Nanophotonics modelling: FDTD and eigenmode expansion

UGent.be. © intec 2004. • eigenmode: field profile that keeps its transverse shape: Eigenmodes ...... Li: Fourier factoring of 'best' function to satisfy boundary ...
2MB taille 11 téléchargements 231 vues
Nanophotonics modelling: FDTD and eigenmode expansion Peter Bienstman

http://photonics.intec.UGent.be

Acknowledgements Photonics group at Ghent University

http://photonics.intec.ugent.be P. Vandersteegen, D. Taillaert, B. Maes, B. Luyssaert, P. Sanchis, K. Huang (MIT) © intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion • 3D eigenmode expansion

© intec 2004

http://photonics.intec.UGent.be

FDTD • finite differences • time domain • explicit scheme • very general • brute force • calculates fields

© intec 2004

http://photonics.intec.UGent.be

Finite differences Derivatives Æ central differences f(x)

x x0-∆x/2

x0

x0+∆x/2

f (x0 + ∆x / 2) − f (x0 − ∆x / 2) ∂f (x0 ) = + O(∆x 2 ) ∂x ∆x © intec 2004

http://photonics.intec.UGent.be

Maxwell’s curl laws E or J

H

E

∂H ∇ × E = −µ ∂t © intec 2004

H

∂E ∇× H = J +ε ∂t http://photonics.intec.UGent.be

Yee cell

© intec 2004

http://photonics.intec.UGent.be

Leapfrogging E

E

E

E

E

E

t=0 H

t=0.5∆t E

H

E

H

E

H

E

H

E

E

t=∆t

t=1.5∆t

© intec 2004

H

H

H

H

H

http://photonics.intec.UGent.be

Stability Maximum speed of ‘information transmission”:

t=0

x

vmax t=∆t

x

Courant limit: c ≤ vmax

© intec 2004

∆x = ∆t

∆x ⇒ ∆t ≤ c http://photonics.intec.UGent.be

Courant limit e.g. pick ∆t = 2 ∆x / c (i.e. twice too big)

© intec 2004

t=0

x

t=∆t

x

http://photonics.intec.UGent.be

Numerical dispersion • discretised plane wave:

e

jkx

→e

jkˆxˆ

• problem: k ≠ kˆ Normalised phase velocity 1.00 20 points / λ 10 points / λ

0.95

5 points / λ 0

© intec 2004

45

90

angle

http://photonics.intec.UGent.be

Applications

© intec 2004

http://photonics.intec.UGent.be

FDTD conclusions • very general • brute force • well-suited for non-linearities • can take a long time to run z

doubled resolution: 2x2x2 x 2 = 16 x more work

• can suffer from numerical dispersion • can suffer from staircasing • interpretation not always straightforward © intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

• 3D eigenmode expansion

© intec 2004

http://photonics.intec.UGent.be

Modelling approaches

spatial discretisation

© intec 2004

eigenmode expansion

http://photonics.intec.UGent.be

Eigenmode expansion in a nutshell • layer-by-layer approach • eigenmode = ‘natural’ field profile • write field as sum of eigenmodi =1x

• zeer compact: [1, 0.5] © intec 2004

1 + 0.5 x 2 E↔A http://photonics.intec.UGent.be

Interface between two layers

[1, 0.5]

a b  1  [?, ?] =  ⋅   c d 0.5 T and R-matrices (scattering matrices) © intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

z

eigenmode expansion in more detail

• 3D eigenmode expansion

© intec 2004

http://photonics.intec.UGent.be

Eigenmode expansion in more detail Flowchart: • find eigenmodes in each layer • calculate S matrices of interfaces • calculate S matrices of entire stack

© intec 2004

http://photonics.intec.UGent.be

Eigenmodes • consider single frequency • eigenmode: field profile that keeps its transverse shape:

z

E ( x, y, z ) = E ( x, y )e − jβz • β (or kz) : propagation constant

© intec 2004

http://photonics.intec.UGent.be

Finding eigenmodes z β

• β: unknown, but fixed • each material: fw and bw plane waves z

2 * L unknowns

• impose continuity of E and H, and BC • transcendental equation: f(β) = 0 © intec 2004

http://photonics.intec.UGent.be

Modes in open waveguides z E

x

Re(kz) guided modes

E

x

radiation modes

Im(kz) © intec 2004

http://photonics.intec.UGent.be

Modes in closed waveguides

Re(kz) guided modes radiation modes

Im(kz) © intec 2004

http://photonics.intec.UGent.be

Eigenmode expansion in more detail Flowchart: • find eigenmodes in each layer • calculate S matrices of interfaces • calculate S matrices of entire stack

© intec 2004

http://photonics.intec.UGent.be

S matrix of interface incident field

reflected field

A refl = R12 ⋅ A inc  A trans = T 12 ⋅ A inc • matrices calculated by imposing

1

(E inc + E refl )tan = (E trans )tan  (Hinc + Hrefl )tan = (H trans )tan

2

(mode matching) transmitted field

• expressions involve overlap integrals

∫E ×H i

© intec 2004

j

⋅ u z dS

http://photonics.intec.UGent.be

S matrix of stack incident field

reflected field

A refl = R stack ⋅ A inc  A trans = T stack ⋅ A inc • matrices contain contributions from • R and T’s of interfaces • propagation across layers

• contributions can be accounted for by • T-matrix formalism (fast, unstable) • S-matrix formalism (slower, stable) transmitted field

© intec 2004

Issue: mix of

e jβ z , e − j β z http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

z

eigenmode expansion in more detail

z

boundary conditions

• 3D eigenmode expansion

© intec 2004

http://photonics.intec.UGent.be

Problem

• parasitic reflections • absorbing boundary conditions needed © intec 2004

http://photonics.intec.UGent.be

Example m etal wall

I

T

R

L parasitic reflec tions m etal wall

© intec 2004

http://photonics.intec.UGent.be

With absorbing BC

© intec 2004

http://photonics.intec.UGent.be

Without absorbing BC

© intec 2004

http://photonics.intec.UGent.be

Absorbers Traditional absorber: material with loss

medium

absorber metal

Reflections now occur at the absorber interface © intec 2004

http://photonics.intec.UGent.be

Perfectly matched layers PML: material with a complex thickness e.g. plane wave

d-ja

e

medium

PML

metal

−j

2π n⋅r λ

complex r provides absorption

No more reflections at the absorber interface © intec 2004

http://photonics.intec.UGent.be

Other PML formulations  α α • anisotropic medium ε , µ = ε 0ε r , µ 0 µ r    

    1 α 

• split field formalism (Bérenger, FDTD) z

e.g. Hz = Hzx + Hzy

© intec 2004

http://photonics.intec.UGent.be

Modal spectrum imag(d)=-0.2 imag(d)=-1.6 imag(d)=-0.4 imag(d)=-0.8 imag(d)=0 0

-1

-2

-3

-4

-5

-6

-7

© intec 2004

0

0.5

1

1.5

2

2.5

3

3.5

4

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

z

eigenmode expansion in more detail

z

boundary conditions

z

finite structures

• 3D eigenmode expansion

© intec 2004

http://photonics.intec.UGent.be

Finite structure: PhC splitter

© intec 2004

http://photonics.intec.UGent.be

Comparison with FDTD • eigenmode expansion z

can be faster (more data reuse)

z

calculation time logarithmic in # periods

z

field profiles only calculated when needed

z

very physical interpretation

z

trivial to handle dispersive materials

z

can handle semi-infinite media

z

calculation time: (# modes)^3

z

staircasing

© intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

z

eigenmode expansion in more detail

z

boundary conditions

z

finite structures

z

infinite structures: band diagrams

• 3D eigenmode expansion

© intec 2004

http://photonics.intec.UGent.be

Band structure calculation uses eigenvalues of transfer matrix of period T F1

F2

B1

B2

 F2   F1  − jk z d  F1  B  = T ⋅ B  = e B   2  1  1 © intec 2004

http://photonics.intec.UGent.be

Square lattice of rods

wall z wall

TE © intec 2004

http://photonics.intec.UGent.be

Polaritonic materials (K.C. Huang)

ε

ωT © intec 2004

ωL http://photonics.intec.UGent.be

Band diagrams

© intec 2004

http://photonics.intec.UGent.be

Flux expulsion

f = 0.3916 © intec 2004

f = 0.4030 http://photonics.intec.UGent.be

Plane wave methods • e.g. MPB (MIT Photonic Bands) • Bloch theorem is invoked • fields are expanded in plane waves:

e

(

j N xGx x + N y G y y + N z Gz z

)

• eps is fourier decomposed • structure is discretised • leads to eigenvalue problem for each kz:

A⋅x =ω x 2

© intec 2004

http://photonics.intec.UGent.be

Comparison with plane-wave method • eigenmode expansion z

fewer basis functions needed

z

independent variable is frequency

z

can do finite structures too

z

easiest along high symmetry direction in Brillouin zone

z

very useful as ‘auxiliary’ calculation

© intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

z

eigenmode expansion in more detail

z

boundary conditions

z

finite structures

z

infinite structures: band diagrams

z

semi-infinite structures

• 3D eigenmode expansion © intec 2004

http://photonics.intec.UGent.be

Semi-infinite media Useful e.g. when modelling tapers:

© intec 2004

http://photonics.intec.UGent.be

Reflections • not a perfect taper: Fabry-Perot effect

© intec 2004

http://photonics.intec.UGent.be

Fabry-Perot resonances Power transmission + Fabry-Perot curve 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0

10

20

30

40

50

60

70

Periods

© intec 2004

http://photonics.intec.UGent.be

Modelling semi-infinite crystals

… © intec 2004

http://photonics.intec.UGent.be

Semi-infinite media Generalised reflection matrix from field profiles of Bloch modes:

… © intec 2004

R = B⋅F

−1

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

eigenmode expansion in a nutshell

z

eigenmode expansion in more detail

z

boundary conditions

z

finite structures

z

infinite structures: band diagrams

z

semi-infinite structures

z

laser cavities

• 3D eigenmode expansion © intec 2004

http://photonics.intec.UGent.be

Laser modes of cavities Resonance condition:

A res = R top ⋅ R bot ⋅ A res Rbot

find eigenvectors of

Q ≡ R top ⋅ R bot with eigenvalue 1 Rtop more stable: SVD: find singular values of

Q −I with value 0

© intec 2004

http://photonics.intec.UGent.be

Airpost VCSEL

© intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

principles

z

boundary conditions

z

finite structures

z

infinite structures: band diagrams

z

semi-infinite structures

z

laser cavities

z

spontaneous emission

• 3D eigenmode expansion © intec 2004

http://photonics.intec.UGent.be

Current source inside cavity

Rtop Aup,0

Aup



d=0 …

Rbot

© intec 2004

Ado,0

Ado

http://photonics.intec.UGent.be

Spontaneous emission rate • electric dipole between two metal plates wall

wall

• transform to closed circular geometry using PML

© intec 2004

http://photonics.intec.UGent.be

Spontaneous emission rate

Spontaneous emission rate 3.5

CAMFR

3.0

analytic

2.5 2.0 1.5 1.0 0.5 0.0 0

1

2

3

4

5

Cavity length (wavelenghts)

© intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

principles

z

boundary conditions

z

finite structures

z

infinite structures: band diagrams

z

semi-infinite structures

z

laser cavities and spontaneous emission

z

example of device modelling

• 3D eigenmode expansion © intec 2004

http://photonics.intec.UGent.be

Fiber coupler (D. Taillaert) Our fiber coupler z

use a grating to couple light from/to a fiber perpendicular to the PIC

z

use a spot-size convertor in plane

z

1.55µm wavelength

z

wafer scale, no need to cleave/polish the devices

z

good alignment tolerances

z

high vertical index-contrast

© intec 2004

Single mode fiber core

spot size convertor

(artist’s impression)

http://photonics.intec.UGent.be

Experimental results paper submitted to Optics Express

© intec 2004

http://photonics.intec.UGent.be

Experimental results Transmission measurement ⇒ coupling efficiency Polarization maintaining fibers, tilted 10 degrees, for incoupling and outcoupling

Fiber coupler grating for coupling to single-mode fiber

© intec 2004

12µm wide, 1mm long ridge waveguide

http://photonics.intec.UGent.be

Experimental results Transmission measurement ⇒ coupling efficiency Polarization maintaining fibers, tilted 10 degrees, for incoupling and outcoupling

Fiber coupler grating for coupling to single-mode fiber

© intec 2004

12µm wide, 1mm long ridge waveguide

http://photonics.intec.UGent.be

Experimental results fiber coupling efficiency

0.40

0.30 620nm period 630nm period 620nm theory 630nm theory

0.20

0.10

0.00 1520

1560

1600

1640

wavelength (nm)

33% efficiency (4.8dB coupling loss) 35-40nm 1dB bandwidth © intec 2004

http://photonics.intec.UGent.be

Experimental results Experiments agree well with theory, difference is due to z

theoretical model is 2-D

z

also the distance between the fiber end and the grating is larger in experiment than in theory

The efficiency is limited because z

coupling to substrate (up/down ratio=0.9)

z

mode mismatch with gaussian beam

z

with an optimized oxide thickness, the up/down ratio can be improved to 1.4-1.5

© intec 2004

http://photonics.intec.UGent.be

Experimental results z

70% , but 1µm thick wg and very long grating

! ! !

! ! ! !! !

T.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Tech. Lett. 12, 59–61 (2000)

z

H T D I

57%, beam diameter 48µm, through substrate, metal mirror on top (27% for beam diameter 28µm)

W D 60-65%, top dielectric stack N A B W 50% claimed O (E=1-R-T) , approx. 30x30µm R R A N

R. Orobtchouk, A. Layadu, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).

z

A. Narashima and E. Yablonovitch, ``Efficient optical coupling into single mode Silicon-on-Insulator thin films using a planar grating coupler embedded in a high index contrast dielectric stack.'', presented at the conference on Lasers and Electro-Optics (CLEO), Baltimore, USA, June 2003.

z

Optical interconnects on SOI: a front end approach ,Orobtchouk, R.; Schnell, N.; Benyattou, T.; Lardenois, S.; Pascal, D.; Cordat, A.; Laval, S.; Cassan, E.; Koster, A.; Bouchier, D.; Bouzaida, N.; Dal'zotto, B.; Florin, B.; Heitzmann, M.; Lamouchi, Z.; Louis, D.; Mollard, L.; Renaud, D.; Gautier, J.; Interconnect Technology Conference, 2002. Proceedings of the IEEE 2002 International , 3-5 June 2002 , Pages:83 - 85

z 33%, © intec 2004

1dB bandwidth > 35nm http://photonics.intec.UGent.be

Improved designs paper submitted to Optics Letters θ

fiber core

y x

z

n=1.5

1µm

n=3.476 220nm n=1.444

n=3.476 © intec 2004

http://photonics.intec.UGent.be

Improved designs 3D-problem reduced to 2 x 2-D problems,

E x(x,y)

E x(y) 0.22 0

y-axis (µm )

thanks to large width of ridge wg, Ex(x,y)≈Ex (x).Ex (y)

E x(x)

-6

© intec 2004

0 x-axis (µm)

6

http://photonics.intec.UGent.be

Improved designs Uniform grating z

theoretical efficiency limited to 80% because of overlap exponential - gaussian profile

z

P=P0exp(-2αz)

Non-uniform grating z

different etch depth or duty cycle

z

α becomes function of z

z

theory and experiments in literature for weak gratings

© intec 2004

http://photonics.intec.UGent.be

Improved designs Use design procedure for weak gratings and optimize using genetic algorithm (76 → 97% overlap with gaussian profile) 1 0.9 0.8

G 2 (z) G 2 (z)s imu la tio n 2 ∫G (z)dz -1 α (z) (µm )

0.7

2α ( z ) =

2

G ( z) z

1 − ∫ G 2 (t )dt 0

0.6 0.5 0.4 0.3 0.2 0.1 0

© intec 2004

2

4

6 z-a xis (µm)

8

10

12

http://photonics.intec.UGent.be

Optimise groove lengths d1 d2 …

Note: modes can be reused!

© intec 2004

http://photonics.intec.UGent.be

Genetic algorithm generate 100 random couplers (random L) calculate all the couplers generation0 = all 100 couplers sort generation with descending transmission 2 first elements of generation are allowed to mate -> 2 extra couplers calculate extra couplers add extra couplers to generation sort generation with descending transmission generation1 = best 100 couplers © intec 2004

http://photonics.intec.UGent.be

Cross-over and mutation

1

2

Parent1

Parent2

[B1, B2, …, BN,L1, L2, …, LN]

[B1, B2, …, BN,L1, L2, …, LN]

[B1, B2, …, BN,L1, L2, …, LN]

[B1, B2, …, BN,L1, L2, …, LN]

Child 1

Child 2

Afterwards child1 en child2 are slightly mutated (independently) using a Gauss distribution around the cross-over value

© intec 2004

http://photonics.intec.UGent.be

Improved designs Results 1 S OI S OI+DBR

0.9 0.8

← 1dB co upling los s→

e fficie ncy

0.7 0.6 0.5 0.4 0.3 0.2 1 500

© intec 2004

1520

1 54 0 1560 wavele ngth (nm)

158 0

1 600

http://photonics.intec.UGent.be

Improved designs 90% coupling efficiency

smallest groove width is 30nm, but can be increased to 60nm with only 1-2 percent decreased efficiency © intec 2004

http://photonics.intec.UGent.be

Improved designs Sensitivity to fabrication errors 1 90nm 100nm 110nm

0.9 e fficie ncy

etch depth

0.8 0.7 0.6 0.5 1 500

groove width

e fficien cy

0.9 2

1520

1 54 0 1560 wavele ngth (nm)

5nm error dis tribution

158 0

1 600

10nm e rro r dis trib utio n

0.9 1 0.9 0 0.8 9 0.8 8

© intec 2004

http://photonics.intec.UGent.be

Improved designs Is it possible to use a top dielectric stack to improve the efficiency ?

Normal SOI

SOI with buried DBR

SOI with top mirror

Demonstrated by Yablonovitch et al.

© intec 2004

http://photonics.intec.UGent.be

Improved designs Back to basics : source in a (± symmetric) cavity

(2n+1)π λ/4 2mπ

λ /4≈120nm ⇒ Works only for shallow gratings •cavity doesn’t only change directivity but also extraction efficiency •rigorous grating calculations agree with the simple model © intec 2004

http://photonics.intec.UGent.be

Interference Coupler (B. Luyssaert)

Bout

B3 L3 Bin

B = [B1, B2, …, BN] L = [L1, L2, …, LN]

Put a sequence of waveguide sections with different widths and lengths between input and output waveguide © intec 2004

http://photonics.intec.UGent.be

Result

• 2D simulation • width IN = 1 µm, width OUT = 13 µm • length = 33 µm • efficiency = 94% (mode to mode) © intec 2004

http://photonics.intec.UGent.be

PhC coupler (P. Sanchis)

© intec 2004

http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

principles

z

boundary conditions

z

finite, infinite and semi-infinite structures

z

laser cavities and spontaneous emission

z

example of device modelling

z

modelling non-linearities

• 3D eigenmode expansion © intec 2004

http://photonics.intec.UGent.be

Non-linear mode expansion (B. Maes) Kerr effect Intensity dependent refractive index:

n ( r ) = n Linear + n Kerr I ( r ) → spatially dependent ⇒ spatial discretisation

© intec 2004

http://photonics.intec.UGent.be

Non-linear mode expansion (2) Iterative procedure

n0 → I 0 → n1 → I1 → n2 L 144424443 (1)

( 2)

(1)

( 2)

One step

(1) Linear eigenmode calculation (e.g. CAMFR) (2) Non-linear index equation:

n1 = n Linear + n Kerr I 0 If n1 − n0 < ε solution reached, else repeat above step © intec 2004

http://photonics.intec.UGent.be

Photonic crystal cavity

Efficiency : „

Small non-linear sections

„

Linear parts need only one calculation

M. Soljacic, M. Ibanescu, S.G. Johnson, Y. Fink, and J.D. Joannopoulos, ‘Optimal bistable switching in nonlinear photonic crystals’, Phys. Rev. E 66, 055601(R) 2002. © intec 2004

http://photonics.intec.UGent.be

Photonic crystal cavity (2) 1 0.8

T

0.6 0.4

0.2 0 0

50000

100000

150000

200000

250000

300000

Input power (a.u.)

Low transmission

© intec 2004



High transmission

http://photonics.intec.UGent.be

Characteristics & comparison Flexibility : „

Generic 2D structures

„

Saturable Kerr, absorption, ...

Rigorous Bidirectional ↔ standard BPM Efficiency „

Linear parts need only one calculation

„

Small non-linear sections

„

CW-solutions ↔ FDTD: long pulses

© intec 2004

http://photonics.intec.UGent.be

PhC Flip-Flop (1) Szöke’s flip-flop Signal CW Memory signal ON pulse A

B

OFF pulse

A and B : bistable resonators © intec 2004

http://photonics.intec.UGent.be

PhC Flip-Flop PhC version

CW signal

OFF pulse

ON pulse

Memory signal

© intec 2004

http://photonics.intec.UGent.be

PhC Flip-Flop Principle Transmission of one switch 1.2

Pout

1

CW

0.8

OFF

ON

0.6

CW

0.4

OUT

0.2 0 0

0.5

1

1.5

2

2.5

Pin

3

ON-pulse: reflection of CW keeps first switch ON OFF-pulse: eliminates reflection → both switches OFF © intec 2004

http://photonics.intec.UGent.be

PhC Flip-Flop Results

CW

OFF

ON

CW simulations

OUT 1.2

POUT

1

0.8 0.6

ON - signal

0.4

Switching OFF

0.2 0 0

© intec 2004

2

4

6

8

POFF

10

http://photonics.intec.UGent.be

Kerr effect - Bloch modes Efficiency ↑↑ as size of nonlinear sections ↓ → finite structures e.g. resonators → periodic infinite structures ⇒ Only one period needed

Example : PhC bands

a/λ

0.6 0.5 0.4

Linear Nonlinear

0.3

z 0.2 0.1 0 0

© intec 2004

2

4

6

8

kz

10

http://photonics.intec.UGent.be

Self-localized waveguides Frequency within the bandgap • Linear : Exponential decay in perfect PhC, but : Line defect → waveguide

• Nonlinear : Field can ‘carve’ its own channel ⇒ Gap soliton or self-localized waveguide © intec 2004

http://photonics.intec.UGent.be

Self-localized waveguides Start with ‘seed’ from linear mode Rapid parameter analysis

z

© intec 2004

http://photonics.intec.UGent.be

Second Harmonic Generation ω

ω

χ(2) 2ω



Phase Matching : Efficient SHG if : 2k(ω) - k(2ω) = 0 or n(ω) = n(2ω)

Quasi PM :

|E2ω|2

Periodicity in n or χ(2)

Quasi PM

zc no PM

zc= π/∆k 0

© intec 2004

1

2

3

4

5

6

7

z

http://photonics.intec.UGent.be

8

Modified matrix formalism F1

F2

B1

B2

Linear:  F2   B  =   1 

S

Propagation and interfaces

Becomes:  F2   B  =   1 

  F1  B   2 

S

  F1  ∗   B  + ∗  2   

Remember: Ck ( z ) = Ck (0) + term © intec 2004

Generation (and scattering)

http://photonics.intec.UGent.be

Second harmonic generation Longitudinal periodicity: n = 3.15

ω

1.25µm

2ω n = 3.3 Tω

1

Flux2ω

0.9 0.8

160000 140000 120000

0.7 0.6

100000

0.5

80000

0.4

60000

0.3

40000

0.2

20000

0.1 0 1.545

1.547

1.549

1.551

1.553

1.555

λ (µm) © intec 2004

0 1.545

1.547

1.549

1.551

1.553

1.555

2λ (µm) http://photonics.intec.UGent.be

Outline • FDTD • 2D eigenmode expansion z

principles

z

boundary conditions

z

finite, infinite and semi-infinite structures

z

laser cavities and spontaneous emission

z

example of device modelling

z

modelling non-linearities

• 3D eigenmode expansion © intec 2004

http://photonics.intec.UGent.be

Challenges for 3D model • need to find modes of waveguides with arbitrary 2D cross-section • need to handle radiation losses (PML) • need to handle material losses complex propagation constants

© intec 2004

http://photonics.intec.UGent.be

Waveguide with 2D cross section

z © intec 2004

http://photonics.intec.UGent.be

Rotated basis functions y

x

z

kz

© intec 2004

http://photonics.intec.UGent.be

Dispersion relation

Rright

Rleft

Ares = R left ⋅ R right ⋅ Ares © intec 2004

http://photonics.intec.UGent.be

Modes in the complex plane 0.0 0

0.5

1

1.5

-0.5

-1.0

-1.5

-2.0

© intec 2004

http://photonics.intec.UGent.be

Option 1: mode tracking imag(d)=-0.2 imag(d)=-1.6 imag(d)=-0.4 imag(d)=-0.8 imag(d)=0 0

-1

-2

-3

-4

-5

-6

-7

© intec 2004

0

0.5

1

1.5

2

2.5

3

3.5

4

http://photonics.intec.UGent.be

Option 2: contour integration

0.0 0

0.5

1

1.5

-0.5

-1.0

-1.5

-2.0

© intec 2004

http://photonics.intec.UGent.be

Option 3: two-stage method • Stage 1 z

Construct coarse estimate of betas

z

Expand them in “plane waves”

z

Algebraic eigenvalue problem

z

All modes are found at the same time

A⋅x = β x 2

• Stage 2 z

Refine these estimates

z

Expand them in 1D film modes

z

Roots of transcendental complex function

z

Better accuracy

© intec 2004

http://photonics.intec.UGent.be

Stage 1: plane wave methods Several methods are available: • Omar / Schuenemann: uniform modes • Noponen / Turunen: Fourier • Li: Fourier taking care with discontinuities

© intec 2004

http://photonics.intec.UGent.be

Omar-Schueneman

• Expand in eigenmodes of uniform waveguide • Horribly slow convergence © intec 2004

http://photonics.intec.UGent.be

Noponen-Turunen / Li • grating Fourier methods: need adapting to waveguide configuration • Li: Fourier factoring of ‘best’ function to satisfy boundary conditions

© intec 2004

http://photonics.intec.UGent.be

Convergence: square waveguide Effective index 1.17

1.165

Noponen-Turunen

Film modes 1.16

Li 1.155

Omar-Schuenemann 1.15 0

100

200

300

400

500

600

700

number of modes

© intec 2004

http://photonics.intec.UGent.be

Convergence: photonic wire Effective index

Li

2.50

Film modes

2.25

2.00

1.75

Noponen-Turunen

1.50 0

200

400

600

800

1000

number of modes

220x415 nm n=3.47

n=1.0

n=1.44 © intec 2004

http://photonics.intec.UGent.be

Field profiles

E © intec 2004

http://photonics.intec.UGent.be

Field profiles

40 eigenmodes © intec 2004

500 plane waves http://photonics.intec.UGent.be

Photonic Crystal Fibre

Too few airholes Lossy fibre Radiation losses handled through PML Boundary conditions

© intec 2004

http://photonics.intec.UGent.be

Photonic wire n=1.0 n= 3.5 n= 1.45

n=3.5

PML © intec 2004

http://photonics.intec.UGent.be

Photonic wire losses Propagation losses for 400 nm buffer

dB/mm

150 100 50 0 0.3

0.4

0.5

Wire width (micron)

© intec 2004

http://photonics.intec.UGent.be

3D model • sequence of waveguides with 2D crosssection • need to calculate overlap integrals z

Film modes: slow (N4)

z

Plane waves: fast (N)

• hybrid model: z

Use plane wave field representation when npw ≈ nfilm (e.g. radiation modes)

© intec 2004

http://photonics.intec.UGent.be

Flow chart • calculate plane wave estimates • choose which modes to refine with film modes (e.g. all guided modes) • calculate overlap integrals, for each mode either using a plane wave expansion or a film mode expansion Better trade-off between speed and accuracy

© intec 2004

http://photonics.intec.UGent.be

Example: double step Transmission 0.90 0.88 0.86 0.84

Plane wave

0.82 0.80

Hybrid

0.78 0.76

Film modes

0.74 0

20

40

60

80

100

number of modes © intec 2004

http://photonics.intec.UGent.be

3D interference coupler

© intec 2004

http://photonics.intec.UGent.be

Transmission Transmission 1.00 0.80 0.60 0.40 0.20 0.00 1.4

1.5

1.6

1.7

1.8

1.9

2

wavelength

© intec 2004

http://photonics.intec.UGent.be

CAMFR

Our eigenmode expansion simulator freely available from htpp://camfr.sourceforge.net

© intec 2004

http://photonics.intec.UGent.be