephens (2014c) Stephens (2009) Warner (2006a) Stefano Mottola, Stephan Hellmich Raymond Poncy Warner (2008a) Pierre Antonini Maurice Audejean Joe Garlitz Reiner Stoss, Petra Korlevic Maja Hren, Aleksandar Cikota Ljuban Jerosimic, Raoul Behrend Reiner Stoss, Jaime Nomen Salvador Sanchez, Raoul Behrend Jacques Montier, Serge Heterier Alexander Scholz, Kirstin Hay Ben Morton, Gabriella Hodosan Marciniak et al. (2012) Stephens (2005, 2007c) Stephan Hellmich Emmanuel Jehin, Mikael Gillon Stefano Mottola Romain Montaigut Jacques Montier Koff et al. (2001) Warner (2009a) Stephens (2014b) René Roy Jean-François Coliac Pilcher (2008c, 2010e, 2011d) Warner (2010b, 2011a, 2014b) Koff (2006) Brinsfield (2008a) Stephens (2015a) Pilcher (2011b) Stephens (2015b) Stephens (2009) James Brinsfield Pilcher et al. (2012c); Pilcher (2014b) William Koff Koff & Brincat (2001) Warner (2009a) Stephens (2007b, 2014c) Buchheim (2014) Pilcher (2014a) David Higgins Alkema (2013b) Koff & Brincat (2000) Stéphane Fauvaud David Higgins Ruthroff (2010) Pilcher (2010d) Maurice Audejean Stephens (2014a) Stéphane Fauvaud Warner (2000, 2010d) Warner (2006b) PTF, Polishook et al. (2012) Pilcher (2011d) Warner (2008a) Strabla et al. (2013) Alkema (2013a) Warner (2009a) Stephens et al. (2014) Maurice Audejean

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. 670 681 682 686 687 706 742

Asteroid Ottegebe Gorgo Hagar Gersuind Tinette Hirundo Edisona

746 Marlu 749 Malzovia 756 Lilliana 757 Portlandia 758 Mancunia

762 Pulcova 798 Ruth 802 870 872 873 898

Epyaxa Manto Holda Mechthild Hildegard

908 944 986 1010 1021 1023 1080

Buda Hidalgo Amelia Marlene Flammario Thomana Orchis

1103 Sequoia 1110 Jaroslawa 1125 1137 1175 1244 1278 1310 1312

China Raissa Margo Deira Kenya Villigera Vassar

1352 1360 1366 1424 1430 1449 1486 1508 1546 1672

Wawel Tarka Piccolo Sundmania Somalia Virtanen Marilyn Kemi Izsak Gezelle

1676 1730 1750 1789 1793

Kariba Marceline Eckert Dobrovolsky Zoya

Date 2014 02 – 2014 02 2013 04 – 2013 05 2013 07 – 2013 08 2013 07 – 2013 07 1999 10 – 1999 10 2000 09 – 2000 09 2003 02 – 2003 05 2008 04 – 2008 05 2012 01 – 2012 02 2014 10 – 2014 10 2014 04 – 2014 06 2001 07 – 2007 08 2006 04 – 2006 04 2012 04 – 2012 06 2014 11 – 2014 11 2006 12 – 2006 12 2006 12 – 2007 01 2007 01 – 2007 01 2007 01 – 2007 01 2007 01 – 2007 01 2015 06 – 2015 06 2015 06 – 2015 07 2006 02 – 2006 03 2009 11 – 2009 12 2002 08 – 2012 07 2011 05 – 2011 05 2009 01 – 2011 11 2013 08 – 2013 10 2007 05 – 2007 05 2015 04 – 2015 06 1999 06 – 1999 06 2008 04 – 2008 05 2009 03 – 2009 03 2004 10 – 2004 10 2000 10 – 2000 10 2005 01 – 2005 03 2005 01 – 2005 01 2009 09 – 2009 10 2010 10 – 2010 10 2010 10 – 2010 11 2011 08 – 2014 11 2013 02 – 2013 04 2014 08 – 2014 11 2013 10 – 2013 10 2012 09 – 2012 12 2009 06 – 2009 07 2007 02 – 2007 04 2011 04 – 2011 06 2001 09 – 2001 10 2010 11 – 2010 11 2010 11 – 2010 11 2007 12 – 2007 12 2004 09 – 2014 02 2003 04 – 2005 12 2012 03 – 2012 04 2011 09 – 2011 09 2008 05 – 2008 07 2013 08 – 2013 08 2004 02 – 2004 03 2006 04 – 2006 04 2008 10 – 2008 11 2008 11 – 2008 11 2009 03 – 2009 03 2010 09 – 2010 09 2009 09 – 2009 11 2011 03 – 2011 03 2008 05 – 2008 05

NLC 4 4 6 5 3 6 7 4 4 8 5 9 2 10 2 4 3 1 1 2 2 7 5 3 10 1 4 37 8 8 2 13 5 4 4 8 2 8 5 8 11 20 24 2 31 4 21 27 4 1 3 5 10 7 14 6 11 5 3 3 9 2 3 2 23 2 4

Observer Stephens (2014c) Pilcher (2013b) Pilcher & Franco (2014) Stéphane Fauvaud Warner (2000, 2010d) Warner (2001) Martin Lehký Brinsfield (2008a) Martin Lehký Klinglesmith et al. (2015) Pilcher (2014c) Warner (2010d, 2008a) Russell Durkee Pilcher (2012b) Stephens (2015b) Warner et al. (2008a) Raymond Poncy Jean-François Coliac, Raoul Behrend Rui Goncalves Jean-François Coliac OAdM Waldemar Ogłoza, Maciej Winiarski Oey (2006) Alton (2011) Stephens (2003), new Martin Lehký Warner (2009a, 2012c) Pilcher et al. (2014) Brinsfield (2007b) Pilcher (2015b) Warner (1999) David Higgins Warner (2009a) William Koff Koff (2001) Warner (2005b) Buchheim (2005) Brinsfield (2010b) Strabla et al. (2011) Ruthroff (2011) Warner (2011b, 2015a,c) Julian Oey Pilcher et al. (2015) Stephens (2014a) Ferrero et al. (2014) Brinsfield (2010a) Julian Oey Oey et al. (2012) Koff (2002) Julian Oey David Higgins Brinsfield (2008b) Warner (2005a, 2014b) René Roy, Raoul Behrend Stephens (2012) Strabla et al. (2012) Oey (2009b) Benishek (2014) Koff (2004) Warner (2006c) Brinsfield (2009) Brian Warner David Higgins Brinsfield (2011) Warner (2010c) Brian Skiff Brinsfield (2008a)

19

J. Hanuš et al.: New and updated shape models of asteroids Table 3. continued. Asteroid 1820 Lohmann 1825 1925 2001 2306 2358 2381

Klare Franklin-Adams Einstein Bauschinger Bahner Landi

2382 2495 2725 2741 3258 3266 3285 3301 3478

Nonie Noviomagum David Valdivia Somnium Bernardus Ruth Wolfe Jansje Fanale

3544 Borodino 3752 3773 3786 3918 4265 4490 4570 4764

Camillo Smithsonian Yamada Brel Kani Bambery Runcorn Joneberhart

5332 Davidaguilar 5489 Oberkochen 6087 Lupo 6192 1990 KB1 6406 6410 6517 7660 8567 11058 14197 16468 28736 28887 33116 67404 86257

20

1992 MJ Fujiwara Buzzi 1993 VM1 1996 HW1 1991 PN10 2000 GE133 2000 KQ58 1998 BO12 1999 WK13

Date 2011 08 – 2011 10 2011 09 – 2011 10 2003 12 – 2004 01 2013 01 – 2013 01 2004 12 – 2012 12 2011 08 – 2011 08 2008 09 – 2008 10 2014 01 – 2014 02 2014 02 – 2014 02 2005 08 – 2005 08 2013 07 – 2013 07 2006 02 – 2006 02 2003 05 – 2003 06 2006 10 – 2006 10 2009 03 – 2014 01 1999 11 – 1999 11 2012 06 – 2012 07 2012 10 – 2012 10 2012 10 – 2012 10 2007 10 – 2007 10 2014 06 – 2014 07 1995 08 – 1995 08 2006 09 – 2006 09 2002 07 – 2002 08 2005 11 – 2005 11 2008 10 – 2008 10 2006 02 – 2014 01 2007 03 – 2007 05 2007 01 – 2010 03 2013 05 – 2013 05 2006 01 – 2006 01 2008 09 – 2009 02 2013 12 – 2013 12 2010 07 – 2012 02 2010 02 – 2010 02 2011 06 – 2011 07 2006 06 – 2006 06 2005 07 – 2005 08 2004 07 – 2014 02 2011 07 – 2014 08 2005 06 – 2005 07 2008 08 – 2009 01 2010 07 – 2012 02 2010 02 – 2010 02 2010 02 – 2010 02 2007 05 – 2007 05 2005 11 – 2005 12 2006 05 – 2006 05 2011 08 – 2014 10 2010 12 – 2012 07

NLC 8 8 5 2 13 6 13 4 2 6 4 3 4 7 15 3 8 2 3 2 5 9 5 3 1 4 15 11 5 3 1 3 3 7 2 14 3 2 17 8 6 39 7 4 1 3 6 4 7 13

Observer David Higgins Martinez (2012) Pray (2004a) Warner (2013b) Warner (2005b, 2008b, 2010c, 2013a) Warner (2012b) Owings (2009) Klinglesmith et al. (2014) Stephens (2014c) Warner (2006d) Warner (2014a) Warner (2006a) Pray (2004b) Oey et al. (2007) Warner (2009c, 2011a, 2012d, 2014b) Warner (2011c) Owings (2013b) Stephens (2013) Owings (2013a) David Higgins Cantu et al. (2015) Pravec et al. (1998) Stephens (2007a) Stephens (2003) David Higgins Miles & Warner (2009) Warner (2006a, 2009c, 2011a, 2012d, 2014b) Julian Oey Warner (2007a, 2010a) Stephens et al. (2014) Julian Oey Skiff et al. (2012) Stephens (2014a) Warner (2011b, 2012a) PTF, Polishook et al. (2012) Brinsfield (2012) Higgins & Goncalves (2007) David Higgins Warner (2005c, 2009a, 2012d, 2014b) Warner (2012b, 2015a) Higgins et al. (2006b) Magri et al. (2011) Warner (2011b, 2012a) PTF, Polishook et al. (2012) PTF, Polishook et al. (2012) Higgins (2008) Higgins et al. (2006c) Higgins et al. (2006a) Warner (2012b, 2015a) Warner (2015b)

J. Hanuš et al.: New and updated shape models of asteroids Table 4. Observers, observatory code and observatory name. Observer name Olivier Adam Veronika Afonina Rémi Anquetin Pierre Antonini Luc Arnold Maurice Audejean Pierre Aurard Matthieu Bachschmidt Bryan Baduel Eric Barbotin Pierre Barroy Philippe Baudouin Lucas Berard Nathanael Berger Laurent Bernasconi Jean-Gabriel Bosch Sylvain Bouley Inna Bozhinova James Brinsfield Laurent Brunetto Giller Canaud Jérome Caron Jérome Caron Fabien Carrier Giovanni Casalnuovo Silvano Casulli Mateu Cerda Stéphane Charbonnel Chinaglia Aleksandar Cikota François Colas Jean-François Coliac Arnaud Collet Josep Coloma Josep Coloma Matthieu Conjat Emmanuel Conseil Corentin Ramón Costa Ramón Costa Roberto Crippa Marco Cristofanelli Yassine Darmedji Andre Debackere Alice Decock Quentin Déhais Tanguy Déléage Sophie Delmelle Christophe Demeautis Marek Dró˙zd˙z Guillaume Dubos Thomas Dulcamara Maïte Dumont Russell Durkee Roger Dymock Nicolas Esseiva Robin Esseiva Mateu Esteban Mateu Esteban Thomas Fauchez Michael Fauerbach Marcel Fauvaud Stéphane Fauvaud Stéphane Fauvaud Florian Enric Forné Enric Forné

Obs code 511 482 586 132 511 B92 511 511 511 586 511 A14 178 586 482 G69 139 586 A77 C26 809 C62 A55 B81 949 C62 620 586 511 619 B71 020 C62 619 B22 A12 589 I40 F65 I40 F65 I40 138 586 511 I40 H39 940 K27 K27 B81 C33 I40 H72 586 517 619 B29

Observatory name Haute-Provence Observatory, St-Michel l’Observatoire, France Observatory of the University of St Andrews, United-Kingdom Pic du Midi Observatory Observatoire des Hauts Patys, F-84410 Bédoin, France Haute-Provence Observatory, St-Michel l’Observatoire, France Observatoire de Chinon, Mairie de Chinon, 37500 Chinon, France Haute-Provence Observatory, St-Michel l’Observatoire, France Haute-Provence Observatory, St-Michel l’Observatoire, France Haute-Provence Observatory, St-Michel l’Observatoire, France Villefagnan Observatory, France Pic du Midi Observatory Harfleur Observatory, France Haute-Provence Observatory, St-Michel l’Observatoire, France 490 chemin du gonnet, F-38440 Saint Jean de Bournay, France Observatoire des Engarouines, 1606 chemin de Rigoy, F-84570 Malemort-du-Comtat, France Collonges Observatory, 90 allée des résidences, F-74160 Collonges, France Pic du Midi Observatory Observatory of the University of St Andrews, United-Kingdom Via Capote Observatory, Thousand Oaks, CA 91320, USA Le Florian, Villa 4, 880 chemin de Ribac-Estagnol, F-06600 Antibes, France Pic du Midi Observatory Observatoire de Dauban, F-04150 Banon, France Levendaal Observatory, Uiterstegracht 48, 2312 TE Leiden, Netherlands European Southern Observatory, La Silla, Coquimbo, Chile Eurac Observatory, Bolzano, Italy Vallemare di Bordona, Rieti, Italy Observatorio Astronómico Caimari Observatoire de Durtal, F-49430 Durtal, France Eurac Observatory, Bolzano, Italy OAM - Mallorca Pic du Midi Observatory 20 parc des Pervenches, F-13012 Marseille, France Haute-Provence Observatory, St-Michel l’Observatoire, France Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain Observatorio El Vendrell Observatoire de Nice, France AFOEV (Association Française des Observateurs d’Etoies Variables), Observatoire de Strasbourg 11, rue de l’Uni Eurac Observatory, Bolzano, Italy Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain Observatorio d’Ager, Barcelona, Spain Stazione Astronomica di Sozzago, I-28060 Sozzago, Italy Santa Lucia Stroncone, Italy TRAPPIST, ESO la Silla Observatory, Chile Haleakala-Faulkes Telescope North, Hawaii, US TRAPPIST, ESO la Silla Observatory, Chile Seine-Maritime, Le Havre, Haute-Normandie 76600, France Haleakala-Faulkes Telescope North, Hawaii, US TRAPPIST, ESO la Silla Observatory, Chile Village-Neuf Observatory, 9bis rue du Sauvage, F-68300 Saint-Louis, France Mt. Suhora Observatory, Pedagogical University. Podchora˙ ˛zych 2, 30-084, Cracow, Poland Pic du Midi Observatory Haute-Provence Observatory, St-Michel l’Observatoire, France TRAPPIST, ESO la Silla Observatory, Chile Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA Waterlooville Observatoire St-Martin, 31 grande rue, F-25330 Amathay Vésigneux, France Observatoire St-Martin, 31 grande rue, F-25330 Amathay Vésigneux, France Observatorio Astronómico Caimari Observatorio CEAM, Caimari, Canary Islands, Spain TRAPPIST, ESO la Silla Observatory, Chile Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA Observatoire du Bois de Bardon, F-16110 Taponnat, France Observatoire du Bois de Bardon, F-16110 Taponnat, France Pic du Midi Observatory Geneva Observatory, CH-1290 Sauverny, Switzerland Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain Osservatorio l’Ampolla, Tarragona, Spain

21

J. Hanuš et al.: New and updated shape models of asteroids Table 4. continued. Observer name Denis Fradet Joe Garlitz Olivier Gerteis Christophe Gillier Mikael Gillon René Giraud Jean-Paul Godard Rui Goncalves Hiroko Hamanowa Hiromi Hamanowa Josef Hanuš Kirstin Hay Stephan Hellmich Serge Heterier Serge Heterier David Higgins Roman Hirsch Gabriella Hodosan Maja Hren Alex Hygate Niyonzima Innocent Herve Jacquinot Sharat Jawahar Emmanuel Jehin Ljuban Jerosimic Alain Klotz Alain Klotz Alain Klotz William Koff Petra Korlevic Ewa Kosturkiewicz Paul Krafft Yurij Krugly François Kugel Olivier Labrevoir Jean Lecacheux Martin Lehký Arnaud Leroy Arnaud Leroy Arnaud Leroy Benoit Lesquerbault M.J. López-Gonzáles Marine Lutz Bruno Mallecot Jean Manfroid Federico Manzini Anna Marciniak Axel Martin Axel Martin Benjamin Modave Romain Montaigut Romain Montaigut Romain Montaigut Jacques Montier Jacques Montier Etienne Morelle Ben Morton Stefano Mottola Ramon Naves Jaime Nomen Julian Oey Waldemar Ogłoza Marco Paiella Hilari Pallares Hilari Pallares Andre Peyrot Frederick Pilcher

22

Obs code 586 511 634 I40 I40 586 938 D19 D19 557 482 493 615 J23 E14 187 482 620 482 511 B26 482 I40 620 148 181 511 H09 620 511 121 A77 511 586 586 A07 Z97 511 511 586 I40 A12 187 628 H10 511 586 634 Z97 615 J23 482 213 620 E19 589 619 A90 181 G50

Observatory name Pic du Midi Observatory International Occultation Timing Association, Montgomery, AL, USA Haute-Provence Observatory, St-Michel l’Observatoire, France Club d’Astronomie de Lyon Ampere (CALA), Place de la Nation, 69120 Vaulx-en-Velin, France TRAPPIST, ESO la Silla Observatory, Chile TRAPPIST, ESO la Silla Observatory, Chile Pic du Midi Observatory Linhaceira Observatory, Portugal Hong Kong Space Museum, Tsimshatsui, Hong Kong, China Hong Kong Space Museum, Tsimshatsui, Hong Kong, China Ondˇrejov Observatory, Czech Republic Observatory of the University of St Andrews, United-Kingdom Calar Alto Observatory St. Véran Centre astronomique de la Couyère, 30 rue de la Boulais, F-35000 Rennes, France Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia Borowiec station of Astronomical Observatory Institute UAM, Pozna´n, Poland Observatory of the University of St Andrews, United-Kingdom OAM - Mallorca Observatory of the University of St Andrews, United-Kingdom Haute-Provence Observatory, St-Michel l’Observatoire, France Observatoire des Terres Blanches, Reillanne Observatory of the University of St Andrews, United-Kingdom TRAPPIST, ESO la Silla Observatory, Chile OAM - Mallorca Guitalens Observatory, 5 chemin d’En Combes, F-81220 Guitalens, France Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France Haute-Provence Observatory, St-Michel l’Observatoire, France 980 Antelope Drive West, Bennett, CO 80102, USA OAM - Mallorca Mt. Suhora Observatory, Pedagogical University. Podchora˙ ˛zych 2, 30-084, Cracow, Poland Haute-Provence Observatory, St-Michel l’Observatoire, France Institute of Astronomy of Kharkiv National University, Kharkiv, Ukraine Observatoire de Dauban, F-04150 Banon, France Haute-Provence Observatory, St-Michel l’Observatoire, France Pic du Midi Observatory Severní 765, 50003, Hradec Králové, Czech republic Pic du Midi Observatory Uranoscope, Avenue Carnot 7, F-77220 Gretz-Armainvilliers, France Observatoire OPERA, France Haute-Provence Observatory, St-Michel l’Observatoire, France Instituto de Astrofísica de Andalucía, CSIC, Apdo. 9481, 08080 Barcelona, Spain Haute-Provence Observatory, St-Michel l’Observatoire, France Pic du Midi Observatory TRAPPIST, ESO la Silla Observatory, Chile Stazione Astronomica di Sozzago, I-28060 Sozzago, Italy Borowiec station of Astronomical Observatory Institute UAM, Pozna´n, Poland Mulheim-Ruhr, Germany Tzec Maun Foundation Observatory, Mayhill, New Mexico, US Haute-Provence Observatory, St-Michel l’Observatoire, France Pic du Midi Observatory Club d’Astronomie de Lyon Ampere (CALA), Place de la Nation, 69120 Vaulx-en-Velin, France Observatoire OPERA, France Astroqueyras, Mairie, F-05350 Saint-Véran, France 51 Centre astronomique de la Couyère, La Ville d’ABas, F-35320 La Couyère, France 20 parc des Pervenches, F-13012 Marseille, France Observatory of the University of St Andrews, United-Kingdom Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489, Berlin, Germany Observatorio Montcabrer, C/Jaume Balmes nb 24, Cabrils 08348, Barcelona, Spain OAM - Mallorca Kingsgrove, NSW, Australia Mt. Suhora Observatory, Pedagogical University. Podchora˙ ˛zych 2, 30-084, Cracow, Poland Santa Lucia Stroncone, Italy Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain Sant Gervasi Observatory, Barcelona Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA

J. Hanuš et al.: New and updated shape models of asteroids Table 4. continued. Observer name Jean-François Pirenne Pierre Piron Magdalena Polinska Michel Polotto Raymond Poncy Jean Pierre Previt Fabien Reignier Damien Renauld Davide Ricci Franck Richard Claudine Rinner Vairo Risoldi Denys Robilliard David Romeuf Gérald Rousseau René Roy John Ruthroff Pére Antoni Salom Pére Antoni Salom Toni Santana-Ros Lucas Salvador Salvador Sanchez Alexander Scholz Gwendoline Séné Brian Skiff Krzysztof Sobkowiak Patrick Sogorb Francisco Soldán Axelle Spiridakis Emilia Splanska Stefano Sposetti Donn Starkey Robert Stephens Arnaud Stiepen Reiner Stoss Jean Strajnic Jean-Paul Teng Titouan Greg Tumolo Antonio Vagnozzi Benjamin Vanoutryve Jean Marie Vugnon Brian Warner Jean Marie Vugnon Brian Warner Mathieu Waucomont Olivier Wertz Maciej Winiarski Marek Wolf OAdM

Obs code 511 511 187 511 177 J23 511 I40 586 224 589 J23 627 B81 C33 187 511 620 482 511 690 187 B00 Z74 F65 511 143 H63 646 I40 620 511 181 C62 482 589 511 716 586 U82 511 I40 557 C65

Observatory name Haute-Provence Observatory, St-Michel l’Observatoire, France Haute-Provence Observatory, St-Michel l’Observatoire, France Borowiec station of Astronomical Observatory Institute UAM, Pozna´n, Poland Haute-Provence Observatory, St-Michel l’Observatoire, France Rue des Ecoles 2, F-34920 Le Crès, France Centre astronomique de la Couyère, 30 rue de la Boulais, F-35000 Rennes, France 11 rue François-Nouteau, F-49650 Brain-sur-Allonnes, France Haute-Provence Observatory, St-Michel l’Observatoire, France TRAPPIST, ESO la Silla Observatory, Chile Pic du Midi Observatory Ottmarsheim Observatory, 5 rue du Lièvre, F-68490 Ottmarsheim, France Santa Lucia Stroncone, Italy Centre astronomique de la Couyère, 30 rue de la Boulais, F-35000 Rennes, France Université Claude BERNARD Lyon 1. Observatoire de Pommier, POMMIER, F-63230 Chapdes-Beaufort, France 4 rue de la Bruyère, F-37500 La Roche Clermault, France Observatoire de Blauvac, 293 chemin de St Guillaume, F-84570 Blauvac, France Shadowbox Observatory, 12745 Crescent Drive, Carmel, IN 46032, USA Observatorio Astronómico Caimari Observatorio CEAM, Caimari, Canary Islands, Spain Borowiec station of Astronomical Observatory Institute UAM, Pozna´n, Poland Haute-Provence Observatory, St-Michel l’Observatoire, France OAM – Mallorca Observatory of the University of St Andrews, United-Kingdom Haute-Provence Observatory, St-Michel l’Observatoire, France Lowell Observatory, Flagstaff, AZ 86001, USA Borowiec station of Astronomical Observatory Institute UAM, Pozna´n, Poland Savigny-le-Temple Observatorio Amanecer de Arrakis, Alcalá de Guadaíra, Sevilla, Spain Haleakala-Faulkes Telescope North, Hawaii, US Haute-Provence Observatory, St-Michel l’Observatoire, France Gnosca Observatory, CH-6525 Gnosca, Switzerland DeKalb Observatory, 2507 CR 60, Auburn, IN 46706, USA Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA TRAPPIST, ESO la Silla Observatory, Chile OAM – Mallorca Haute-Provence Observatory, St-Michel l’Observatoire, France Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France Eurac Observatory, Bolzano, Italy Observatory of the University of St Andrews, United-Kingdom Santa Lucia Stroncone, Italy Haute-Provence Observatory, St-Michel l’Observatoire, France Association T60, 14 avenue Edouard Belin, F-31400 Toulouse, France Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA Pic du Midi Observatory Center for Solar System Studies/MoreData!, 446 Sycamore Ave., Eaton, CO 80615, USA Haute-Provence Observatory, St-Michel l’Observatoire, France TRAPPIST, ESO la Silla Observatory, Chile Mt. Suhora Observatory, Pedagogical University. Podchora˙ ˛zych 2, 30-084, Cracow, Poland Ondˇrejov Observatory, Czech Republic Joan Oró Telescope (TJO) of the Montsec Astronomical Observatory (OAdM)

Notes. TRAPPIST – TRAnsiting Planets and Planetesimal Small Telescope, Jehin et al. (2011).

23

J. Hanuš et al.: New and updated shape models of asteroids 45 1

2

3

4 5 6

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44

24

Centre National d’Études Spatiales, 2 place Maurice Quentin 75039 Paris Cedex 01, France ∗ e-mail: [email protected] Laboratoire Lagrange, UMR7293, Université de la Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Blvd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešoviˇckách 2, 18000 Prague, Czech Republic Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Pozna´n, Poland Geneva Observatory, CH-1290 Sauverny, Switzerland Aix Marseille Université, CNRS, OHP (Observatoire de Haute Provence), Institut Pytéas (UMS 3470 04870 Saint-Michell’Observatoire, France Centre for Science at Extreme Conditions, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom Association T60, Observatoire du Pic du Midi, France Observatoire des Hauts Patys, F-84410 Bédoin, France Observatoire de Chinon, Mairie de Chinon, 37500 Chinon, France Villefagnan Observatory, France Harfleur Observatory, France 490 chemin du gonnet, F-38440 Saint Jean de Bournay, France Observatoire des Engarouines, 1606 chemin de Rigoy, F-84570 Malemort-du-Comtat, France Collonges Observatory, 90 allée des résidences, F-74160 Collonges, France SUPA, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS, United Kingdom Via Capote Observatory, Thousand Oaks, CA 91320, USA Le Florian, Villa 4, 880 chemin de Ribac-Estagnol, F-06600 Antibes, France Observatoire de Dauban, F-04150 Banon, France Levendaal Observatory, Uiterstegracht 48, 2312 TE Leiden, Netherlands European Southern Observatory, La Silla, Coquimbo, Chile Eurac Observatory, Bolzano, Italy Vallemare di Bordona, Rieti, Italy Observatorio Astronómico Caimari Observatoire de Durtal, F-49430 Durtal, France OAM - Mallorca 20 parc des Pervenches, F-13012 Marseille, France Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain Observatorio El Vendrell AFOEV (Association Française des Observateurs d’Etoies Variables), Observatoire de Strasbourg 11, rue de l’Université, 67000 Strasbourg, France Observatori d’Ager, Barcelona, Spain Stazione Astronomica di Sozzago, I-28060 Sozzago, Italy Santa Lucia Stroncone, Italy Institut d’Astrophysique de l’Université Liège, Allèe du 6 Aout 17, B-4000 Liège, Belgium Haleakala-Faulkes Telescope North, Hawaii, US Seine-Maritime, Le Havre, Haute-Normandie 76600, France Village-Neuf Observatory, 9bis rue du Sauvage, F-68300 SaintLouis, France Mt. Suhora Observatory, Pedagogical University. Podchora˙ ˛zych 2, 30-084, Cracow, Poland Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA Waterlooville Observatoire St-Martin, 31 grande rue, F-25330 Amathay Vésigneux, France Observatorio CEAM, Caimari, Canary Islands, Spain Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA Observatoire du Bois de Bardon, F-16110 Taponnat, France

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Association T60, 14 avenue Edouard Belin, F-31400 Toulouse, France Osservatorio l’Ampolla, Tarragona, Spain International Occultation Timing Association, Montgomery, AL, USA Club d’Astronomie de Lyon Ampere (CALA), Place de la Nation, 69120 Vaulx-en-Velin, France Linhaceira Observatory, Portugal Hong Kong Space Museum, Tsimshatsui, Hong Kong, China Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489, Berlin, Germany Astroqueyras, Mairie, F-05350 Saint-Véran, France 51 Centre astronomique de la Couyère, La Ville d’ABas, F-35320 La Couyère, France Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia Observatoire des Terres Blanches, Reillanne Department of Physics, University of Strathclyde, 16 Richmond Street, Glasgow G1 1XQ, United Kingdom Guitalens Observatory, 5 chemin d’En Combes, F-81220 Guitalens, France Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France 980 Antelope Drive West, Bennett, CO 80102, USA Institute of Astronomy of Kharkiv Karazin National University, Kharkiv 61022, Sumska Str. 35, Ukraine Severní 765, 50003, Hradec Králové, Czech republic Uranoscope, Avenue Carnot 7, F-77220 Gretz-Armainvilliers, France Observatoire OPERA, France Instituto de Astrofísica de Andalucía, CSIC, Apdo. 9481, 08080 Barcelona, Spain Mulheim-Ruhr, Germany Tzec Maun Foundation Observatory, Mayhill, New Mexico, US Observatorio Montcabrer, C/Jaume Balmes nb 24, Cabrils 08348, Barcelona, Spain Kingsgrove, NSW, Australia Sant Gervasi Observatory, Barcelona 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA Rue des Ecoles 2, F-34920 Le Crès, France 11 rue François-Nouteau, F-49650 Brain-sur-Allonnes, France Ottmarsheim Observatory, 5 rue du Lièvre, F-68490 Ottmarsheim, France Université Claude BERNARD Lyon 1. Observatoire de Pommier, POMMIER, F-63230 Chapdes-Beaufort, France 4 rue de la Bruyère, F-37500 La Roche Clermault, France Observatoire de Blauvac, 293 chemin de St Guillaume, F-84570 Blauvac, France Shadowbox Observatory, 12745 Crescent Drive, Carmel, IN 46032, USA Lowell Observatory, Flagstaff, AZ 86001, USA Savigny-le-Temple Observatorio Amanecer de Arrakis, Alcalá de Guadaíra, Sevilla, Spain Gnosca Observatory, CH-6525 Gnosca, Switzerland DeKalb Observatory, 2507 CR 60, Auburn, IN 46706, USA Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom