MPP Core Loss - Exvacuo

4π x 10-7 henries per meter in the System International. Units of Measure ...... 8.85. 41. Inductance Factor,. mH +/- 8%. (+/- 12% for. SUPER-MSS) for 1000 turns.
2MB taille 23 téléchargements 339 vues
Magnetic Powder Cores

ARNOLD MAGNETICS LTD Powder Core Division

p. 17.1 February 2003

Introduction

Table of Contents

Arnold manufactures the world’s largest selection of magnetic materials. We are magnetic specialists of both hard and soft magnetic materials. This product information guide is focused on our soft magnetic powder core products; Molybdenum Permalloy Powder, SUPER-MSS™, and HI-FLUX™.

Part Number Ordering Information ....................................................3 Design Information..........................................................................4–6 Winding Notes ................................................................................7, 8 Notes on Molybdenum Permalloy Q Curves ................................9, 10 MPP Core Loss (Ohms per Millihenry) ........................................11, 12 Typical Core Loss Curves ............................................................13–16 Typical Permeability vs. Temperature ................................................17 Typical Incremental Permeability vs. D.C. Bias ..................................18 Normal Magnetization Curves ..........................................................19 Normal Permeability vs. AC Flux Density ..........................................20 Typical Permeability vs. Frequency ....................................................21

Today, electrical design engineers need to identify and compare product capabilities, performance and effectiveness for high frequency power conversion inductors, noise filters and various tuned circuit applications to meet their design objectives. To assist in this selection process, we have included the following information: • How

to order parts information • Formulas and definitions for design calculations • Comparative magnetic curves for performance evaluation • Electrical and physical specifications with part numbers • ”Q“ curves for Molybdenum Permalloy Powder cores • Design

In 1995 Arnold initiated a complete upgrade of our powder core manufacturing facility providing the most advanced equipment to process, control and monitor our products. The upgrade for Molybdenum Permalloy Powder (MPP) and HI-FLUX was completed in 1996. In early 1997 the Sendust (SUPER-MSS) upgrade was completed. To further our commitment to Magnet Materials advancement, Arnold opened the Magnetics Technology Center (MTC) in 1996. This ”state-of-the-art“ magnetics development laboratory is used for new product and improved process development by Arnold and their customers. Arnold’s commitment to continuous improvement and customer satisfaction is best reflected in our commitment to excellence:

Our Commitment to Excellence Arnold is committed to providing quality products and services that conform to our customers’ requirements. We will have an environment which encourages teamwork and in which each employee learns, understands, and practices quality conformance as an integral part of his or her job function. All departments will establish goals consistent with our commitment to continuous improvement. We will judge our performance on how well we satisfy our customers’ needs and be guided by the belief that our customers will ultimately determine how successful we will be. We appreciate your selection of our products.

ARNOLD® is a registered trademark of The Arnold Engineering Co., a subsidiary of SPS Technologies, Inc. Arnold HI-FLUX™ and SUPER-MSS™ are trademarks of The Arnold Engineering Co., a subsidiary of SPS Technologies, Inc.

Specifications and ”Q“ Curves 0.140" o.d. ................................................................................22–23 0.155" o.d. ................................................................................24–25 0.183" o.d. ................................................................................26–27 0.250" o.d. ................................................................................28–29 0.260" o.d. (i.d. 0.105/ht.0.100). ..............................................30–31 0.260" o.d. (i.d. 0.105/ht.0.188) ................................................32–33 0.277" o.d. ................................................................................34–35 0.310" o.d. ................................................................................36–37 0.380" o.d. (i.d. 0.188/ht.0.125) ................................................38–39 0.380" o.d. (i.d. 0.188/ht.0.156) ................................................40–41 0.400" o.d. ................................................................................42–43 0.440" o.d. ................................................................................44–45 0.500" o.d. ................................................................................46–47 0.655" o.d. ................................................................................48–49 0.680" o.d. ................................................................................50–51 0.800" o.d. ................................................................................52–53 0.900" o.d. ................................................................................54–55 0.928" o.d. ................................................................................56–57 1.060" o.d. (i.d. 0.580/ht.0.340) ................................................58–59 1.060" o.d. (i.d. 0.580/ht.0.440) ................................................60–61 1.300" o.d. (i.d. 0.785/ht.0.345) ................................................62–63 1.300" o.d. (i.d. 0.785/ht.0.420) ................................................64–65 1.300" o.d. (i.d. 0.785/ht.0.440) ................................................66–67 1.350" o.d. ................................................................................68–69 1.410" o.d. ................................................................................70–71 1.570" o.d. ................................................................................72–73 1.840" o.d. (i.d. 0.950/ht.0.710) ................................................74–75 1.840" o.d. (i.d. 1.130/ht.0.600) ................................................76–77 2.000" o.d. ................................................................................78–79 2.250" o.d. (i.d. 1.039/ht.0.600) ................................................80–81 2.250" o.d. (i.d. 1.400/ht.0.550) ................................................82–83 3.063" o.d. (i.d. 1.938/ht.0.500) ................................................84–85 3.063" o.d. (i.d. 1.938/ht.0.625) ................................................86–87 4.000" o.d. (i.d. 2.250/ht.0.535) ................................................88–89 4.000" o.d. (i.d. 2.250/ht.0.650) ................................................90–91 5.218" o.d. (i.d. 3.094/ht.0.800) ................................................92–93 5.218" o.d. (i.d. 3.094/ht.1.000) ................................................94–95 Index ..........................................................................................96–98 © 1998 The Arnold Engineering Company

p. 17.2 February 2003

Page

Part Number Ordering Information

800-545-4578

Core Part Number Construction

Inductance Factor Tolerance

Part numbers for Arnold cores are constructed as shown below. For reference, MPP core part number A-206068-2 used in the example can be found on page 52. Note that the Permeability Rating is included in the Electrical Specifications Table. Likewise, HiFlux core part number HF-184125-2 can be found on page 74. Its Inductance Rating is included in the Electrical Specifications Table.

Arnold Molybdenum Permalloy, HI-FLUX and SUPER-MSS cores are produced to a specific inductance factor based on a 1000turn winding. These inductance tolerances, usually + or - 8%, are shown in the Electrical Specifications Table for each core size.

Inductance Factor Grading MPP Material A



Material

206

068



Catalog Number

Inductance

2

796

Finish

Lot Code



+2 Grade

IMPORTANT: Lot Code and Grade are assigned by the factory. Standard MPP grading covers the value ranges -8 to +8.

HI-FLUX or SUPER-MSS Material HF MS



Material

184

125



Size Permeability Designation

2

796

Finish

Lot Code

Marking Cores with 0.655 inch and larger nominal outside diameters are individually marked with the part number, lot code and, when specified for Molydbenum Permalloy Powder (MPP) cores, the grade. Small (0.500 inch nominal outside diameter and smaller) MPP core permeability is identified, when specified, by use of a color code stripe as shown in the table below. Otherwise, marking is on the package only.

Color Stripe Code for Small MPP Cores (Used Only When Specified at Time of Order) Permeability 14 26 60 125 147 160 173 205 250 300 350

Color Code

. . . . . . .White . . . . . . .Black . . . . . . .Blue . . . . . . .None . . . . . . .Yellow . . . . . . .Brown . . . . . . .Orange . . . . . . .Red . . . . . . .Green . . . . . . .Violet . . . . . . .Gray

p. 17.3 February 2003

Arnold will supply Molybdenum Permalloy Powder cores graded into 1% or 2% inductance factor groups if specified at time of order. The deviation from nominal inductance factor will be stamped on the core for 1% grading or color dot coded on the core for 2% grading according to the table shown here: % Deviation from nominal Inductance*

% Deviation from nominal turns

Grade Stamped on core 1% Grading

Color Dot Code 2% Grading

+8 to +7 +7 to +6 +6 to +5

-4 to -3.5 -3.5 to -3 -3 to -2.5

+8 +7 +6

Gray Gray Violet

+5 to +4 +4 to +3 +3 to +2

-2.5 to-2 -2 to -1.5 -1.5 to -1

+5 +4 +3

Violet Blue Blue

+2 to +1 +1 to 0 0 to -1

-1 to -0.5 -.5 to 0 0 to +.5

+2 +1 -1

Green Green Yellow

-1 to -2 -2 to -3 -3 to -4

+.5 to +1 +1 to +1.5 +1.5 to +2

-2 -3 -4

Yellow Orange Orange

-4 to -5 -5 to -6 -6 to -7 -7 to -8

+2 to +2.5 +2.5 to +3 +3 to +3.5 +3.5 to +4

-5 -6 -7 -8

Red Red Brown Brown

* Cores ordered in 1% inductance groupings (1/2% in turns) will have the numerical value marked on the core as shown above. Packages will be marked when the core is too small to be properly marked.

Core Finishes Refer to the table below for the finish descriptions. Finishes are tested for dielectric strength with conductive foam pads pressed against the two flat surfaces of the core. A 60 Hz, 1250 V rms test voltage is applied between the pads for one second.

Molybdenum Permalloy, HI-FLUX and SUPER-MSS Powder Core Finishes Nominal Outside Diameter 0.140 to 0.183 0.250 to 0.380 0.400 to 5.218

Finish Parylene C Parylene C Epoxy

Minimum Voltage Breakdown Appearance Requirement Clear Clear Blue

None 500 V rms, 60 Hz 500 V rms, 60 Hz

Finish Number 8 8 2

Design Information Molybdenum Permalloy, Hi-Flux and Super-MSS Powder cores are wound with magnet wire to make transformers or inductors. Maximum allowable energy dissipation for a given value of energy storage (inductance and current) or transformation (voltage and current), guide the selection of core material and size. Energy dissipation is usually specified in terms of maximum temperature rise, minimum efficiency or minimum Q value. (Q is 2π times the ratio of peak energy stored to energy dissipated during one period of current flow.) Consider the following when choosing a core material: 1. Molybdenum Permalloy Powder (MPP) cores provide the maximum Q and lowest core loss. MPP is the most stable core with respect to temperature and AC Flux. It has the widest range of permeabilities and is considered the premium material for direct current output inductors of Switched Mode Power Supplies. It is useful into the Megahertz range of frequencies. MPP cores are an excellent choice for precision audio frequency tuned circuits, High Q Filters, Loading Coils, RFI Filters and many other precision inductor applications. 2. Hi-Flux cores are a 50% Nickel 50% Iron distributed gapped powder core. HF has up to 15,000 Gauss saturation flux density and core losses significantly lower than iron powder cores. These cores are ideal for Switching Regulator Inductors, In Line Noise Filters, Pulse and Fly-Back Transformer applications. When used in applications with high dc current, HF cores can provide a reduction in inductor size as well as total cost. 3. Super-MSS is an improved Sendust material, originally developed by Arnold Engineering. It is designed to replace iron powder by offering much lower losses, with energy storage capability higher than MPP. Super-MSS cores are an excellent choice for energy storage and filter inductor applications in Switch Mode Power Supplies. The low loss properties of SuperMSS cores minimizes the temperature rise at power frequencies to well below that of a similar sized iron powder core. The DC Bias characteristics of Super-MSS are also excellent compared to iron powder of similar permeabilities and size. For reference, some basic electromagnetic terms and relationships used to design with magnetic powder cores are defined, followed by graphs showing typical values for material characteristics essential to transformer and inductor design. The final section of this catalogue contains data for specific core sizes and Q curves for Molybdenum Permalloy Powder (MPP) cores.

Units of Measure For historical reasons, the Centimeter-Gram-Second (CGS) system is used in this catalog. Conversion between the System International (SI) and CGS System is simplified using the following table.

Conversion Table To Convert

Quantity

Multiply By

From

To

Magnetic Flux Density B

Gausses (CGS)

Teslas (SI)

10-4

Magnetizing Force H

Oersteds (CGS)

Amperes per Meter (SI)

1000/(4π)

Also, free space permeability in the CGS System has a magnitude of 1 and no dimensions. Free space permeability is 4π x 10-7 henries per meter in the System International.

Inductance Inductance (L) is calculated using the inductance factor (AL ) listed for each core.

L

= ALN2 nanohenries

A L = inductance factor in mH for 1000 turns. N = number of turns. Therefore,

N=

L AL turns

where L is in nanohenries. Inductance can also be determined from the relative permeability (referred to in this catalog as µ, “permeability” and “perm”) and the effective core parameters shown in Figure 1. L=

4πµ Ae

N2 nanohenries

le A e = effective core area in square centimeters. le = effective magnetic path length in centimeters. µ = relative permeability (no dimensions).

p. 17.4 February 2003

Design Information (Cont.) The “Normal Permeability versus Flux Density” graph shows normal permeability as a function of peak flux density, B. le

Most design procedures involve choosing a peak operating magnetic flux density to help determine the core size. Peak operating flux density is limited by the core material saturation flux density or by the core material loss. After choosing the material and operating flux density and determining the core size, Faraday’s Law (discussed below) is then used to calculate the number of turns, N. Finally, a permeability is selected to provide the required inductance.

Figure 1. Effective Core Parameters

Ae

For toroidal powder cores, the effective area is the same as the cross sectional area. By definition and Ampere’s Law, the effective magnetic path length is the ratio of winding ampere-turns (NI) to the average magnetizing force across the core area from inside diameter to outside diameter. Using Ampere’s Law and averaging the magnetizing force gives the formula for effective path length. le =

L = inductance in nanohenries. le = effective magnetic path length in centimeters. A e = effective core area in square centimeters.

π (O.D. - I.D.) ln

L le 4 π A e N2

µ=

(O.D. I.D. (

A wide range of permeabilities are offered to satisfy various inductance requirements.

O.D. = outside diameter of core. I.D. = inside diameter of core.

Ampere’s Law (also discussed below) gives the peak value of magnetizing force, H, based on the number of turns, peak magnetizing current (the total current of an inductor and “no-load” current in a transformer primary) and core magnetic path length. As can be seen in Figure 2, selecting the permeability sets the peak magnetic flux density so it matches the value chosen at the beginning of the design procedure. Also, for Molybdenum Permalloy Powder (MPP), the following selection chart gives the permeability that yields maximum inductance for a given magnetizing force.

Inductance factors are measured using a single layer winding with closely spaced turns. Flux densities and test frequencies are kept as low as practical, usually less than 40 gausses and 10 kHz or below. The “Normal Permeability versus Flux Density” and “Typical Permeability versus Frequency” graphs can be used as guides to define low-level test conditions for the various permeabilities and materials.

Permeability

.

RM .

. RM

PE

Core material, permeability indicated for each band will exhibit highest incremental permeability for that level of d.c. magnetizing force

20

25

200

0

30

0

PE

RM

350 PE

300

100 80

RM

.

60

PE

50 40

60

RM

.

30 20

26

PE

B-B

400

5 PE 1 RM 16 73 . 14 0 P PER ER M 7 PE 12 M . RM . 5 PE . RM .

B

Permeability Selection Chart

INCRMENTAL PERMEABILITY

The inductance factors listed for each core size are based on incremental relative permeabilities. With no direct current bias and at low flux densities, the normal and incremental permeabilities are the same. The incremental permeability decreases with direct current bias as indicated by Figure 2 and shown in the “Incremental Permeability versus DC Bias” graphs.

10

Normal Permeability = B/H

1

2

3

4

5 6 7 8

10

20

30

40

60

80

100

dc MAGNETIZING FORCE — OERSTEDS

H-H Figure 2. Normal and Incremental Permeabilities

p. 17.5 February 2003

H

Incremental Permeability = B/H

200

400

600

1000

Design Information (Cont.) The “Normal Magnetization Curves” can be used with the “Typical Incremental Permeability versus DC Bias Curves” to estimate the direct current magnetic flux density for a chosen percentage of incremental permeability. For example, 125µ Molybdenum Permalloy Powder has 50% incremental permeability at just under 50 oersteds. The corresponding flux density is about 4500 gausses (0.45 tesla) according to the normal magnetization curve. Surveying the other permeabilities suggests that this could be used as an approximation of the DC flux density where Molybdenum Permalloy Powder has 50% of its original incremental permeability.

Magnetizing Force and Ampere’s Law Ampere’s Law relates magnetizing force (H) to current, number of turns and magnetic path length. H = 0.4 π NI l H N I l

= magnetizing force in oersteds. = number of turns. = current in amperes. = magnetic path length in centimeters.

Magnetic Flux Density and Faraday’s Law The level of flux density (B) affects core loss and permeability. Unless otherwise noted, the data in this catalog is for sinusoidal waveforms and maximum (peak) magnetic flux densities. Using Faraday’s Law: Bmax = Bmax = Erms = N = Ae = f =

According to Ampere’s Law, the magnetizing force is stronger toward the inside diameter (where l is shorter). The effective magnetic path length provides an average value of magnetizing force across the core cross section. Haverage = 0.4 π NI le

Erms 108 NAe 2 π f

maximum (peak) flux density in gausses. sinusoidal RMS voltage across winding (V rms). number of turns. effective core area in square centimeters. frequency of sinusoidal voltage in hertz.

Haverage = the average magnetizing force across the core from inside to outside diameters in oersteds. = effective magnetic path length as listed in the individual le core specifications in centimeters. (See the section on inductance for the effective path length formula.) N = number of turns. I = current in amperes. Average magnetizing force is used in this catalog unless noted otherwise.

I E

The magnetizing force determines the estimate of magnetic flux density using the normal magnetization curves. See the above section on permeability. The relative permeability is, by definition:

µ = The effective area is considered the total area of the core cross section as shown in Figure 1. The area occupied by magnetic alloy is less than this area and decreases with decreasing permeability. Catalog data for the different permeabilities include effects from the smaller magnetic alloy areas. Also, Bmax is an average maximum flux density value over the core cross section. The flux density is greater toward the inside diameter and smaller toward the outside diameter as shown by Ampere’s Law and described in the following.

p. 17.6 February 2003

B H

µ = relative permeability. B = magnetic flux density in gausses. H = magnetizing force in oersteds.

Winding Notes The d.c. winding resistance for an average winding can be calculated by:

Molypermalloy Q Curves“.) The graph below is useful for estimating self-resonant frequency. By selecting a winding technique which minimizes the voltage between turns, the distributed capacitance may be reduced. Several winding techniques are available. Dividing the winding into a number of sections, such as 2, 4, or more, or the use of a bankwound coil is effective in reducing the capacitance. In any case, the winding and inter-sector connecting technique should carefully avoid placing the first and last turns adjacent to each other - as they have the highest turn to turn potential, and thus contribute the most to the effective capacitance. Both the moisture content in the dielectric of the winding and the dielectric constant of potting and encapsulating materials increase the effective distributed capacitance.

Rdc = l w Nr 12000

l w = mean length of turn (in.) N = number of turns r = resistance of wire in ohms per 1000 feet (see wire table on page 8.) In addition to the normal d.c. resistance of a winding, there exists an incremental change in the winding resistance due to the skin effects of a.c. current.* This can be approximated by:

Precision wound cores - stable with time and having reproducible temperature characteristics - must have winding strains relieved by temperature cycling. The wound cores must be cycled from room temperature to 125° C., repeating the cycle as many times as necessary to achieve reproducible results. At least one cycle should include a temperature lower than the wound core will be exposed to under operating conditions. This cycling will not only relieve strains, but also remove moisture that is present. Final adjustment of inductance value should be made after the temperature cycling process has been completed.

Rac = .96 + .0035 x2 - .000038 x3 Rdc

where x = d

f (1 + .00393 (°C - 20))

d = wire diameter (inches) f = frequency (HZ) °C = operating temperature

The wound cores should be kept dry until they are dipped, potted, or hermetically sealed. Potting and encapsulating compounds should be carefully selected as some may shrink with age or temperature change, and thus affect stability. Cushioning material on the wound cores can minimize this effect.

Minimizing distributed capacitance is an important core winding consideration. A toroidal winding has an effective capacitance which may be considered to be in parallel with the inductance. This is the result of the summation of capacitances from turn to turn, layer to layer, and from parts of the winding to the core. (The effect of this capacitance on the Q and the inductance of the component is discussed in the section ”Notes on

*Reference Data for Radio Engineers. ITT Corp. New York, NY, 4th Edition, 1956, pp. 128-132

Inductance – Capacitance Resonance Chart 1000

L=

600

L=

L=

200

0.0 y 1H

L= 0. 1 Hy

1H y

10 Hy

Hy 100

60

L=

80

L=

100

L=

Capacitance – Picofarads

300

y

Hy 01 0.0

400

1H 00 0.0

800

40 30

10 3

10

4

10

Resonant Frequency – Hertz

p. 17.7 February 2003

5 10

6 10

Winding Notes (Cont.) Heavy Film Magnet Wire Table (Reference NEMA MW1000) Maximum Outside Diameter Over AWG Insulation in Size Inches 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 1 A 2

0.1061 0.0948 0.0847 0.0757 0.0682 0.0609 0.0545 0.0488 0.0437 0.0391 0.0351 0.0314 0.0281 0.0253 0.0227 0.0203 0.0182 0.0164 0.0147 0.0133 0.0119 0.0108 0.0098 0.0088 0.0078 0.0070 0.0063 0.0057 0.0051 0.0045 0.0040 0.0036 0.0032 0.0029 0.0027

Nominal Resistance, Ω/1000 ft. at 20°C (68°F)

Nominal Bare Wire Nominal Bare Wire Cross Sectional Area Diameter in Mils1 in Circular Mils2

0.9988 1.26 1.59 2.00 2.52 3.18 4.02 5.05 6.39 8.05 10.1 12.8 16.2 20.3 25.7 32.4 41.0 51.4 65.3 81.2 104 131 162 206 261 331 415 512 648 847 1080 1320 1660 2140 2590

mil is 0.001 inch. A circular mil is the area of a circle which is 1 mil in diameter.

p. 17.8 February 2003

101.9 90.7 80.8 72.0 64.1 57.1 50.8 45.3 40.3 35.9 32.0 28.5 25.3 22.6 20.1 17.9 15.9 14.2 12.6 11.3 10.0 8.9 8.0 7.1 6.3 5.6 5.0 4.5 4.0 3.5 3.1 2.8 2.5 2.2 2.0

10380 8230 6530 5180 4110 3260 2580 2050 1620 1290 1020 812 640 511 404 320 253 202 159 128 100 79.2 64.0 50.4 39.7 31.4 25.0 20.2 16.0 12.2 9.61 7.84 6.25 4.84 4.00

Notes on Molybdenum Permalloy Q Curves Note: The following information applies to frequency tuned circuit applications. The Q formula calculates the ratio of reactance to effective resistance for an inductor and thus indicates its quality. For electrical wave filters, an increase in Q provides sharper cut-off, higher attenuation ratios, and better defined resonance. Q is affected by the distributed capacitance of an inductor's winding. Neglecting the effects of self-resonance caused by the distributed capacitance (see paragraph 4c, below) Q can be calculated, when designing inductors, by this formula: ** Q=

Q = L =  = Rdc = Rac = Rcd =

L Rdc + Rac + Rcd

quality factor inductance (henries) 2 π X frequency (frequency in hertz) dc winding resistance (ohms) resistance due to core losses (ohms) resistance due to dielectric losses in winding (ohms)

The Q curves published in this manual are not to be construed as guaranteed minimum values. Instead they represent what might be attainable under ideal conditions. They were developed theoretically and have been checked with various core sizes and inductances to assure reasonable correspondence to the real world of wire, insulation and winding. The user's ability to get equivalent results depends in part upon his ability to duplicate the assumed conditions. These are: 1. A "full-wound core" is defined to be one in which the minimum winding ID or residual hole left after winding is one-half of the inside diameter of the core.

b. The second factor is caused by dielectric loss. Dielectric loss resistance is significant at higher frequencies and can be calculated from the equation found in Terman’s Handbook.*** Rcd = d3 L2 Cd d =power factor of distributed capacitance Values of d 125µ & over .0118 60µ .0417 26µ .0750 14µ .0900  = 2π X frequency in hertz L = Inductance in henries Cd = distributed capacitance in farads c. The most dramatic factor is the effect of self resonance of the distributed capacitance and the inductance. For small inductances, such as the 0.001 henry or the 0.01 henry curve for each core, the self-resonant frequency f° is well above the normal useful frequency range of the component. Therefore, these curves tend to indicate the component performance with a negligible effect of self resonance. The distributed capacitance and the self inductance determine a self-resonant frequency according to: f° =

Qf = Q

**This

analysis follows Herman Blinchikoff, ”Toroidal Inductor Design,” Electro-Technology, November, 1964.

p. 17.9 February 2003

1-

2

f

( f° (

where Q is calculated from determined values of loss resistances as indicated above, and Qf is the apparent Q, taking into account the effect of the distributed capacitance. It should be noted that when f is 20% of f°, Qf is 96% of its original value. However, when f is 70% of f°, Qf drops to 51% of its original value. The apparent value of the inductance, La, is also affected as follows: L

La =

4. Three factors affect the high frequency performance of an inductor. a. The most fundamental is the loss of the core material which is mostly responsible for the negative slope of the low inductance curves at frequencies above the frequency of maximum Q. This is calculated from Legg's equation (see next section).

hertz.

2 π LC d

At some lower frequency, f, the value Qf can be calculated from:

2. This leaves a useful winding area which is three-quarters of the available window area. It was assumed that 70% of this space would be filled with copper wire including heavy synthetic film insulation. 3. The dc resistance of a full-wound core varies as the square of the number of turns in the same manner that the resultant inductance varies as the square of the turns. Therefore, each core size has a table of calculated ohms per millihenry based on the "full-wound core" definition above. This resistance determines the positive slope of the low frequency portion of the Q curve and is assumed to be independent of inductance.

1

1-

f

2

( f° (

5. Because the distributed capacitance is determined by the winding method, the user can obtain different results from those plotted, depending on this value of the capacitance. Each Q curve is marked with the capacitance value used. ***Radio

Engineer’s Handbook, F.E. Terman, McGraw-Hill, Inc., New York (1943), p. 84.

Notes on Molybdenum Permalloy Q Curves (Cont.) Molybdenum Permalloy Core Loss at Low Magnetic Flux Densities LEGG'S EQUATION1...total core loss at low flux densities is the sum of three component losses - hysteresis, residual and eddy current. Values of typical loss coefficients are found in the following table for each permeability. The core loss in terms of ohms per henry per unit of permeability is calcuated from Legg's Equation: Rac = µL

aBmax f + cf +

ef2

Watts of loss from Legg’s Equation may be determined by: Watts of Loss = 3.98 B2max Al

Rac

10-9

µL

Rac = µ = L = a = Bmax = c = f = e = A = l =

effective resistance due to core losses (ohms) permeability of core inductance (henries) hysteresis loss coefficient maximum flux density (gausses) residual loss coefficient frequency (hertz) eddy loss coefficient core area (cm2) mean magnetic path (cm)

or Watts of Loss = 3.98 B2max Al ohms/mhy** µ106 **

from core loss curves

Molybdenum Permalloy Electrical Specifications and Typical Loss Coefficients SPECIFICATIONS

Perm. µ 8%

Maximum Core Loss Rac µL ohms Henry x µ

TYPICAL VALUES Test

Flux Density (Gausses)

Frequency Hertz

Maximum Permeability Change after Magnetization†

Hysteresis Loss Coefficient a

Residual Loss Coefficient c

Eddy Current Loss Coefficient e

300 250 205

0.25 0.25 0.25

20 20 20

1800 1800 1800

0.5% 0.5% 0.5%

1.1 x 10-6 1.2 x 10-6 1.3 x 10-6

30.0 x 10-6 26.0 x 10-6 25.0 x 10-6

43.0 x 10-9 37.0 x 10-9 30.0 x 10-9

173 160 147

0.20 0.20 0.20

20 20 20

1800 1800 1800

0.5% 0.5% 0.5%

1.4 x 10-6 1.5 x 10-6 1.6 x 10-6

25.0 x 10-6 25.0 x 10-6 25.0 x 10-6

25.0 x 10-9 22.0 x 10-9 20.0 x 10-9

125 60 26 14

0.20 1.50 70 65

20 10 4 4

1800 8000 75000 75000

0.5% 0.3% 0.2% 0.1%

1.6 x 10-6 3.2 x 10-6 6.9 x 10-6 11.4 x 10-6

25.0 x 10-6 50.0 x 10-6 96.0 x 10-6 143.0 x 10-6

13.0 x 10-9 10.0 x 10-9 7.7 x 10-9 7.1 x 10-9

† Measured three minutes after the application of a dc magnetizing force of 30

oersteds for 60 and higher permeabilities or 60 oersteds for 26 and 14 permeabilities. 1-Legg, V.E., "Magnetic Measurements at Low Flux Densities Using the A-C Bridge,"

The Bell System Technical Journal, Vol. 15, January, 1936, pp. 39-63.

Charts showing the typical core loss resistance in ohms per millihenry for each permeability material are found on pages 11 and 12.

p. 17.10 February 2003

MPP Core Loss (Ohms per Millihenry) Typical Core Loss of 14 µ

2.0

= B 50 0

= B

20 0

10

0

B

=

0.1 .08 .06 .05 .04 .03

B

=

B

=

B

1

.02

B

20

20 = 0

B = B= 1 2

0 =

.02

.2

=

0

.2 0.1 .08 .06 .05 .04 .03

1.0 .8 .6 .5 .4 .3

B

ohms per Millihenry

B

=

50 0

1.0 .8 .6 .5 .4 .3

10

ohms per Millihenry

B

10 00

=

2.0

Typical Core Loss of 26 µ

10.0 8.0 6.0 5.0 4.0 3.0

10 00

10.0 8.0 6.0 5.0 4.0 3.0

0.01 1.0

2

3 4 5 6 8 10

20 30 40 60 80 100

200

400 600

0.01 1.0

1000

2

3 4 5 6 8 10

Frequency-Kilohertz

Typical Core Loss of 60 µ

10.0 8.0 6.0 5.0 4.0 3.0

200

400 600

1000

Typical Core Loss of 125 µ

1.0 .8 .6 .5 .4 .3 .2

00 10

B 10 = 2 B = 50 0 00

0

=

.02

=

0.01 .008 .006 .005 .004 .003

20 =

=

1 B=

B

B

0

= B = 20 10 B = 0

0 B

=

50

0.1 .08 .06 .05 .04 .03

0.1 .08 .06 .05 .04 .03

B

ohms per Millihenry

B

.2

10 00

1.0 .8 .6 .5 .4 .3

20

2.0

ohms per Millihenry

20 30 40 60 80 100

Frequency-Kilohertz

B

=

1

.002

B

.02 0.01 1.0

0.001 2

3 4 5 6 8 10

20 30 40 60 80 100

200

400 600

0.1

1000

.2 .3 .4 .5 .6 .8 1.0

Frequency-Kilohertz

Typical Core Loss of 147 µ

1.0 .8 .6 .5 .4 .3

.2

=

50

0

=

20

B

00 10

0

0.1 .08 .06 .05 .04 .03

=

10

0

B

.02

20

B

=

0.01 .008 .006 .005 .004 .003

=

1

B

=

20

B

=

0.01 .008 .006 .005 .004 .003

B

=

10

0

B

.02

20 30 40 60 80 100

B

ohms per Millihenry

=

20

0

B

=

50

0

=

00 10

B

ohms per Millihenry

B

3 4 5 6 8 10

Typical Core Loss of 160 µ

1.0 .8 .6 .5 .4 .3

.2 0.1 .08 .06 .05 .04 .03

2

Frequency-Kilohertz

.002

B

=

1

.002

0.001

0.001 0.1

.2 .3 .4 .5 .6 .8 1.0

2

3 4 5 6 8 10

Frequency-Kilohertz

p. 17.11 February 2003

20 30 40 60 80 100

0.1

.2 .3 .4 .5 .6 .8 1.0

2

3 4 5 6 8 10

Frequency-Kilohertz

20 30 40 60 80 100

MPP Core Loss (Ohms per Millihenry) Typical Core Loss of 173 µ

Typical Core Loss of 250 µ

1.0 .8 .6 .5 .4 .3

0

1.0 .8 .6 .5 .4 .3

0 10

.2

=

1

00 5

=

20

0

=

B

B

=

10 0

.02

20

0.01 .008 .006 .005 .004 .003

=

0.01 .008 .006 .005 .004 .003

B

B

B

=

20

.02

B

0.1 .08 .06 .05 .04 .03

00 10

=

1

B

=

0.1 .08 .06 .05 .04 .03

ohms per Millihenry

B = B 10 20 = 5 00 0 0

=

B

B

ohms per Millihenry

B

=

.2

.002

.002

0.001 0.1

.2 .3 .4 .5 .6 .8 1.0

2

3 4 5 6 8 10

0.001

20 30 40 60 80 100

0.1

.2 .3 .4 .5 .6 .8 1.0

Frequency-Kilohertz

Typical Core Loss of 300 µ

1.0 .8 .6 .5 .4 .3

20 30 40 60 80 100

.2

.002

0 50 00

=

B

2

B

=

10 0

.02

=

20

0.01 .008 .006 .005 .004 .003

=

= B

=

1

B

=

20

0.01 .008 .006 .005 .004 .003

B

B

2

10 0

=

00 10

1

B

B

=

=

=

0.1 .08 .06 .05 .04 .03

B

B

.02

ohms per Millihenry

0

50

B

=

00 10

00

0.1 .08 .06 .05 .04 .03

B

ohms per Millihenry

3 4 5 6 8 10

Typical Core Loss of 300 µ

1.0 .8 .6 .5 .4 .3

.2

.002

0.001 0.1

.2 .3 .4 .5 .6 .8 1.0

2

3 4 5 6 8 10

Frequency-Kilohertz

p. 17.12 February 2003

2

Frequency-Kilohertz

20 30 40 60 80 100

0.001 0.1

.2 .3 .4 .5 .6 .8 1.0

2

3 4 5 6 8 10

Frequency-Kilohertz

20 30 40 60 80 100

Typical Core Loss Curves 1000

1000

MPP 14 Perm

MPP 26 Perm

0k Hz 32 0k 16 Hz 0k Hz 80 kH z 40 kH z 20 kH z 10 kH z

64

Core Loss (mw/cm3)

10

32 0k 16 H z 0k Hz 80 kH 40 z kH z 20 kH z 10 kH z

0k

1.2 8m Hz Hz

100

64

Core Loss (mw/cm3)

100

10

1

1

0.1

0.1 10

100

1000

10000

10

100

Flux Density (Gauss)

1000

HI-FLUX 26 Perm

100

1

0.1 10

0k Hz 80 40 kHz k 20 Hz k 10 Hz kH z

16

Hz 0k 1

100

1000

Flux Density (Gauss)

p. 17.13 February 2003

10

32

Core Loss (mw/cm3)

0k Hz 80 40 kHz k 20 Hz k 10 Hz kH z

16

0k

Hz

100

32

Core Loss (mw/cm3)

10000

1000

HI-FLUX 14 Perm

10

1000

Flux Density (Gauss)

10000

0.1 10

100

1000

Flux Density (Gauss)

10000

Typical Core Loss Curves 1000

1000

MPP 60 Perm

MPP 125 Perm

10

64

Core Loss (mw/cm3)

Hz 32 0k Hz 16 0k Hz 80 kH z 40 kH z 20 kH z 10 kH z

0k 64

Core Loss (mw/cm3)

10

0k Hz 32 0k Hz 16 0k Hz 80 kH z 40 kH z 20 kH z 10 kH z

100

100

1

1

0.1 10

100

1000

10000

0.1 10

100

1000

10000

1000

HF60 HI-FLUX Perm 60 Perm

HI-FLUX 125 Perm

100

1

Hz 0k 10

16 0k Hz 80 kH z 40 kH z 20 kH 10 z kH z 5k Hz 1k Hz

10

32

0k 16 H z 0k Hz 80 kH 40 z kH z 20 kH 10 z kH 5k z Hz 1k Hz

Core Loss (mw/cm3)

100

32

Core Loss (mw/cm3)

1000

Flux Density (Gauss)

Flux Density (Gauss)

1

0.1 10

100

1000

Flux Density (Gauss)

p. 17.14 February 2003

10000

0.1 10

100

1000

Flux Density (Gauss)

10000

Typical Core Loss Curves 1000

1000

MPP 147 Perm

MPP 160 Perm

Hz 80 kH z 40 kH z 20 kH z 10 kH z

0k

0k 10

16

32

Core Loss (mw/cm3)

16

0k

Hz 80 kH z 40 kH z 20 kH z 10 kH z

Hz

Hz

0k

0k

32

64

1

1

0.1

0.1 10

100

1000

10000

10

100

Flux Density (Gauss)

HI-FLUX 147 & 160 Perm

HI-FLUX 147 & 160 Perm

kH z 40 kH z 20 kH z 10 kH z 5k Hz

80

Hz 0k 16

0k 32

Core Loss (mw/cm3)

1k Hz

kH z 40 kH z 20 kH z 10 kH z 5k Hz

16

0k

Hz

Hz 0k 32

80

100

1000

Flux Density (Gauss)

p. 17.15 February 2003

10

1

1

0.1 10

Hz

100

100

Core Loss (mw/cm3)

10000

1000

1000

10

1000

Flux Density (Gauss)

1k Hz

Core Loss (mw/cm3)

10

Hz

100

100

10000

0.1 10

100

1000

Flux Density (Gauss)

10000

Typical Core Loss Curves 1000

1000

MPP 205 Perm

MPP 173 Perm

0k

Hz 80 kH z 40 kH z 20 kH z 10 kH z

10

16

0k 32

Core Loss (mw/cm3)

Hz 80 kH z 40 kH z 20 kH z 10 kH z

Hz 0k

0k 16

32

Core Loss (mw/cm3)

10

Hz

100

100

1

1

0.1

0.1 10

100

1000

10000

10

100

1000

10000

Flux Density (Gauss)

Flux Density (Gauss)

These Permeabilities do not apply to HI-FLUX.

1000

1000

10

Hz 0k

10

100

50 kH z

50 0 30 kHz 0k 20 Hz 0k Hz 10 0k Hz 50 kH z 25 kH z

Core Loss (mw/cm3)

100

30

Core Loss (mw/cm3)

0k

Hz

SUPER-MSS 125, 90, 75 & 60 Perm

10

SUPER-MSS 26 Perm 1

1 0.1

0.2

0.4 0.6

1

2

3

Flux Density (Gauss)

0.1 10

100

1000

Flux Density (Gauss)

p. 17.16 February 2003

10000

4 5

10

Typical Permeability vs. Temperature +4

+4

+3.5

+3.5

+3.0

+3.0

MPP

% Change in Permeability

+2.5

+2.5

+2.0

+2.0

Expected Maximum Change for 14µ thru 350µ

+1.5

+1.5

+1.0

+1.0

+0.5

+0.5

0

0

-0.5

-0.5

-1.0

-1.0

-1.5

-1.5

-2.0

-2.0

-2.5

-2.5

-3.0

-3.0

-3.5

-3.5

-4

-4 -60

-50

-40

-30

-20

-10

0

+10

+20

+30

+40

+50

+60

+70

+80

+90

+100

+110

+120

+130

+140

Temperature °C +4

+4

+3.5

+3.5

+3.0

HI-FLUX

% Change in Permeability

+2.5

147µ

160µ

+3.0

125µ

+2.0

+2.5 +2.0

60µ

+1.5

+1.5

26µ

+1.0

+1.0

14µ

+0.5

+0.5

0

0

-0.5

-0.5

-1.0

-1.0

-1.5

-1.5

-2.0

-2.0

-2.5

-2.5

-3.0

-3.0

-3.5

-3.5 -4

-4 -60

-50

-40

-30

-20

-10

0

+10

+20

+30

+40

+50

+60

Temperature °C

p. 17.17 February 2003

+70

+80

+90

+100

+110

+120

+130

+140

Typical Incremental Permeability vs. D.C. Bias 100

100

14µ

90

90

MPP 80

Percent Permeability

80

26µ

70

70

173µ

60

60

160µ 205µ

50

50

147µ 250µ

40

60µ

125µ

40

300µ

30

30

350µ

20

20 10

10

0

0 1

2

3

4

5

6

7

8

9 10

20

30

40

60

80

100

200

D.C. Magnetizing Force (Oersteds) 100

100

90

90

HI-FLUX

14µ

Percent Permeability

80 70

80 70

26µ

60

60 50

50

60µ 147µ

40

40

125µ

30

30

160µ

20

20

10

10 0

0 1

2

3

4

5

6

7

8

9 10

20

30

40

60

80

100

200

D.C. Magnetizing Force (Oersteds) 100

100

90

90

SUPER-MSS

26µ

Percent Permeability

80

80

70

70

60

60

50

50

60µ

40

40

125µ 75µ

90µ

30

30

20

20

10

10 0

0 1

2

3

4

5

6

7

8

9 10

20

30

D.C. Magnetizing Force (Oersteds)

p. 17.18 February 2003

40

60

80

100

200

Normal Magnetization Curves 350µ

300µ 205µ 173µ 250µ 147µ

160µ 8

8

Flux Density (Kilogauss)

7

7

MPP 125µ

6

6

60µ 5

5

26µ 4

4

3

3

14µ 2

2

1

1

0

0 0

50

100

150

200

250

300

350

400

460

500

Magnetizing Force (Oersteds) 16

16

HI-FLUX

14

14

Flux Density (Kilogauss)

160µ

125µ

12

12

60µ

147µ

10

10

8

8

6

6

26µ 14µ

4

4

2

2

0

0 0

50

100

150

200

250

300

350

400

460

500

Magnetizing Force (Oersteds) 12

12

Flux Density (Kilogauss)

90µ

125µ

SUPER-MSS

10

10

8

8

75µ 6

6

60µ 4

4

2

2

0

0 0

50

100

150

200

250

300

Magnetizing Force (Oersteds)

p. 17.19 February 2003

350

400

460

500

Normal Permeability vs. Flux Density

+6

+6

350µ

% Change of Permeability

+4

300µ 250µ 205µ 160µ

MPP

125µ

+2

+2

0

0

14µ

26µ

-2

-2

60µ

-4

-4

-6

-6

-8

-8

-10 10000

-10 10

100

Flux Density (Gauss)

1000

+16

+16

+12

% Change of Permeability

+4

HI-FLUX

160µ

147µ 125µ

+8

+12 +8

+4

+4

60µ 26µ

0

0

14µ -4

-4

-8

-8

-12

-12

-16 10

100

Flux Density (Gauss)

1000

+4

-16 10000

+4

125µ

% Change of Permeability

SUPER-MSS 90µ

+3

+3

75µ +2

+2

60µ

+1

+1

26µ 0

0 10

p. 17.20 February 2003

100

Flux Density (Gauss)

1000

10000

Typical Permeability vs. Frequency 250

250

MPP 205µ 200

200

173µ 160µ 150

150

Permeability

147µ 125µ 100

100

60µ 50

50

26µ 14µ

0 10

1

0

Frequency (kHz)

100

200

200

HI-FLUX 160µ 150

150

Permeability

147µ 125µ 100

100

60µ 50

50

26µ 14µ

0 1

10

0

Frequency (kHz)

100

200

200

SUPER-MSS 150

Permeability

150

125µ

100

100

90µ 75µ 60µ

50

50

26µ

0

0 1

p. 17.21 February 2003

10

Frequency (kHz)

100

o.d. 0.140 i.d. 0.070/ht. 0.060 Dimensions Outside Diameter

CORNERS: Tumbled

Inside Diameter

Height

Before Coating Nominal

0.140 in 3.56 mm

0.070 in 1.78 mm

0.060 in 1.52 mm

After Coating (Parylene C)

0.148 in Max. 3.76 mm Max.

0.060 in Min. 1.52 mm Min.

0.068 in Max. 1.73 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.0021 in2 0.0137 cm2

0.317 in 0.817 cm

0.000656 in3 0.010746 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.002827 in2 0.018241 cm2 3,600 cmil

0.000187 lbs 0.085 g

0.22 in 0.56 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 15% for SUPER-MSS) for 1000 turns

60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

11 9.1 7.7 5.9 4.7 4.4 4.0 3.7 2.8

— — — A-479026-8 A-480031-8 A-481033-8 A-482036-8 A-522043-8 A-483052-8

HF-014060-8 — — HF-014125-8 HF-014147-8 HF-014160-8 — — —

MS-014060-8 MS-014075-8 MS-014090-8 MS-014125-8 — — — — —

13 16 19 26 31 33 36 43 52

Part Numbers (The finish voltage breakdown requirement does not apply.)

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

p. 17.22 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

10 12 15 19 24 30 38 47 59 73 93 121 148 186 238 294 344

0.01368 0.0208 0.0330 0.0515 0.0774 0.1221 0.1929 0.303 0.471 0.712 1.132 1.916 2.97 4.52 7.23 11.48 16.16

9 10 11 13 14 16 19 21 24 27 30 35 40 44 50 56 60

Rdc' Ω 0.0237 0.0314 0.0431 0.0581 0.0768 0.105 0.146 0.200 0.272 0.363 0.503 0.727 1.02 1.37 1.90 2.67 3.45

lw' in. 4.4 4.6 5.0 5.3 5.7 6.1 6.7 7.3 7.9 8.5 9.3 10 11 12 14 15 16

o.d. 0.140 Molypermalloy Q Curves 100 80 60

i.d. 0.070/ht. 0.060 100 80 60

125 µ

40

0.0 01

30 20

30

Hy ,C

= 6

10 8 6

2

3 4

6

8 10

20 30 40 60

100

200

1 1

400 600 1000

pf

3

2

5

4

3

=

pf

4

2

3 4

6

100 80 60

160 µ

100

200

400 600 1000

173 µ

30

30

0.0 01

20

Q

6

2

8 10

20 30 40 60

100

200

400 600 1000

pf

pf

3

2

6

=

6

4

3

3 4

Hy ,C

d

10 8 6

=

4

2

0.0 01

20

Q

Hy , Cd

10 8 6

1 1

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Frequency-Kilohertz 100 80 60

20 30 40 60

40

40

1 1

8 10

Frequency-Kilohertz

Frequency-Kilohertz 100 80 60

Hy ,

Cd

10 8 6

2

0.0 01

20

Q

d

Q

1 1

147 µ

40

205 µ

40 30 20

0.0 01

Q 10 8 6

Hy ,C

d

= 6

4

pf

3 2 1 1

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.23 February 2003

o.d. 0.155 i.d. 0.087/ht. 0.100 Dimensions Outside Diameter

CORNERS: Tumbled

Inside Diameter

Height

Before Coating Nominal

0.155 in 3.94 mm

0.087 in 2.21 mm

0.100 in 2.54 mm

After Coating (Parylene C)

0.163 in Max. 4.14 mm Max.

0.079 in Min. 2.01 mm Min.

0.108 in Max. 2.74 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.003245 in2 0.0211 cm2

0.370 in 0.942 cm

0.001200 in3 0.019670 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.004902 in2 0.031624 cm2 6,241 cmil

0.000365 lbs 0.166 g

0.30 in 0.76 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 15% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

32 15 6.5 5.8 4.9 3.5 2.6 2.5 2.4 2.2 1.7

A-467004-8 A-468007-8 A-469017-8 — — A-470035-8 A-471041-8 A-472045-8 A-473048-8 A-474057-8 A-475070-8

HF-015014-8 HF-015026-8 HF-015060-8 — — HF-015125-8 HF-015147-8 HF-015160-8 — — —

— — MS-015060-8 MS-015075-8 MS-015090-8 MS-015125-8 — — — — —

4 7 17 21 25 35 41 45 48 57 70

Part Numbers (The finish voltage breakdown requirement does not apply.)

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

p. 17.24 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

11 13 17 21 26 33 40 51 64 80 100 124 156 205 250 312 401 496 578

0.01265 0.01950 0.0307 0.0465 0.0740 0.1154 0.1735 0.274 0.433 0.681 1.059 1.604 2.55 4.33 6.71 10.23 16.40 26.1 36.7

9 11 12 14 16 18 20 23 26 29 33 36 41 47 53 59 67 74 80

Rdc' Ω 0.0184 0.0248 0.0342 0.0458 0.0638 0.0869 0.116 0.161 0.226 0.313 0.430 0.579 0.807 1.18 1.67 2.25 3.15 4.45 5.76

lw' in. 5.4 5.8 6.3 6.8 7.4 8.0 8.6 9.4 10 11 12 14 15 17 19 20 23 25 27

o.d. 0.155 Molypermalloy Q Curves 100 80 60

i.d. 0.087/ht. 0.100 100 80 60

14 µ

30

30

20

Q

20

Q

4

4 3 2

2 1 10

f

f

3

=7p

10 8 6

=8p

10 8 6

26 µ Cd Hy, 01 0.0

40

Cd Hy, 01 0.0

40

20 30 40

60

100

200

400 600 1000

2000

4000

1 10

10000

20 30 40

60

Frequency-Kilohertz 100 80 60

60 µ

30

200

400 600 1000

100 80 60

0. 00 1

20

7

10 8 6

4

4

3

3

2

2

6

8 10

20 30 40 60

100

200

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60

100 80 60

147 µ

100

200

400 600 1000

160 µ

30

20

20

0. 00 1

Q

10 8 6

2

2

3 4

6

8 10

20 30 40 60

100

200

4 3 2 1 1

400 600 1000

H

pf 7 = f Cd 7p y, d= ,C Hy

3

00 1

01 0.

4

0.

Q

pf 6 = Cd 7 pf y, d= H ,C Hy 01 0.

10 8 6

2

3 4

6

Frequency-Kilohertz

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz 100 80 60

173 µ

40

40

30

30

20

205 µ

20

Q

Q

0.

01

0.

0

2

3 4

6

8 10

20 30 40 60

100

Frequency-Kilohertz

200

400 600 1000

pf 7 = pf d =8 d ,C Hy

2

4 3 2 1 1

C y,

3

00 1 H

pf 7 = Cd y, H pf 01 =8 d ,C Hy

4

0l . 10 8 6

01 0.

10 8 6

1 1

20 30 40 60

40

30

100 80 60

8 10

Frequency-Kilohertz

40

1 1

H

pf 8 = 8 pf Cd d= y, y, C 1H 0.0

pf

Q

10 8 6

3 4

10000

125 µ

30

=

Q

2

4000

40

d

20

1 1

2000

Frequency-Kilohertz

0.00 1H y, C

40

100

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.25 February 2003

o.d. 0.183 i.d. 0.093/ht. 0.100 Dimensions Outside Diameter

CORNERS: Tumbled

Inside Diameter

Height

Before Coating Nominal

0.183 in 4.65 mm

0.093 in 2.36 mm

0.100 in 2.54 mm

After Coating (Parylene C)

0.205 in Max. 5.21 mm Max.

0.076 in Min. 1.93 mm Min.

0.130 in Max. 3.30 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.00442 in2 0.0285 cm2

0.418 in 1.061 cm

0.001837 in3 0.0302 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.004536 in2 0.029267 cm2 5,776 cmil

0.0007 lbs 0.3 g

0.37 in 0.95 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 15% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

25 14 6.3 5.0 4.2 3.0 2.6 2.4 2.2 1.9 1.5

A-350005-8 A-351009-8 A-352020-8 — — A-353042-8 A-354049-8 A-355053-8 A-356057-8 A-357068-8 A-358083-8

HF-018014-8 HF-018026-8 HF-018060-8 — — HF-018125-8 HF-018147-8 HF-018160-8 — — —

— — MS-018060-8 MS-018075-8 MS-018090-8 MS-018125-8 — — — — —

5 9 20 25 30 42 49 53 57 68 83

Part Numbers (The finish voltage breakdown requirement does not apply.)

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

p. 17.26 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

12 14 18 22 28 35 42 53 67 84 104 129 163 213 260 324 417 514 600

0.01535 0.0237 0.0373 0.0566 0.0902 0.1406 0.2117 0.334 0.529 0.834 1.297 1.967 3.14 5.32 8.25 12.59 20.2 32.1 45.2

9 10 12 13 15 17 19 22 25 28 31 35 39 45 51 57 64 71 77

Rdc' Ω 0.0205 0.0280 0.0388 0.0524 0.0734 0.101 0.135 0.188 0.266 0.371 0.511 0.691 0.968 1.42 2.02 2.73 3.83 5.42 7.03

lw' in. 6.0 6.5 7.1 7.7 8.5 9.2 10 11 12 14 15 16 18 20 22 25 28 30 33

o.d. 0.183 Molypermalloy Q Curves

i.d. 0.093/ht. 0.100

Page 9 Page 9

100 80 60

100 80 60

14 µ

40 30

30 20

Q

20

= 12

10 8 6

pf

4

0.

Q

= 11 pf

10 8 6

26 µ

d y, C 1H 00

0 Cd Hy, 01 .0

40

4

3

3

2

2

1 10

1 10

Page 9 20 30 40

60

100

200

400 600 1000

2000

4000

10000

20 30 40

60

Frequency-Kilohertz Page 9 100 80 60

60 µ

100 80 60

0.0 01 Hy

f

10 8 6 4

3

3

2

2

20 30 40 60

100

200

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60 40

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz 100 80 60

160 µ 147 µµ

40

30

205 µ 173 µµ

30

20

0. 00 1

0.

20

Q

4 3 2

0

10 8 6 4 3 2

2

3 4

6

8 10

20 30 40 60

100

Frequency-Kilohertz

200

400 600 1000

1 1

0.

00

1

H

pf 9 = pf Cd 11 y, d= ,C Hy

10 8 6

1 .0

pf 10 = Cd pf y, 11 H d= ,C Hy

01

Q

1 1

10000

pf 10 = Cd 10 pf y, d= H y, C 1H 0.0

Q

4

8 10

4000

0.0 01

20

p 11

10 8 6

6

2000

125 µ

30

=

20

Q

3 4

400 600 1000

40

d ,C

30

2

200

Frequency-Kilohertz

40

1 1

100

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.27 February 2003

o.d. 0.250 i.d. 0.110/ht. 0.110 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.250 in 6.35 mm

0.110 in 2.79 mm

0.110 in 2.79 mm

After Coating (Parylene C )

0.275 in Max. 6.99 mm Max.

0.090 in Min. 2.29 mm Min.

0.135 in Max. 3.43 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.00738 in2 0.0476 cm2

0.536 in 1.363 cm

0.003919 in3 0.064219 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.006362 in2 0.041043 cm2 8,100 cmil

0.0013 lbs 0.6 g

0.46 in 1.17 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

17 9.2 4.0 3.2 2.7 1.9 1.7 1.5 1.4 — 1.2 0.97 0.81 0.69

A-531006-8 A-530010-8 A-529024-8 — — A-520052-8 A-528058-8 A-527064-8 A-526069-8 — A-512082-8 A-525100-8 A-521120-8 A-543140-8

HF-025014-8 HF-025026-8 HF-025060-8 — — HF-025125-8 HF-025147-8 HF-025160-8 — — — — — —

— — MS-025060-8 MS-025075-8 MS-025090-8 MS-025125-8 — — — — — — — —

6 10 24 30 36 52 58 64 69 — 82 100 120 140

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

24 25 26 27 28 29 30 31 32 33 34 35

p. 17.28 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

10 13 16 20 25 31 39 48 59 74 93 116

0.01038 0.01619 0.0255 0.0392 0.0618 0.0937 0.1493 0.233 0.351 0.554 0.878 1.385

8 10 11 13 14 16 19 21 23 26 30 34

Rdc' Ω 0.0132 0.0183 0.0253 0.0346 0.0482 0.0653 0.0918 0.126 0.170 0.238 0.337 0.470

AWG

lw' in. 6.2 6.8 7.4 8.1 8.9 9.7 11 12 13 14 16 17

Full Winding (Half of I.D. Remaining) Turns

36 37 38 39 40 41 42 43 44

145 180 227 297 363 454 583 720 840

Rdc' Ω 2.15 3.27 5.21 8.85 13.74 21.0 33.7 53.5 75.4

Single Layer Winding Turns 38 42 47 54 61 68 77 85 91

Rdc' Ω 0.650 0.880 1.24 1.82 2.59 3.50 4.92 6.98 9.05

lw' in. 19 21 23 26 29 32 36 39 42

Molypermalloy Q Curves 100 80 60

o.d. 0.250

Page 11 100 80 60

Hy, Cd 01 = 0.0

14 µ

01 Hy, C 0.0 d

26 µ

= pf 15

30

i.d. 0.110/ht. 0.110

40

pf 14

40

30 20

20

Page 11

Q

Q 10 8 6

10 8 6

4

4

3

3

2

2

1 1

1 1

Page 11

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz 100 80 60

100 80 60

0.00 1H y,

60 µ

10 8 6 4 3 2

6

8 10

20 30 40 60

6

100

200

40

100

0. 00 1

20

Q 10 8 6 4 3 2 1 1

400 600 1000

200

400 600 1000

125 µ

30

H

y

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz 100 80 60

160 µ 147 µµ

40

30

205 µ 173 µµ

30

0.

20

20

0

4 3 2

2

3 4

6

8 10

20 30 40 60

100

Frequency-Kilohertz

200

400 600 1000

10 8 6 4 3 2 1 1

00

pf 13 = d pf ,C 14 Hy d= 1 ,C Hy 01 0.

pf 13 = d ,C 14 pf Hy d= y, C 1H 0.0

10 8 6

0.

Q

01

Q

1 1

20 30 40 60

Frequency-Kilohertz

Frequency-Kilohertz 100 80 60

8 10

pf 12 = d pf d = 13 ,C y, C 1H 0.0

pf 14 = d = 1 5 pf Hy, C 0.01

20

Q

3 4

3 4

40

Cd

30

2

2

Page 11

40

1 1

Page 11

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.29 February 2003

o.d. 0.260 i.d. 0.105/ht. 0.100 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.260 in 6.60 mm

0.105 in 2.67 mm

0.100 in 2.54 mm

After Coating (Parylene C)

0.285 in Max. 7.24 mm Max.

0.090 in Min. 2.29 mm Min.

0.125 in Max. 3.18 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.00738 in2 0.0476 cm2

0.537 in 1.363 cm

0.003904 in3 0.063971 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.006362 in2 0.041043 cm2 8,100 cmil

0.0015 lbs 0.7 g

0.44 in 1.11 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

19 11 4.5 3.7 3.1 2.2 1.8 1.7 1.6 1.3 1.1 0.90 0.77

A-674006-8 A-675011-8 A-460026-8 — — A-331054-8 A-464064-8 A-461069-8 A-465075-8 A-462089-8 A-362108-8 A-384130-8 A-406151-8

HF-027014-8 HF-027026-8 HF-027060-8 — — HF-027125-8 HF-027147-8 HF-027160-8 — — — — —

— — MS-027060-8 MS-027075-8 MS-027090-8 MS-027125-8 — — — — — — —

6.05 11.2 26 32 39 54 64 69 75 89 108 130 151

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

25 26 27 28 29 30 31 32 33 34 35 36

p. 17.30 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

12 15 19 23 29 36 45 55 69 86 108 134

0.01516 0.0239 0.0368 0.0579 0.0878 0.1399 0.218 0.329 0.519 0.823 1.298 2.02

10 11 13 14 16 19 21 23 26 30 34 38

Rdc' Ω 0.0180 0.0249 0.0341 0.0474 0.0642 0.0902 0.124 0.167 0.233 0.330 0.461 0.637

AWG

lw' in. 6.7 7.3 8.0 8.7 9.5 10 11 12 14 15 17 18

Full Winding (Half of I.D. Remaining) Turns

37 38 39 40 41 42 43 44

166 210 274 335 419 538 664 774

Rdc' Ω 3.06 4.89 8.29 12.87 19.65 31.5 50.2 70.7

Single Layer Winding Turns 42 47 54 61 68 77 85 91

Rdc' Ω 0.862 1.21 1.78 2.53 3.43 4.81 6.83 8.85

lw' in. 20 22 25 28 31 35 38 41

Page 13

o.d. 0.260

Molypermalloy Q Curves 100 80 60

i.d. 0.105/ht. 0.100

0.0 01

60 µ

30

Cd = 15 pf

10 8 6 4 3 2

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz 100 80 60 40

40

147 µ 125 µµ 0. 00 1

30 20

Q 10 8 6 4 3 2 1 1

H

pf 12 = Cd 4 pf y, d=1 y, C 1H 0.0

Q

f 4p =1

Hy, 0.01

20

1 1

H Cd y,

40

100 80 60

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

205 µ 173 µµ

30 20

0. 00 1

01 0.

Q

4 3 2 1 1

Hy

pf 12 = d f ,C 3p =1 d ,C Hy

10 8 6

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.31 February 2003

o.d. 0.260 i.d. 0.105/ht. 0.188 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

260 in 6.60 mm

0.105 in 2.67 mm

0.188 in 4.78 mm

After Coating (Parylene C)

0.288 in Max. 7.32 mm Max.

0.087 in Min. 2.21 mm Min.

0.218 in Max. 5.54 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01426 in2 0.0920 cm2

0.537 in 1.363 cm

0.007443 in3 0.1254 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.005945 in2 0.038353 cm2 7,569 cmil

0.0024 lbs 1.1 g

0.62 in 1.57 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

14 8.0 3.4 2.7 2.3 1.6 1.4 1.3 1.2 0.99 0.82 0.68 0.57

A-630012-8 A-639021-8 A-135050-8 — — A-134103-8 A-224122-8 A-638132-8 A-222144-8 A-200170-8 A-363206-8 A-385247-8 A-337296-8

HF-026014-8 HF-026026-8 HF-026060-8 — — HF-026125-8 HF-026147-8 HF-026160-8 — — — — —

— — MS-026060-8 MS-026075-8 MS-026090-8 MS-026125-8 — — — — — — —

12 21.4 50 62 74 103 122 132 144 170 206 247 296

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

25 26 27 28 29 30 31 32 33 34 35 36

p. 17.32 February 2003

Full Winding (Half of I.D. Remaining)

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

12 15 19 23 29 36 45 55 69 86 108 134

0.0206 0.0326 0.0503 0.0795 0.1208 0.1928 0.301 0.455 0.719 1.142 1.804 2.81

9 11 12 14 16 18 20 22 25 29 32 36

Rdc' Ω 0.0223 0.0312 0.0431 0.0605 0.0826 0.117 0.162 0.220 0.309 0.440 0.617 0.857

AWG

lw' in. 8.3 9.1 10 11 12 14 15 16 18 20 22 25

Full Winding (Half of I.D. Remaining) Turns

37 38 39 40 41 42 43 44

166 210 274 335 419 538 664 774

Rdc' Ω 4.27 6.82 11.60 18.02 27.5 44.2 70.4 99.3

Single Layer Winding Turns 40 45 52 59 66 74 82 88

Rdc' Ω 1.17 1.64 2.42 3.46 4.70 6.62 9.42 12.2

lw' in. 27 30 34 39 43 48 53 57

Page 13

o.d. 0.260 Molypermalloy Q Curves 100 80 60

i.d. 0.105/ht. 0.188

60 µ

0. 00

40

1

40

20

Q 10 8 6 4 3 2

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

40

0. 00 1

30 20

Q 10 8 6 4 3 2 1 1

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Frequency-Kilohertz 100 80 60

147 µ 125 µµ

pf 18 = d 1 pf ,C d=2 Hy y, C 1H 0.0

pf 24 d= ,C Hy = 21 pf Hy, Cd 0.01

30

1 1

100 80 60

205 µ 173 µµ

30 20

0. 00 1

01 0.

Q

4 3 2 1 1

Hy

pf 12 = d f ,C 3p =1 d ,C Hy

10 8 6

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

F Frequency-Kilohertz Kil h t

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.33 February 2003

o.d. 0.277 i.d. 0.156/ht. 0.200 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.277 in 7.04 mm

0.156 in 3.96 mm

0.200 in 5.08 mm

After Coating (Parylene C)

0.302 in Max. 7.67 mm Max.

0.136 in Min. 3.45 mm Min.

0.225 in Max. 5.72 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01162 in2 0.07497 cm2

0.662 in 1.682 cm

0.007693 in3 0.126069 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.01453 in2 0.09372 cm2 18,496 cmil

0.0026 lbs 1.2 g

0.63 in 1.60 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

7.9 4.5 1.92 1.53 1.29 0.92 0.78 0.72 0.67 0.56 0.46 0.38 0.33

A-541008-8 A-540014-8 A-539033-8 — — A-538070-8 A-537081-8 A-536089-8 A-535095-8 A-453113-8 A-534138-8 A-533166-8 A-532194-8

HF-028014-8 HF-028026-8 HF-028060-8 — — HF-028125-8 HF-028147-8 HF-028160-8 — — — — —

— — MS-028060-8 MS-028075-8 MS-028090-8 MS-028125-8 — — — — — — —

8 14 33 42 50 70 81 89 95 113 138 166 194

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

p. 17.34 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

Rdc' Ω

11 14 18 22 27 34 43 53 66 83 103 126 158 198 249

0.00798 0.01260 0.01942 0.0304 0.0473 0.0744 0.1144 0.1805 0.274 0.436 0.681 1.026 1.623 2.57 4.06

9 11 12 14 16 18 21 23 26 29 33 36 41 46 52

0.00902 0.0126 0.0174 0.0242 0.0338 0.0472 0.0651 0.0915 0.125 0.177 0.244 0.331 0.466 0.664 0.932

AWG

lw' in. 8.5 9.3 10 11 13 14 15 17 18 21 22 25 27 31 34

Full Winding (Half of I.D. Remaining) Turns

36 37 38 39 40 41 42 43 44

310 383 485 634 774 968 1243 1535 1790

Rdc' Ω 6.33 9.62 15.35 26.1 40.5 61.9 99.5 158.3 223.0

Single Layer Winding Turns 58 65 73 83 93 104 117 130 140

Rdc' Ω 1.29 1.76 2.48 3.65 5.22 7.10 9.99 14.2 18.4

lw' in. 37 41 46 52 58 64.4 72 80 85

Page 15

o.d. 0.277 Molypermalloy Q Curves 100 80 60

i.d. 0.156/ht. 0.200 100 80 60

0.0

8 6

3

4 3

2 1 1

18 pf

4

2

2

3 4

6

8 10

20 30 40 60

100

200

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60

100 80 60

0. 00

60 µµ

d ,C Hy

20 30 40 60

100

4 3 2

200

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60 40

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz 100 80 60

160 µµ 147 µµ

40

30

205 µ 173 µµ

30

20

20

Q

0.

Q

00

3 2

2

3 4

6

8 10

20 30 40 60

100

Frequency-Kilohertz

200

400 600 1000

10 8 6

pf 14 = d ,C Hy 1 00 16 pf 0. d= y, C 1H 0.0 d = 17 pf Hy, C 0.1

4

f 5p =1 d ,C Hy 1 = 16 pf y, Cd 1H 0.0

f y, Cd = 18 p 0.1 H

10 8 6

1 1

pf 14 = d ,C Hy 15 pf 1 d= y, C 1H 0.0

8 10

00

6

10 8 6

Cd = 16 pf

3 4

y, 0.1 H

2

400 600 1000

0.

Q

f

2

200

125 µµ

20

17 pf

= 1 9 pf

3

100

30

6p =1

, Cd 0.1 Hy

4

, Cd = 1 Hy 0.0

20

10 8 6

20 30 40 60

40

1

30

Q

8 10

Frequency-Kilohertz Frequency-Kilohertz

40

1 1

f 17 p

Page 10 15

d=

Q

f = 17 p

10 8 6

20

d= Hy, C 0.01

Q

30

f 16 p

d y, C 1H 0.0

20

40

d= ,C Hy

30

26 µµ

y, C 1H 00 0.

01

14 µµ

40

4 3 2 1 1

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.35 February 2003

o.d. 0.310 i.d. 0.156/ht. 0.125 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.310 in 7.87 mm

0.156 in 3.96 mm

0.125 in 3.18 mm

After Coating (Parylene C)

0.335 in Max. 8.51 mm Max.

0.135 in Min. 3.43 mm Min.

0.150 in Max. 3.81 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.00953 in2 0.0615 cm2

0.704 in 1.787 cm

0.00671 in3 0.1099 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.01431 in2 0.09235 cm2 18,225 cmil

0.0022 lbs 1.0 g

0.49 in 1.25 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

8.4 4.6 2.0 1.6 1.4 0.97 0.81 0.76 0.68 0.59 0.48 0.41 0.35

A-340006-8 A-339011-8 A-138025-8 — — A-137052-8 A-225062-8 A-338066-8 A-223073-8 A-201086-8 A-364104-8 A-386124-8 A-407145-8

HF-031014-8 HF-031026-8 HF-031060-8 — — HF-031125-8 HF-031147-8 HF-031160-8 — — — — —

— — MS-031060-8 MS-031075-8 MS-031090-8 MS-031125-8 — — — — — — —

6 11 25 31 37 52 62 66 73 86 104 124 145

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

p. 17.36 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

Rdc' Ω

12 14 18 22 28 35 43 54 66 83 103 126 158 198 248

0.00651 0.01027 0.01580 0.0247 0.0384 0.0602 0.0926 0.1457 0.221 0.351 0.547 0.824 1.302 2.06 3.25

9 11 12 14 16 18 20 23 26 29 33 36 41 46 52

0.00780 0.0108 0.0148 0.0206 0.0285 0.0397 0.0545 0.0762 0.104 0.146 0.201 0.272 0.382 0.543 0.760

AWG

lw' in. 7.3 8.0 8.8 9.6 11 12 13 14 15 17 19 20 22 25 28

Full Winding (Half of I.D. Remaining) Turns

36 37 38 39 40 41 42 43 44

309 381 482 630 770 961 1234 1525 1778

Rdc' Ω 5.06 7.68 12.25 20.8 32.3 49.3 79.1 125.9 177.4

Single Layer Winding Turns 58 64 72 82 93 103 116 129 139

Rdc' Ω 1.05 1.43 2.01 2.96 4.22 5.73 8.05 11.4 14.8

lw' in. 30 34 37 42 47 52 58 64 69

o.d. 0.310 Molypermalloy Q Curves 100 80 60

i.d. 0.156/ht. 0.125

40

1

20

10 8 6 4

d = 16 pf

2

2

3 4

6

8 10

20 30 40 60

100

200

3

= 14 pf

3

Hy, Cd

4

Q

0.01

Hy, C 0.01

10 8 6

20

pf 15

Q

30

2 1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60

100 80 60

0.0 01

60 µµ

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60 40

100 80 60 40

0.

20

Q

3 2 1 1

2

3 4

6

8 10

20 30 40 60

100

Frequency-Kilohertz

200

400 600 1000

205 µµ 173 µµ

1

20

H

Q

200

400 600 1000

pf 12 = d pf ,C 13 Hy 1 d= 00 ,C 0. Hy 01 0. 4 pf Cd = 1 Hy, 0.1

4

100

30

00

pf 12 = f 15 p Cd d= y, y, C 1H 0 .0 d = 14 pf Hy, C 0.1

10 8 6

20 30 40 60

Frequency-Kilohertz

160 µµ 147 µµ

30

8 10

pf 13

200

14 pf

2

=

3

d ,C Hy

4

, Cd = 1Hy 0.0

100

01

10 8 6

pf

2

.0

3

y, Cd = 15 pf 0.1 H

pf

4

20 30 40 60

400 600 1000

0

Q

= 16 Hy, Cd

10 8 6

8 10

200

125 µµ

20

15

0.01

Q

6

100

30

=

20

3 4

20 30 40 60

40

d ,C Hy

30

2

8 10

Frequency-Kilohertz

40

1 1

pf 13

d= ,C Hy

30

0.0 0

26 µµ

= Cd y, 1H

0.0 0

14 µµ

40

1 1

100 80 60

10 8 6 4 3 2 1 1

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.37 February 2003

o.d. 0.380 i.d. 0.188/ht. 0.125 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.380 in 9.65 mm

0.188 in 4.78 mm

0.125 in 3.18 mm

After Coating (Parylene C)

0.405 in Max. 10.29 mm Max.

0.168 in Min. 4.27 mm Min.

0.150 in Max. 3.81 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01166 in2 0.0752 cm2

0.858 in 2.177 cm

.0100 in3 0.1639 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.02217 in2 0.14301 cm2 28,224 cmil

0.0032 lbs 1.45 g

0.53 in 1.35 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

6.2 3.3 1.5 1.1 0.96 0.69 0.59 0.54 0.50 0.44 0.35 0.29 0.25

A-502006-8 A-501011-8 A-500025-8 — — A-250053-8 A-499063-8 A-498068-8 A-497074-8 A-496084-8 A-495106-8 A-494128-8 A-493149-8

HF-039014-8 HF-039026-8 HF-039060-8 — — HF-039125-8 HF-039147-8 HF-039160-8 — — — — —

— — MS-039060-8 MS-039075-8 MS-039090-8 MS-039125-8 — — — — — — —

6 11 25 32 38 53 63 68 74 84 106 128 149

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

p. 17.38 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

Rdc' Ω

11 14 17 22 27 33 42 52 64 80 98 124 154 188 236

0.00437 0.00680 0.01058 0.01667 0.02560 0.03990 0.06210 0.09730 0.149 0.235 0.356 0.567 0.884 1.33 2.10

9 11 12 14 16 18 21 23 26 29 33 37 41 46 51

0.00529 0.00729 0.0101 0.0141 0.0193 0.0268 0.0372 0.0519 0.0714 0.100 0.136 0.193 0.266 0.360 0.505

AWG

lw' in. 7.9 8.6 9.5 10 11 13 14 15 17 18 20 22 24 27 30

Full Winding (Half of I.D. Remaining) Turns

34 35 36 37 38 39 40 41 42 43 44

296 371 462 570 722 943 1152 1439 1848 2282 2661

Rdc' Ω 3.33 5.25 8.18 12.4 19.8 33.6 52.2 79.7 128.0 203.0 287.0

Single Layer Winding Turns 58 65 73 81 90 103 116 129 146 161 173

Rdc' Ω 0.719 1.01 1.40 1.90 2.67 3.94 5.62 7.63 10.7 15.3 19.8

lw' in. 33 37 40 45 50 56 63 69 78 86 92

o.d. 0.380 Molypermalloy Q Curves 100 80 60

100 80 60

3

2

2

2

3 4

6

8 10

20 30 40 60

100

200

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60

100 80 60

01

f 17 p

40

0.1 Hy ,

30 20

Q 10 8 6

p 15

10 8 6

f

4

4

3

3

2

2

1 1

2

3 4

6

8 10

20 30 40 60

100

200

1 1

400 600 1000

2

3 4

Frequency-Kilohertz 100 80 60 40

100 80 60 40 30

20

20

0.

6

8 10

20 30 40 60

100

200

400 600 1000

0.01 Hy ,C d

200 µµ 173 µµ

400 600 1000

=

15

pf

pf 17

200

pf

Frequency-Kilohertz

15

100

=

20 30 40 60

f 17 p

8 10

d

6

d= y, C

3 4

0. 00

10 8 6

,C Hy

2

1H

1 1

1

17 pf

2

0

Q

00

d= Hy, C

3

0 .0

0.1

4

400 600 1000

= Cd y, 1H 0.

30

10 8 6

200

Frequency-Kilohertz

160 µµ 147 µµ

Q

100

pf 14 = d ,C pf Hy 15 1 d= ,C Hy 1 .0 pf 15 =

20

Q

0.

205µµµµ 125 .345" HT.

Cd

30

d= ,C Hy 1 00 f 16 p d= ,C Hy

d= ,C Hy

40

20 30 40 60

Frequency-Kilohertz

0.

0.1

60 µµ

8 10

f

4

3

p 16

10 8 6

4

1 1

f 17 p

Q

pf

16 pf

10 8 6

20

16

Q

30

d= ,C Hy

d= ,C Hy

d= ,C Hy

20

40

0.0

0.0

d= ,C Hy

0.01

30

205 µµ 26 µµ .345" HT.

01

0.0 0

1

205 µµ 14 µµ .345" HT.

1

40

i.d. 0.188/ht. 0.125

4 3 2 1 0.1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.39 February 2003

o.d. 0.380 i.d. 0.188/ht. 0.156 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.380 in 9.65 mm

0.188 in 4.78 mm

0.156 in 3.96 mm

After Coating (Parylene C)

0.405 in Max. 10.29 mm Max.

0.168 in Min. 4.27 mm Min.

0.180 in Max. 4.57 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01465 in2 0.0945 cm2

0.859 in 2.177 cm

0.01258 in3 0.2060 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.02217 in2 0.14301 cm2 28,224 cmil

0.0040 lbs 1.8 g

0.59 in 1.50 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

5.9 2.9 1.3 1.0 0.85 0.62 0.53 0.49 0.45 0.38 0.31 0.26 0.22

A-249007-8 A-248014-8 A-247032-8 — — A-246066-8 A-245078-8 A-240084-8 A-244092-8 A-202109-8 A-365132-8 A-387159-8 A-408185-8

HF-038014-8 HF-038026-8 HF-038060-8 — — HF-038125-8 HF-038147-8 HF-038160-8 — — — — —

— — MS-038060-8 MS-038075-8 MS-038090-8 MS-038125-8 — — — — — — —

7 14 32 40 48 66 78 84 92 109 132 159 185

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

p. 17.40 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

Rdc' Ω

11 14 17 22 27 33 42 52 64 80 98 124 154 188 236

0.00483 0.00751 0.01171 0.01845 0.0284 0.0443 0.0689 0.1081 0.1663 0.262 0.397 0.632 0.986 1.486 2.35

9 11 12 14 16 18 21 23 26 29 33 37 41 46 51

0.00567 0.00783 0.0109 0.0152 0.0209 0.0291 0.0405 0.0567 0.0782 0.110 0.150 0.212 0.293 0.397 0.558

AWG

lw' in. 8.5 9.3 10 11 12 14 15 17 18 20 22 25 27 29 33

Full Winding (Half of I.D. Remaining) Turns

34 35 36 37 38 39 40 41 42 43 44

296 371 462 570 722 943 1152 1439 1848 2282 2661

Rdc' Ω 3.72 5.86 9.15 13.90 22.2 37.7 58.5 89.4 143.6 229.0 322.0

Single Layer Winding Turns 58 65 73 81 90 103 116 129 146 161 173

Rdc' Ω 0.795 1.12 1.55 2.10 2.96 4.37 6.25 8.49 11.9 17.0 22.1

lw' in. 37 41 45 49 55 62 70 77 86 95 102

o.d. 0.380 Molypermalloy Q Curves

30 20

Q

f = 20 p

10 8 6

f 19 p

d y, C 1H 0.0

40

d= ,C Hy

14 µ

30 20

Q 10 8 6 4

3

3

2

2

2

3 4

6

8 10

20 30 40 60

100

200

26 µ

40

4

1 1

0.

pf 17 d= ,C Hy f 1 18 p 00 d= y, C 1H 0.0

100 80 60

0.0 01

100 80 60

i.d. 0.188/ht. 0.156

1 1

400 600 1000

2

3 4

6

Frequency-Kilohertz 100 80 60

8 10

20 30 40 60

100

200

10 8 6 4 3 2 1 1

400 600 1000

2

3 4

Frequency-Kilohertz 100 80 60 40

8 10

20 30 40 60

100

100 80 60

160 µµ 147 µµ

40

1 00

Q

pf 15 = d ,C f Hy = 16 p y, Cd 1H 0.0 17 pf

4 3 2

2

3 4

6

8 10

20 30 40 60

100

Frequency-Kilohertz

200

400 600 1000

=

17

f pf 18 p d= y, C 1H 0.

20

d= Hy, C 0.1

10 8 6

400 600 1000

0.0 1H y, Cd

205 µµ 173 µµ

30

0.

20

200

Frequency-Kilohertz

30

1 1

6

f 4p =1

6

Q

= 18 pf

3 4

20

d ,C Hy

2

0.

30

y, Cd 1H 0.0

2

400 600 1000

125 µ

= 19 pf

Cd = 17 pf

3

200

40

, Cd 0.1 Hy

y, 0.1 H

4

100

1 00

20

f 5p =1 d pf ,C d = 16 Hy Hy, C 0.01

30

1 1

100 80 60

01

60 µ

40

10 8 6

20 30 40 60

Frequency-Kilohertz

0. 0

Q

8 10

10 8 6 4 3 2 1 0.1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.41 February 2003

o.d. 0.400 i.d. 0.200/ht. 0.156 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.400 in 10.16 mm

0.200 in 5.08 mm

0.156 in 3.96 mm

After Coating (Parylene C)

0.425 in Max. 10.80 mm Max.

0.180 in Min. 4.57 mm Min.

0.180 in Max. 4.57 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01550 in2 0.1000 cm2

0.906 in 2.38 cm

0.0140 in3 0.2380 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.02545 in2 0.16417 cm2 32,400 cmil

0.0044 lbs 2.0 g

0.60 in 1.53 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

5.2 2.6 1.0 0.91 0.76 0.55 0.47 0.43 0.39 0.34 0.27 0.23 0.20

A-342007-2 A-341014-2 A-307032-2 — — A-292066-2 A-239078-2 A-308084-2 A-238092-2 A-309105-2 A-366132-2 A-388159-2 A-409185-2

HF-040014-2 HF-040026-2 HF-040060-2 — — HF-040125-2 HF-040147-2 HF-040160-2 — — — — —

— — MS-040060-2 MS-040075-2 MS-040090-2 MS-040125-2 — — — — — — —

7 14 32 40 48 66 78 84 92 105 132 159 185

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

p. 17.42 February 2003

Single Layer Winding with 1 inch leads

Turns

Rdc' Ω

Turns

Rdc' Ω

10 13 16 20 25 31 38 47 59 73 91 112 141 175 214

0.00359 0.00560 0.00871 0.01356 0.0214 0.0328 0.0513 0.0797 0.1250 0.1922 0.303 0.458 0.730 1.139 1.716

9 10 12 13 15 17 20 22 25 28 32 35 40 44 49

0.00442 0.00613 0.00847 0.0118 0.0164 0.0226 0.0315 0.0439 0.0614 0.0846 0.119 0.162 0.230 0.317 0.430

AWG

lw' in. 8.3 9.1 10 11 12 13 15 16 18 20 22 24 27 29 32

Full Winding (Half of I.D. Remaining) Turns

33 34 35 36 37 38 39 40 41 42 43 44

269 337 422 526 650 823 1074 1313 1639 2106 2600 3032

Rdc' Ω 2.71 4.30 6.79 10.58 16.06 25.6 43.6 67.6 103.3 166.0 264.0 372.0

Single Layer Winding Turns 55 62 70 78 86 97 110 124 139 156 173 186

Rdc' Ω 0.605 0.862 1.21 1.68 2.28 3.22 4.74 6.78 9.21 13.0 18.4 23.9

lw' in. 35 40 44 49 54 60 67 75 84 94 103 111

Page 2

o.d. 0.400

Page 23

Molypermalloy Q Curves 100 80 60

i.d. 0.200/ht. 0.156 100 80 60

0.001 H

4 3

2 1 1

2

3 4

6

8 10

20 30 40 60

100

200

1 1

400 600 1000

2

3 4

6

8 10

100 80 60

10 8 6 4

20

10 8 6

20 30 40 60

100

200

1 0.1

400 600 1000

.2 .3 .4

.6 .8 1

Frequency-Kilohertz 100 80 60 40

100 80 60

=

19

40 30 20

Q

4

3

3

2

2

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

18

1 0.1

pf

10 8 6

4

1 0.1

0.0 1H y, Cd 0. 1 =

200 µ 173 µ

19

10 8 6

20 30 40 60 100

=

Q

6 8 10

pf

20

3 4

Cd y, H

f pf 20 p d= y, C 1H 0.

30

2

Frequency-Kilohertz

0.01 H y, C d

160 µµ 147 µµ

p

4

2

8 10

125 µ

Q

3

6

0.01Hy ,C d = 0.1 17

30

2

3 4

Page 23

40

3

2

400 600 1000

f

20

Q

200

f 18 p

d= Hy, C 0.1

30

100

d= ,C Hy

pf 17 = d f ,C = 18 p Hy y, Cd 1 1H 0.0 20 pf

60 µ

20 30 40 60

Frequency-Kilohertz

0. 00

40

1 1

Pag

2

Frequency-Kilohertz 100 80 60

pf

3

19 pf

4

= 20

10 8 6

f 5p =1

20

Q

Hy

d ,C

30

18 pf

10 8 6

40

Cd = Hy, 0.1

20

Q

pf 17

, Cd = 1 Hy 0.0

30

0.0 01

26 µ

d y, C 1H 0.0

40

= Cd y,

14 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.43 February 2003

o.d. 0.440 i.d. 0.250/ht. 0.156 Dimensions Outside Diameter

CORNERS: 0.016 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.440 in 11.18 mm

0.250 in 6.35 mm

0.156 in 3.96 mm

After Coating (Parylene C)

0.468 in Max. 11.89 mm Max.

0.232 in Min. 5.89 mm Min.

0.186 in Max. 4.72 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01403 in2 0.0906 cm2

1.08 in 2.69 cm

0.01515 in3 0.2437 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.04227 in2 0.27273 cm2 53,824 cmil

0.0044 lbs 2.0 g

0.60 in 1.52 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% (+/- 12% for SUPER-MSS) for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

3.7 2.0 0.85 0.70 0.59 0.42 0.35 0.32 0.30 0.25 0.21 0.18 0.15

A-257006-2 A-256011-2 A-255026-2 — — A-253053-2 A-252063-2 A-670068-2 A-251074-2 A-203088-2 A-367106-2 A-389127-2 A-410148-2

HF-044014-2 HF-044026-2 HF-044060-2 — — HF-044125-2 HF-044147-2 HF-044160-2 — — — — —

— — MS-044060-2 MS-044075-2 MS-044090-2 MS-044125-2 — — — — — — —

6 11 26 32 38 53 63 68 74 88 106 127 148

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

p. 17.44 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

Rdc' Ω

11 13 16 20 25 32 40 49 61 76 95 118 147 180 227 282 345 432

0.00241 0.00375 0.00587 0.00913 0.01414 0.0210 0.0345 0.0529 0.0826 0.1281 0.201 0.308 0.485 0.735 1.170 1.824 2.75 4.34

9 11 12 14 16 18 21 23 26 29 33 37 42 46 52 58 64 72

0.00299 0.00412 0.00572 0.00792 0.0109 0.0152 0.0212 0.0292 0.0406 0.0566 0.0792 0.109 0.153 0.209 0.297 0.410 0.556 0.782

AWG

lw' in. 8.9 9.8 11 12 13 14 16 17 19 21 23 26 28 31 34 38 41 46

Full Winding (Half of I.D. Remaining) Turns

34 35 36 37 38 39 40 41 42 43 44

542 679 847 1046 1323 1729 2112 2638 3388 4183 4879

Rdc' Ω 6.89 10.87 16.92 25.7 41.0 69.7 108.2 165.3 266.0 422.0 595.0

Single Layer Winding Turns 81 91 101 112 126 143 161 179 202 223 240

Rdc' Ω 1.114 1.564 2.171 2.952 4.162 6.138 8.775 11.9 16.8 23.9 31.0

lw' in. 51 57 63 69 77 87 98 108 121 134 143

o.d. 0.440 Molypermalloy Q Curves 1000 800 600

i.d. 0.250/ht. 0.156 1000 800 600

14 µ

400

400

300

300

200

200

Q

8 10

20 30 40 60

100

200

20 10 1

400 600 1000

2

3 4

Frequency-Kilohertz 1000 800 600

6

8 10

20 30 40 60

100

60 µ

200

20

Q

Q

4

=

3

16

2

pf 1

2

3 4

6

8 10

20 30 40 60

100

200

400 600 1000

0.1

.2 .3 .4

Frequency-Kilohertz 100 80 60

147 µ

100 80 60

0

Q 10 8 6

10 8 6

3

2

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

20 30 40 60 100

0.0 1H y, Cd

205 µµ 173 µµ

Q

4

2

6 8 10

20

3

.6 .8 1

3 4

30

4

.2 .3 .4

2

1 0.1

=

pf pf 17 15 d= ,C Hy 1 15 pf 0. Cd = Hy, 1.0

pf pf 6 16 d= ,C Hy f = 16 p

20

40

1

, Cd Hy

30

.6 .8 1

Frequency-Kilohertz

0.0 1H y, Cd 1. 0. = 1

40

1 0.1

1

17 pf

H

pf 16

10 1

f 16 p

20

10 8 6

Cd y,

30

d= ,C Hy

d= ,C Hy

40

0.0 01

=

pf

30

0.1 H y, Cd

125 µ

7

40

300

0.0 1

400 600 1000

Cd = Hy, 1.0

400

0.1

200

Frequency-Kilohertz 100 80 60

100 80 60

pf 16 = Cd f y, 16 p d= ,C Hy

6

1

3 4

pf 16

2

30

pf 17

pf 15

=

, Cd Hy 0.1

20

= Cd y,

30

0.1 H

40

pf 15

d= ,C Hy

40

100 80 60

1

0.0 1

0.0 01 H 0.0

Q

0.0 0 d= ,C Hy

100 80 60

10 1

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.45 February 2003

o.d. 0.500 i.d. 0.300/ht. 0.187 Dimensions Outside Diameter

CORNERS: 0.031 Approx. Radius Bottom, Chamfer Top

Inside Diameter

Height

Before Coating Nominal

0.500 in 12.70 mm

0.300 in 7.62 mm

0.187 in 4.75 mm

After Coating (White Enamel)

0.530 in Max. 13.46 mm Max.

0.275 in Min. 6.99 mm Min.

0.217 in Max. 5.51 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.01767 in2 0.1140 cm2

1.229 in 3.124 cm

0.02172 in3 0.35568 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.05940 in2 0.38320 cm2 75,625 cmil

0.0066 lbs 3.0 g

0.67 in 1.71 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 100µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ 350µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Molypermalloy

HI-FLUX

SUPER-MSS

3.1 1.6 0.70 0.56 0.47 0.42 0.34 0.26 0.25 0.24 0.20 0.17 0.14 0.12

A-053006-2 A-052012-2 A-051027-2 — — A-261045-2 A-050056-2 A-143067-2 A-301072-2 A-172079-2 A-204093-2 A-368112-2 A-390134-2 A-412157-2

HF-050014-2 HF-050026-2 HF-050060-2 — — — HF-050125-2 HF-050147-2 HF-050160-2 — — — — —

— — MS-050060-2 MS-050075-2 MS-050090-2 — MS-050125-2 — — — — — — —

6.4 12 27 34 40 45 56 67 72 79 93 112 134 157

Part Numbers

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.46 February 2003

Single Layer Winding with 1 inch Leads

Turns

Rdc' Ω

Turns

Rdc' Ω

12 15 19 23 29 36 45 57 70 87 108 135 167 209 257

0.00248 0.00389 0.00603 0.00942 0.01462 0.0226 0.0352 0.0552 0.0847 0.1322 0.205 0.322 0.495 0.779 1.180

10 11 13 15 17 19 22 25 28 31 35 40 45 50 56

0.00271 0.00376 0.00520 0.00722 0.0100 0.0139 0.0193 0.0270 0.0371 0.0518 0.0723 0.101 0.140 0.197 0.269

AWG

lw' in. 10 11 12 14 15 16 18 20 22 24 27 30 33 36 40

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

322 401 491 615 771 967 1205 1488 1883 2460 3005 3754 4822 5953 6943

Rdc' Ω 1.880 2.93 4.42 6.99 11.09 17.51 27.3 41.4 66.1 112.4 174.7 267.0 429.0 683.0 962.0

Single Layer Winding Turns 63 69 77 86 97 108 121 134 150 170 192 213 240 265 285

Rdc' Ω 0.381 0.527 0.716 1.01 1.44 2.02 2.80 3.81 5.38 7.93 11.3 15.4 21.7 30.9 40.1

lw' in. 44 48 53 59 66 73 81 89 100 113 126 140 157 173 186

o.d. 0.500 Molypermalloy Q Curves 1000 800 600

i.d. 0.300/ht. 0.187 1000 800 600

14 µ

400

400

300

300

200

26 µ

200

Q

10 1

400 600 1000

1000 800 600

60 µ

400

400

300

300

2

3 4

6

8 10

20 30 40 60

f

200

7p

100

=1

20 30 40 60

20

pf

8 10

17

6

30

d ,C Hy

3 4

d= ,C Hy

1000 800 600

2

40

f 18 p

f 0p =2

20 10 1

f 19 p

, Cd Hy 0.1

0.1 H

= Cd y,

30

f 19 p

d= ,C Hy

40

0.0 01

0.

100 80 60

01

0.0 1

d= ,C Hy 01

100 80 60

Q

0.0

100

200

400 600 1000

125 µ

200

200

Q

20

100

200

0.0 1H y, Cd

100 80 60

=

16

30

10 8 6 4

2

3 4

6 8 10

20 30 40 60 100

4

1 0.1

20 30 40 60 100

0.0 1H y, C

205 µµ 173 µµ

10 8 6

2

.6 .8 1

6 8 10

20

3

.2 .3 .4

3 4

Q

2

0.1

2

30

3

1

.6 .8 1

p

d

=

pf pf 15 18 d= ,C Hy 8 pf y, Cd = 1 1.0 H

20

Q

40

.2 .3 .4

1 0.

pf f 17 p d= ,C Hy 1 0. = 17 pf Hy, Cd 1.0

160 µµ 147 µµ

10 0.1

400 600 1000

18

pf 18

20 30 40 60

Cd =

f

8 10

0.1 H

19 pf

6

30

pf 16

40

3 4

1.0

40

pf

100 80 60

2

f 21 p

10 1

f 19 p

20

16

= Cd

30

d= ,C Hy

d= ,C Hy

y, 0H 1.

40

100 80 60

= Cd y,

0.1

0.01 Hy,

Q

d= ,C Hy

100 80 60

0.00 1H y, Cd 0.0 = 1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.47 February 2003

o.d. 0.655 i.d. 0.400/ht. 0.250 Dimensions Outside Diameter

CORNERS: 0.031 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

0.655 in 16.64 mm

0.400 in 10.16 mm

0.250 in 6.35 mm

After Coating (White Enamel)

0.685 in Max. 17.40 mm Max.

0.375 in Min. 9.53 mm Min.

0.280 in Max. 7.11 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.0298 in2 0.1920 cm2

1.619 in 4.11 cm

0.0483 in3 0.7891 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.11045 in2 0.71256 cm2 140,625 cmil

0.015 lbs 6.8 g

0.86 in 2.18 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

8 15 36 43 52 72 88 92 104 123 144 173

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-268008-2 A-267015-2 A-266036-2 — — A-281072-2 A-264088-2 A-285092-2 A-263104-2 A-262123-2 A-369144-2 A-391173-2

HF-065014-2 HF-065026-2 HF-065060-2 — — HF-065125-2 HF-065147-2 HF-065160-2 — — — —

— — MS-065060-2 MS-065075-2 MS-065090-2 MS-065125-2 — — — — — —

1.6 0.86 0.36 0.30 0.25 0.18 0.15 0.14 0.12 0.11 0.090 0.074

Heavy Film Magnet Wire Winding Data (Approximate) AWG

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.48 February 2003

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

11 14 17 22 27 34 42 53 66 82 103 127 159 197 246 304 380 466

0.00150 0.00234 0.00365 0.00569 0.00889 0.01375 0.0215 0.0333 0.0516 0.0802 0.1261 0.1937 0.3026 0.471 0.739 1.137 1.792 2.72

10 11 13 15 17 19 21 24 27 31 35 39 44 49 55 62 69 77

0.00165 0.00230 0.00318 0.00443 0.00617 0.00856 0.0119 0.0166 0.0231 0.0323 0.0453 0.0626 0.0876 0.123 0.172 0.239 0.336 0.460

1.04 1.15 1.26 1.39 1.54 1.69 1.87 2.07 2.28 2.53 2.80 3.09 3.41 3.79 4.20 4.64 5.15 5.67

AWG

30 31 32 33 34 35 36 37 38 39 40 41 42 43

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

586 724 892 1117 1401 1756 2190 2703 3422 4469 5459 6819 8759 10814

4.34 6.77 10.22 16.18 25.7 40.6 63.3 96.2 153.6 261.0 406.0 621.0 998.0 1590.0

86 95 105 118 133 149 165 183 205 233 262 292 329 363

Rdc' Ω 0.654 0.907 1.23 1.74 2.48 3.49 4.85 6.61 9.33 13.8 19.7 26.9 37.8 53.9

lw' ft. 6.31 6.93 7.61 8.45 9.50 10.6 11.7 12.9 14.4 16.3 18.3 20.3 22.8 25.1

o.d. 0.655 Molypermalloy Q Curves 1000 800 600

Page 29 1000 800 600

14 µ

26 µ

400

400

300

300 200

200

0.0 01

Q

3 4

1000 800 600

6

8 10

20 30 40 60

100

1000 800 600

60 µµ

400

300

300

200

125 µµ

200

Q

0.01 H y, C d = 1 0.1 20

Q

40 30

= pf 22

100

200

20 10 0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

200

Q 1.0 H y,

Q 100 80 60

30

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

40 30

20 pf

20

20 10 0.1

1.0

= Cd y,

pf 22 pf = 22 d= ,C Hy pf 22

40

10 H

1

= Cd

0.0 1H y, Cd 0.

.2 .3 .4

.6 .8 1

2

3 4

0.0 1H 0. y, 1

pf 21 = f 4p =2 d ,C Hy 23 pf d= ,C Hy

100 80 60

10 0.1

p

f pf 25 d= ,C Hy = 25 pf , Cd Hy .0

d ,C Hy

20 30 40 60

pf 22

8 10

1

6

00

3 4

pf 22

2

d= ,C Hy

20

d= ,C Hy

2 pf =2

30

100 80 60

0.

01

1

d

Hy, C 1.0

40

10 1

0.

0.

400 600 1000

Frequency-Kilohertz

400

100 80 60

200

pf 23

2

Frequency-Kilohertz

d=

10 1

400 600 1000

y, C

200

pf 23

100

d=

20 30 40 60

1H 00 0.

8 10

f 22 p

6

Page 29

20

f 23 p

3 4

y, C 1H 0.0

30

f

2

= Cd y,

f 26 p

p 27

20

0

1.0 H

40

pf

30

21

d= ,C Hy

d= ,C

40

100 80 60

d= ,C Hy .1

1

0.1 Hy

Q

d= ,C Hy

0.0

100 80 60

10 1

i.d. 0.400/ht. 0.250

6 8 10

Cd

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.49 February 2003

o.d. 0.680 i.d. 0.380/ht. 0.250 Dimensions Outside Diameter

CORNERS: 0.031 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

0.680 in 17.27 mm

0.380 in 9.65 mm

0.250 in 6.35 mm

After Coating (White Enamel)

0.710 in Max. 18.03 mm Max.

0.355 in Min. 9.02 mm Min.

0.280 in Max. 7.11 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.0360 in2 0.232 cm2

1.63 in 4.14 cm

0.05868 in3 0.9605 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.09898 in2 0.63858 cm2 126,025 cmil

0.0181 lbs 8.2 g

0.90 in 2.29 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

10 19 43 53 64 89 105 114 123 146 178 214

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-187010-2 A-188019-2 A-189043-2 — — A-190089-2 A-193105-2 A-559114-2 A-194123-2 A-205146-2 A-370178-2 A-392214-2

HF-068014-2 HF-068026-2 HF-068060-2 — — HF-068125-2 HF-068147-2 HF-068160-2 — — — —

— — MS-068060-2 MS-068075-2 MS-068090-2 MS-068125-2 — — — — — —

1.5 0.80 0.35 0.29 0.24 0.17 0.15 0.13 0.12 0.10 0.086 0.071

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.50 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

10 13 16 20 25 31 38 48 59 74 92 114 143 177 221 274 342 420

0.00140 0.00219 0.00342 0.00533 0.00834 0.01292 0.0202 0.0314 0.0486 0.0756 0.1189 0.1828 0.2860 0.4450 0.6980 1.075 1.695 2.57

9 10 12 14 16 18 20 23 26 29 33 37 41 47 52 58 65 73

0.00161 0.00225 0.00311 0.00434 0.00606 0.00843 0.0118 0.0164 0.0228 0.0319 0.0449 0.0621 0.0869 0.122 0.171 0.237 0.334 0.458

1.01 1.12 1.23 1.36 1.51 1.67 1.84 2.04 2.25 2.50 2.77 3.06 3.39 3.76 4.17 4.61 5.12 5.64

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

527 656 802 1005 1261 1580 1970 2432 3077 4020 4910 6134 7878 9726 11345

Rdc' Ω 4.10 6.41 9.68 15.3 24.3 38.5 60.0 91.2 146 248 385 589 947 1508 2130

Single Layer Winding Turns 82 90 100 111 126 141 156 173 194 220 248 276 311 343 369

Rdc' Ω 0.651 0.902 1.23 1.73 2.47 3.48 4.84 6.59 9.31 13.8 19.7 26.8 37.7 53.7 69.8

lw' ft. 6.28 6.89 7.57 8.41 9.46 10.5 11.7 12.9 14.4 16.2 18.2 20.2 22.8 25.1 26.9

o.d. 0.680 Molypermalloy Q Curves 1000 800 600

i.d. 0.380/ht. 0.250 1000 800 600

14 µ

400 300

300

0.0 0

200

Q

20 30 40 60

100

200

10 1

400 600 1000

2

3 4

Frequency-Kilohertz 1000 800 600

1000 800 600

60 µ

400

300

300

Q 0.

1

100

200

10 0.1

400 600 1000

f 25 p

20 30 40 60

.2 .3 .4

Frequency-Kilohertz

.6 .8 1

2

3 4

6 8 10

pf

8 10

pf

20

d= ,C Hy

30

pf

6

= 25

24

3 4

1

=

40

pf

2

400 600 1000

0.01 Hy ,C d 1.0 = 0. 20

, Cd Hy

H

d

= 24

20

200

125 µµ

100 80 60

C y,

30

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

200

Q

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

40 30 20 10 0.1

1.0

.2 .3 .4

.6 .8 1

2

3 4

0. 0 0. 1 H 1 y,

f 6p =2 d ,C Hy f 26 p d= ,C Hy f = 26 p

.6 .8 1

10 H

d y, C

.2 .3 .4

31 pf

f = 28 p

20

pf pf 24 = 24 Cd y,

d y, C

30

100 80 60

0

10 H

40

Q

0.01 Hy , 1. 0.1 Cd H = d= ,C Hy

100 80 60

10 0.1

100

Q

f 5p =2

40

f 24 p

, Cd Hy

d= ,C Hy

1.0

0. 00 1

0.0 1

d ,C Hy

100 80 60

400

20 30 40 60

200

200

1000 800 600

8 10

Frequency-Kilohertz

400

10 1

6

pf 25 d= ,C Hy pf 25 01 .0 d= y, C 1H 0.0

8 10

f 25 p

20

f 26 p

6

d= y, C 1H 0.

pf

3 4

= Cd y,

30

f

2

1.0 H

40

pf

23

p 30

20

0

100 80 60

24

d= ,C Hy

= Cd y,

30

d= ,C Hy

01

0.1 H

40

200

Q

1

0.

100 80 60

10 1

26 µ

400

6 8 10

Cd

=

23

pf

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.51 February 2003

o.d. 0.800 i.d. 0.500/ht. 0.250 Dimensions Outside Diameter

CORNERS: 0.031 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

0.800 in 20.32 mm

0.500 in 12.70 mm

0.250 in 6.35 mm

After Coating (Blue Epoxy)

0.830 in Max. 21.08 mm Max.

0.475 in Min. 12.07 mm Min.

0.280 in Max. 7.11 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.035 in2 0.226 cm2

2.010 in 5.093 cm

0.07035 in3 1.1510 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.1772 in2 1.1433 cm2 225,625 cmil

0.023 lbs 10.0 g

0.90 in 2.29 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 150µ 160µ 173µ 205µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

7.8 14 32 41 49 68 81 83 87 96 113 136 163

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-057008-2 A-511014-2 A-848032-2 — — A-206068-2 A-144081-2 A-241083-2 A-271087-2 A-173096-2 A-207113-2 A-371136-2 A-393163-2

HF-080014-2 HF-080026-2 HF-080060-2 — — HF-080125-2 HF-080147-2 — HF-080160-2 — — — —

— — MS-080060-2 MS-080075-2 MS-080090-2 MS-080125-2 — — — — — — —

1.1 0.60 0.26 0.21 0.17 0.12 0.10 0.10 0.096 0.088 0.074 0.062 0.052

Heavy Film Magnet Wire Winding Data (Approximate) AWG

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

p. 17.52 February 2003

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

18 22 28 34 43 54 67 84 104 130 163 201 251 312 389

0.00254 0.00395 0.00614 0.00954 0.01488 0.0230 0.0358 0.0556 0.0860 0.1337 0.210 0.323 0.504 0.784 1.230

13 15 17 19 22 25 28 32 35 40 45 50 56 63 71

0.00221 0.00307 0.00424 0.00590 0.00822 0.0114 0.0159 0.0222 0.0308 0.0430 0.0604 0.0834 0.117 0.164 0.230

1.39 1.53 1.68 1.85 2.04 2.26 2.49 2.75 3.04 3.36 3.73 4.11 4.55 5.05 5.60

AWG

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

481 602 738 927 1154 1412 1768 2218 2779 3466 4279 5415 7073 8641 10793

1.894 2.99 4.53 7.23 11.29 17.04 27.0 42.8 67.7 105.5 160.4 256.0 436.0 678.0 1036.0

79 89 98 110 122 134 150 169 189 210 233 261 296 333 370

Rdc' Ω 0.318 0.448 0.614 0.872 1.21 1.64 2.32 3.31 4.66 6.48 8.82 12.5 18.4 26.4 35.9

lw' ft. 6.18 6.87 7.56 8.41 9.24 10.2 11.3 12.7 14.1 15.6 17.2 19.2 21.7 24.4 27.1

o.d. 0.800 Molypermalloy Q Curves 1000 800 600

i.d. 0.500/ht. 0.250 1000 800 600

14 µ

400

26 µ

400

300

300

200

200

0

2

3 4

6

8 10

20 30 40 60

100

200

10 1

400 600 1000

2

3 4

Frequency-Kilohertz 1000 800 600

6

8 10

f 4p =2 Cd y, 1H 00 pf 0. 24 d= ,C Hy 01 0. pf 23

f 23 p

20

pf

10 1

d= ,C Hy

d= ,C Hy

30

pf

20

1.0

40

pf

= 27

30

27

, Cd Hy

40

0

100 80 60

.1

1

0.

23

d= ,C Hy 01 0.

100 80 60

Q

d= ,C Hy 01 .0

Q

20 30 40 60

100

1000 800 600

60 µ

400

400

300

300

200

0.0 1H y, Cd

Q 100 80 60

d= ,C Hy

40 30 20 10 1

0

2

3 4

6

8 10

20 30 40 60

100

200

40 30 20 10 0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

205 µµ 173 µµ

300

300

200

200

Q

0.0 1

Q

30 20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

1

40 30 20 10 0.1

0.0 0. 1 H y,

pf 22 = f 4p =2 d ,C pf Hy 24 1 d= ,C Hy

40

100 80 60

.0

Hy ,C

pf 23 pf = 23 d d= ,C Hy 1 23 pf 0. d= y, C 0H 1.

100 80 60

10 0.1

=

pf pf 21 25 d= y, C 1H 0. 25 pf Cd = Hy, 1.0

pf 22 = d ,C Hy pf 01 23 d= ,C Hy 01 0. pf 22 d= y, C 1H 0. 28 pf

0.

1.0

400 600 1000

125 µµ

200

Q 100 80 60

200

Frequency-Kilohertz

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Cd

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.53 February 2003

o.d. 0.900 i.d. 0.550/ht.0.300 Dimensions Outside Diameter

CORNERS: 0.031 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

0.900 in 22.86 mm

0.550 in 13.97 mm

0.300 in 7.62 mm

After Coating (Blue Epoxy)

0.930 in Max. 23.62 mm Max.

0.527 in Min. 13.39 mm Min.

0.330 in Max. 8.38 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.0513 in2 0.331 cm2

2.233 in 5.671 cm

0.11455 in3 1.8771 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.21813 in2 1.40727 cm2 277,729 cmil

0.033 lbs 15 g

1.05 in 2.67 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

9.9 19 43 54 65 90 106 115 124 147 180 216

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-062010-2 A-060019-2 A-059043-2 — — A-310090-2 A-147106-2 A-300115-2 A-174124-2 A-208147-2 A-372180-2 A-394216-2

HF-090014-2 HF-090026-2 HF-090060-2 — — HF-090125-2 HF-090147-2 HF-090160-2 — — — —

— MS-090026-2 MS-090060-2 MS-090075-2 MS-090090-2 MS-090125-2 — — — — — —

0.80 0.42 0.19 0.15 0.12 0.089 0.075 0.070 0.064 0.054 0.044 0.037

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.54 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

21 27 34 42 53 66 82 102 127 158 198 246 306 381 475 587 734 901

0.00355 0.00552 0.00859 0.01335 0.0208 0.0322 0.0503 0.0782 0.1211 0.1884 0.297 0.456 0.713 1.110 1.744 2.69 4.24 6.44

15 17 19 22 25 28 31 35 40 45 50 56 63 71 79 88 99 109

0.00276 0.00384 0.00532 0.00742 0.0104 0.0144 0.0202 0.0281 0.0392 0.0548 0.0771 0.107 0.150 0.210 0.295 0.409 0.577 0.791

1.74 1.92 2.11 2.33 2.58 2.85 3.16 3.50 3.87 4.29 4.76 5.26 5.83 6.48 7.19 7.95 8.84 9.74

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36 37 38 39 40

1132 1408 1723 2158 2707 3391 4229 5221 6608 8630 10543

Rdc' Ω 10.28 16.07 24.3 38.4 61.0 96.5 150.6 229.0 366.0 623.0 968.0

Single Layer Winding Turns 122 135 149 166 188 210 234 259 289 328 370

Rdc' Ω 1.12 1.56 2.12 3.00 4.28 6.03 8.39 11.4 16.1 23.9 34.2

lw' ft. 10.8 11.9 13.1 14.6 16.4 18.2 20.2 22.3 24.9 28.2 31.7

o.d. 0.900 Molypermalloy Q Curves 1000 800 600

i.d. 0.550/ht.0.300 1000 800 600

14 µ

400

400

300

300

200

20 30 40 60

100

200

10 1

400 600 1000

2

3 4

Frequency-Kilohertz 1000 800 600

6

8 10

pf 26 d= ,C Hy pf 01 26 .0 d= y, C 1H 0.0

20

pf

8 10

= 31

30

pf 31

6

= Cd y,

pf 29

40

pf

3 4

1.0 H

d y, C 1H 0.

100 80 60

pf

2

0

Q

d=

= 28

20 10 1

29

30

d=

40

,C Hy 01 0.

Cd Hy, 0.1

100 80 60

200

C y, 1H 00 0.

Q

26 µ

20 30 40 60

100

1000 800 600

60 µ

400

400

300

300

Q

0.0 1H y, Cd 0.

Q

20 10 1

2

3 4

6

8 10

20 30 40 60

100

200

pf 28 = pf 27 d= ,C Hy 1 27 pf Cd = Hy, 1.0

f 28 p

30

pf 24 = d ,C Hy 1 pf 00 29 0. d= ,C Hy 01 0. 9 pf =2

d= ,C Hy

40

100 80 60

, Cd Hy 0.1

1.0

40 30 20 10 0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

200

Q 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

40 30 20 10 0.1

1.

0. 0 1 Hy 0. ,

pf 26 = f 6p =2 d ,C Hy f 1 27 p d= ,C Hy pf

.6 .8 1

10

Cd

= 28

.2 .3 .4

100 80 60

, Cd Hy

f = 29 p

20

2

pf 5 pf 30 d= ,C Hy pf = 29

, Cd Hy

30

Q 0

0

40

0.0 1H y 0. , Cd 1 =

d y, C 0H 1.

100 80 60

10 0.1

400 600 1000

125 µµ

200

200

100 80 60

200

Frequency-Kilohertz

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.55 February 2003

o.d. 0.928 i.d. 0.567/ht. 0.350 Dimensions Outside Diameter

CORNERS: 0.031 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

0.928 in 23.57 mm

0.567 in 14.40 mm

0.350 in 8.89 mm

After Coating (Blue Epoxy)

0.956 in Max. 24.28 mm Max.

0.542 in Min. 13.77 mm Min.

0.382 in Max. 9.70 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.0610 in2 0.388 cm2

2.32 in 5.88 cm

0.1415 in3 2.2814 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.2307 in2 1.4885 cm2 293,764 cmil

0.044 lbs 20 g

1.44 in 3.66 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

12 22 51 63 76 105 124 135 146 173 211 253

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-439012-2 A-440022-2 A-441051-2 — — A-442105-2 A-443124-2 A-444135-2 A-445146-2 A-272173-2 A-446211-2 A-447253-2

HF-092014-2 HF-092026-2 HF-092060-2 — — HF-092125-2 HF-092147-2 HF-092160-2 — — — —

— MS-092026-2 MS-092060-2 MS-092075-2 MS-092090-2 MS-092125-2 — — — — — —

0.70 0.38 0.16 0.13 0.11 0.080 0.067 0.062 0.057 0.048 0.040 0.033

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.56 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

23 28 36 43 56 69 87 103 135 161 210 260 325 404 504 623 778 955

0.00411 0.00639 0.00996 0.01497 0.0242 0.0375 0.0585 0.0871 0.1413 0.211 0.346 0.533 0.834 1.299 2.04 3.15 4.97 7.55

15 17 20 22 25 29 32 36 41 46 52 58 65 73 81 91 101 112

0.00307 0.00429 0.00595 0.00832 0.0116 0.0162 0.0227 0.0318 0.0443 0.0620 0.0874 0.1210 0.170 0.238 0.336 0.465 0.657 0.901

1.94 2.14 2.36 2.62 2.90 3.21 3.56 3.95 4.37 4.85 5.39 5.96 6.61 7.36 8.18 9.05 10.1 11.1

AWG

30 31 32 33 34 35 36 37 38 39 40

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

1200 1492 1827 2288 2870 3596 4484 5536 7006 9151 11179

12.06 18.86 28.5 45.1 71.7 113.4 177.0 269.0 430.0 733.0 1139.0

126 139 154 171 194 216 240 266 298 338 380

Rdc' Ω 1.28 1.78 2.42 3.42 4.89 6.88 9.58 13.1 18.5 27.3 39.1

lw' ft. 12.4 13.6 15.0 16.6 18.7 20.8 23.1 25.5 28.5 32.2 36.2

o.d. 0.928 Molypermalloy Q Curves 1000 800 600

i.d. 0.567/ht. 0.350 1000 800 600

14 µ

400

400

300

300 200

200

60 µ 01 Hy, Cd 0.0 =3 0.01 0 Hy p ,C

f

Q

400 600 1000

125 µµ

3 4

6 8 10

40

= 34 pf

2

10 , Cd Hy

.6 .8 1

1

100 80 60

30 20

pf

.2 .3 .4

0.0 1H y, Cd 0

200

Q

= 30

20

pf 31

= 29 pf

30

=

, Cd Hy

40

300

10 0.1

20 30 40 60 100

.2 .3 .4

Frequency-Kilohertz

.6 .8 1

2

3 4

=

pf 34 d= ,C Hy .1 = 34 pf , Cd Hy .0

d

0

1.

, Cd Hy 0.1

100 80 60

6 8 10

28

pf

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

200

Q 1

Q

20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

40 30 20 10 0.1

0.0 1

Hy ,C

pf f 29 9p =2 d ,C Hy f 1 32 p 0. d= ,C Hy f = 32 p

30

1.

0

d y, C 0H

40

=

100 80 60

Cd Hy, 10

0.0 1H y, Cd

pf 30 pf 30 d= ,C Hy 1 29 pf 0. d= y, C 0H 1. f = 30 p

100 80 60

10 0.1

200

400

200

400

100

pf

1000 800 600

300

1000 800 600

20 30 40 60

Frequency-Kilohertz

400

10 0.1

8 10

31

1000 800 600

6

d=

3 4

f 32 p

2

Frequency-Kilohertz

C y, 1H 00 0.

10 1

400 600 1000

d=

200

pf

100

y, C 1H 0.0

20 30 40 60

= 31

8 10

20

f 30 p

6

d= ,C Hy

3 4

30

f

2

40

0p =3

20

pf 30

f 9p =2

f 36 p

d ,C

30

1.

0

40

d=

d= ,C

1.0 Hy

100 80 60

, Cd Hy 0.1

0.1 Hy

d y, C

y, C 1H 0.0

100 80 60

Q

H 01 0.0

Q

10 1

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

d

=

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.57 February 2003

o.d. 1.060 i.d. 0.580/ht. 0.340 Dimensions Outside Diameter

CORNERS: 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.060 in 26.92 mm

0.580 in 14.73 mm

0.340 in 8.64 mm

After Coating (Blue Epoxy)

1.090 in Max. 27.69 mm Max.

0.555 in Min. 14.10 mm Min.

0.3.72 in Max. 9.45 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.07699 in2 0.49671 cm2

2.501 in 6.352 cm

0.1925 in3 3.1551 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.2419 in2 1.5608 cm2 308,025 cmil

0.060 lbs 27 g

1.25 in 3.25 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

13.8 25.5 59.0 73.7 88.4 123 145 157 170 197 246 295

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-676014-2 A-677026-2 A-678059-2 — — A-679123-2 A-680145-2 A-681157-2 A-330170-2 A-682197-2 A-683246-2 A-684295-2

HF-107014-2 HF-107026-2 HF-107060-2 — — HF-107125-2 HF-107147-2 HF-107160-2 — — — —

— MS-107026-2 MS-107060-2 MS-107075-2 MS-107090-2 MS-107125-2 — — — — —

0.64 0.34 0.15 0.12 0.10 0.072 0.061 0.056 0.052 0.045 0.036 0.030

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.58 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

24 30 37 47 58 73 91 113 141 176 220 273 340 423 528 652 815 1000

0.00461 0.00719 0.0112 0.0175 0.0274 0.0425 0.0666 0.104 0.161 0.252 0.396 0.611 0.958 1.49 2.35 3.63 5.73 8.72

16 18 20 23 26 29 33 37 42 47 53 59 66 74 83 93 104 115

0.00325 0.00454 0.00630 0.00881 0.0123 0.0172 0.0241 0.0337 0.0470 0.0658 0.0928 0.129 0.180 0.253 0.357 0.495 0.699 0.959

2.05 2.27 2.50 2.77 3.07 3.40 3.77 4.19 4.64 5.15 5.73 6.33 7.03 7.83 8.70 9.63 10.7 11.8

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36 37 38 39 40

1257 1563 1914 2396 3006 3767 4697 5798 7340 9590 11700

Rdc' Ω 13.9 21.8 33.0 52.3 83.1 132 205 313 500 851 1320

Single Layer Winding Turns 129 142 157 175 198 221 246 272 305 346 389

Rdc' Ω 1.36 1.89 2.58 3.64 5.21 7.33 10.2 13.9 19.7 29.1 41.6

lw' ft. 13.2 14.5 15.9 17.7 19.9 22.2 24.6 27.2 30.3 34.3 38.6

o.d. 1.060 Molypermalloy Q Curves

i.d. 0.580/ht. 0.340

Curves are currently not available. Please contact our Powder Core Application Engineer for curve information at 1-800-545-4578.

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.59 February 2003

o.d. 1.060 i.d. 0.580/ht. 0.440 Dimensions Outside Diameter

CORNERS: 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.060 in 26.92 mm

0.580 in 14.73 mm

0.440 in 11.18 mm

After Coating (Blue Epoxy)

1.090 in Max. 27.69 mm Max.

0.555 in Min. 14.10 mm Min.

0.472 in Max. 11.99 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.1014 in2 0.654 cm2

2.501 in 6.352 cm

.2536 in3 4.154 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.2419 in2 1.5608 cm2 308,025 cmil

0.080 lbs 36 g

1.46 in 3.71 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ 300µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

18 32 75 94 113 157 185 201 217 257 314 377

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-068018-2 A-066032-2 A-894075-2 — — A-930157-2 A-145185-2 A-302201-2 A-175217-2 A-209257-2 A-373314-2 A-396377-2

HF-106014-2 HF-106026-2 HF-106060-2 — — HF-106125-2 HF-106147-2 HF-106160-2 — — — —

— MS-106026-2 MS-106060-2 MS-106075-2 MS-106090-2 MS-106125-2 — — — — — —

0.55 0.31 0.133 0.106 0.088 0.063 0.054 0.050 0.046 0.039 0.032 0.026

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.60 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

24 30 37 47 58 73 91 113 141 176 220 273 340 423 528 652 815 1000

0.00526 0.00820 0.01281 0.01997 0.0313 0.0485 0.0760 0.1183 0.1839 0.287 0.452 0.697 1.093 1.704 2.68 4.14 6.54 9.95

16 18 20 23 26 29 33 37 42 47 53 59 66 74 83 93 104 115

0.00367 0.00514 0.00715 0.0100 0.0141 0.0197 0.0276 0.0387 0.0541 0.0759 0.107 0.149 0.209 0.294 0.414 0.575 0.812 1.11

2.31 2.57 2.83 3.15 3.50 3.89 4.32 4.81 5.34 5.94 6.61 7.32 8.13 9.07 10.1 11.2 12.4 13.7

AWG

30 31 32 33 34 35 36 37 38 39 40

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

1257 1563 1914 2396 3006 3767 4697 5798 7339 9585 11709

15.90 24.9 37.6 59.7 94.8 150.1 234.0 357.0 570.0 971.0 1510.0

129 142 157 175 198 221 246 272 305 346 389

Rdc' Ω 1.59 2.21 3.00 4.24 6.07 8.55 11.9 16.2 22.9 33.9 48.6

lw' ft. 15.3 16.8 18.5 20.6 23.2 25.9 28.7 31.7 35.4 40.1 45.1

o.d. 1.060 Molypermalloy Q Curves 1000 800 600

i.d. 0.580/ht. 0.440 1000 800 600

14 µ

400

400

300

300

100

20

200

10 1

400 600 1000

2

3 4

Frequency-Kilohertz 1000 800 600

1000 800 600

60 µ 0.0 01

200

Q

0

200

400 600 1000

125 µµ

Q

6

8 10

20 30 40 60

100

200

30 20 10 0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz

.6 .8 1

2

3 4

6 8 10

Hy ,C

d

pf 28 = f 39 p d= y, C 1H 0. pf = 46

3 4

40

f = 48 p

2

1 , Cd Hy

20

d y, C 0H 1.

100 80 60

d= ,C Hy

30

0.0 1

200

Hy ,

0

1.0

40

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

0.0 1

Q

200

Hy ,C

Q

30 20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

=

20 30 40 60 100

100 80 60

1

40 30 20 10 0.1

.2 .3 .4

.6 .8 1

2

3 4

0.

01

pf 36 = pf Cd 39 y, = d ,C Hy f 1 43 p 0. d= y, C 0H 1. = 43 pf

40

d

d y, C 0H

Cd Hy, 10

pf 41 pf 42 d= ,C Hy 1 pf 0. = 40 , Cd Hy 1.0 = 41 pf

100 80 60

10 0.1

100

300

pf 39 = pf Cd 42 d= ,C Hy 1 f .0 42 p d= ,C Hy 0.1 41 pf

100 80 60

400

20 30 40 60

400

300

1000 800 600

8 10

Frequency-Kilohertz

400

10 1

6

pf 42 d= ,C Hy pf 01 43 .0 d= y, C 1H 0.0 f

20 30 40 60

42 p

8 10

30

f 41 p

6

40

d= y, C 1H 0.

3 4

1.0

d= ,C Hy

2

100 80 60

pf 41

pf 51

0 pf

20

0

200

Q

d=

=4

= Cd

30

f 41 p

1.0 H y,

40

10 1

d y, C 1H 0.

100 80 60

d= ,C Hy 01 0.

Q

y, C 1H 00 0.

200

26 µ

6 8 10

H

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.61 February 2003

o.d. 1.300 i.d. 0.785/ht. 0.345 Dimensions Outside Diameter

CORNERS: 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.300 in 33.02 mm

0.785 in 19.94 mm

0.345 in 8.76 mm

After Coating (Blue Epoxy)

1.332 in Max. 33.83 mm Max.

0.760 in Min. 19.30 mm Min.

0.382 in Max. 9.70 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.08543 in2 0.55116 cm2

3.207 in 8.147 cm

0.2740 in3 4.4902 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.4537 in2 2.9267 cm2 577,600 cmil

0.086 lbs 39 g

1.30 in 3.30 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

11.9 22.1 51.0 63.8 76.5 109 129 136 151 180 213

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-640012-2 A-641022-2 A-642051-2 — — A-197109-2 A-162129-2 A-643136-2 A-166151-2 A-210180-2 A-644213-2

HF-131014-2 HF-131026-2 HF-131060-2 — — HF-131125-2 HF-131147-2 HF-131160-2 — — —

— MS-131026-2 MS-131060-2 MS-131075-2 MS-131090-2 MS-131125-2 — — — — —

0.39 0.21 0.090 0.072 0.060 0.042 0.036 0.034 0.031 0.026 0.021

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

p. 17.62 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

44 55 69 86 108 135 169 210 262 326 408 505 630 783 978

0.00892 0.01384 0.0215 0.0335 0.0523 0.0809 0.1264 0.197 0.305 0.475 0.748 1.152 1.803 2.81 4.42

23 26 29 32 37 41 46 52 58 66 74 82 92 103 115

0.00472 0.00658 0.00912 0.0127 0.0178 0.0248 0.0347 0.0486 0.0676 0.0947 0.134 0.185 0.260 0.364 0.513

2.97 3.29 3.61 4.01 4.43 4.91 5.44 6.03 6.68 7.42 8.24 9.11 10.1 11.3 12.5

AWG

Full Winding (Half of I.D. Remaining) Turns

27 28 29 30 31 32 33 34 35 36 37

1209 1511 1854 2328 2897 3546 4440 5570 6979 8703 10744

Rdc' Ω 6.82 10.77 16.36 26.1 40.9 61.8 97.9 155.6 246 384 585

Single Layer Winding Turns 128 143 159 178 196 216 241 273 304 338 374

Rdc' Ω 0.712 1.00 1.38 1.96 2.72 3.70 5.23 7.48 10.5 14.7 20.0

lw' ft. 13.8 15.4 17.0 18.9 20.8 22.9 25.4 28.6 31.8 35.3 39.0

o.d. 1.300 Molypermalloy Q Curves 1000 800 600

i.d. 0.785/ht. 0.345

Page 41

1000 800 600

125µ µ

300

300

0.0 1H y,

200

200

40 pf

6 8 10

20 10 0.1

20 30 40 60 100

.2 .3 .4

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Frequency-Kilohertz 1000 800 600

.6 .8 1

1 y,

Cd = Hy, 10

3 4

30

pf

2

40

= 33

.6 .8 1

pf

.2 .3 .4

38 pf

37 pf

20

33

30

d y, C 1H 0.

d= Hy, C 1.0

= y, Cd 10 H

40

100 80 60

pf 35 = pf 35 Cd d= ,C H Hy 1 0. 34 pf Cd = Hy, 1.0

=

100 80 60

0. 0

Q

Cd

Q

10 0.1

147 µµ

400

400

1000 800 600

173µ µ

400

400

300

300

205 µµ

200

200

Q

Q

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

20 10 0.1

.2 .3 .4

.6 .8 1

2

3 4

0. 01

Hy ,

pf 33 = pf Cd = 34 d ,C Hy 1 40 pf 0. d= ,C Hy

2

30

pf

.6 .8 1

= 38

.2 .3 .4

40

0 1.

10 0.1

1

100 80 60

, Cd Hy

20

Hy ,C

0

= 35 pf

30

0.0 1

pf 31 = pf d 38 d= ,C Hy pf 1 0. d = 37 ,C Hy

40

0 1.

Cd Hy, 10

100 80 60

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.63 February 2003

o.d. 1.300 i.d. 0.785/ht. 0.420 Dimensions Outside Diameter

CORNERS 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.300 in 33.02 mm

0.785 in 19.94 mm

0.420 in 10.67 mm

After Coating (Blue Epoxy)

1.332 in Max. 33.83 mm Max.

0.760 in Min. 19.30 mm Min.

0.457 in Max. 11.61 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.1042 in2 0.672 cm2

3.207 in 8.147 cm

0.3345 in3 5.4768 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.4537 in2 2.9267 cm2 577,600 cmil

0.106 lbs 47 g

1.47 in 3.72 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ 250µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

14 28 61 76 91 127 150 163 176 208 254

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-344014-2 A-298028-2 A-291061-2 — — A-548127-2 A-148150-2 A-303163-2 A-176176-2 A-211208-2 A-374254-2

HF-130014-2 HF-130026-2 HF-130060-2 — — HF-130125-2 HF-130147-2 HF-130160-2 — — —

— MS-130026-2 MS-130060-2 MS-130075-2 MS-130090-2 MS-130125-2 — — — — —

0.36 0.18 0.083 0.066 0.055 0.040 0.034 0.031 0.029 0.024 0.020

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.64 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

44 55 69 86 108 135 169 210 262 326 408 505 630 783 978 1209 1511 1854

0.00989 0.01538 0.0240 0.0373 0.0584 0.0904 0.1414 0.220 0.342 0.533 0.840 1.294 2.030 3.16 4.98 7.68 12.14 18.45

23 26 29 32 37 41 46 52 58 66 74 82 92 103 115 128 143 159

0.00517 0.00722 0.0100 0.0140 0.0197 0.0274 0.0384 0.0538 0.0750 0.105 0.148 0.206 0.289 0.406 0.572 0.794 1.12 1.54

3.25 3.61 3.97 4.41 4.89 5.42 6.02 6.69 7.41 8.24 9.16 10.1 11.3 12.5 13.9 15.4 17.2 18.9

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36 37

2328 2897 3546 4440 5570 6979 8703 10744

Rdc' Ω 29.5 46.2 69.8 110.6 175.9 278 434 661

Single Layer Winding Turns 178 196 216 241 273 304 338 374

Rdc' Ω 2.19 3.04 4.14 5.85 8.37 11.8 16.4 22.4

lw' ft. 21.1 23.2 25.6 28.4 32.0 35.6 39.6 43.7

o.d. 1.300 Molypermalloy Q Curves 1000 800 600

i.d. 0.785/ht. 0.420 1000 800 600

14µµ

400

400

300

300

200

200

,C Hy 01 0.0

Q

1000 800 600

6 8 10

20 30 40

60

100

60 µµ

400

400

300

300

200

200

0.0 1H y, C

0. 60

30 20

100

200

10 0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

2

3 4

=

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µ 147µµ

400

300

205 µ 173µµ

300

200

200

Q

0.

40 pf

20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

100 80 60 40 30 20 10 0.1

0.

01

pf 37 = f Cd 7p y, =3 H d ,C Hy f 1 39 p 0. d= y, C 0H 1. f = 37 p

30

H

Cd Hy, 10

40

01

Q

pf 35 = pf Cd 43 y, d= ,C Hy 1 41 pf 0. Cd = Hy, 1.0

Cd = Hy, 10

100 80 60

10 0.1

.6 .8 1

d

pf f 39 40 p d= ,C Hy 0.1 38 pf Cd = Hy, 1.0

20 30 40

40

45 pf

6 8 10

d= Hy, C 10

3 4

pf 34 = d pf ,C 36 Hy d= 1 y, C 00 1H 0 .0

2

100 80 60

pf

1

= 43

10

f = 41 p

20

Cd Hy, 0.1

Cd Hy, 1.0

30

400 600 1000

125 µµ

Q

Q

40

200

Frequency-Kilohertz 1000 800 600

100 80 60

pf 37

3 4

d= ,C Hy

2

01

1

Frequency-Kilohertz

0 .0

10

400 600 1000

pf

200

= 38

pf

100

5 pf =4

= 43

20

d y, C 1H 0.0

, Cd Hy

60

, Cd Hy 0.1

0

20 30 40

30

pf

6 8 10

1.

40

41

3 4

100 80 60

pf

2

= 41

1

pf

f 38 p

20

= 40

= Cd y,

30

Q

d=

1.0 H

40

d y, C 1H 0.0

d y, C 1H 0.

100 80 60

10

26 µµ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.65 February 2003

o.d. 1.300 i.d. 0.785/ht. 0.440 Dimensions Outside Diameter

CORNERS: 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.300 in 33.02 mm

0.785 in 19.94 mm

0.440 in 11.18 mm

After Coating (Blue Epoxy)

1.332 in Max. 33.83 mm Max.

0.760 in Min. 19.30 mm Min.

0.472 in Max. 11.99 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.1082 in2 0.6981 cm2

3.207 in 8.147 cm

0.3470 in3 5.6870 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.4537 in2 2.9267 cm2 577,600 cmil

0.095 lbs 43 g

1.50 in 3.81 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ 250µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

15 28 65 80.8 96.9 135 158 172 186 215 269

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-074015-2 A-073028-2 A-071065-2 — — A-645135-2 A-646158-2 A-647172-2 A-648186-2 A-649215-2 A-650269-2

HF-132014-2 HF-132026-2 HF-132060-2 — — HF-132125-2 HF-132147-2 HF-132160-2 — — —

— MS-132026-2 MS-132060-2 MS-132075-2 MS-132090-2 MS-132125-2 — — — — —

0.35 0.19 0.080 0.064 0.054 0.039 0.033 0.030 0.028 0.024 0.019

Heavy Film Magnet Wire Winding Data (Approximate) AWG

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.66 February 2003

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

44 55 69 86 108 135 169 210 262 326 408 505 630 783 978 1209 1511 1854

0.0101 0.0157 0.0245 0.0381 0.0596 0.0924 0.1446 0.225 0.350 0.545 0.859 1.324 2.08 3.24 5.09 7.86 12.43 18.89

23 26 29 32 37 41 46 52 58 66 74 82 92 103 115 128 143 159

0.00526 0.00735 0.0102 0.0143 0.0200 0.0279 0.0392 0.0548 0.0765 0.107 0.151 0.210 0.295 0.414 0.584 0.811 1.15 1.57

3.31 3.67 4.04 4.49 4.98 5.53 6.13 6.82 7.55 8.40 9.35 10.3 11.5 12.8 14.2 15.8 17.5 19.3

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36 37

2328 2897 3546 4440 5570 6979 8703 10744

Rdc' Ω 30.2 47.3 71.4 113.2 180.1 285.0 445.0 677.0

Single Layer Winding Turns 178 196 216 241 273 304 338 374

Rdc' Ω 2.24 3.11 4.23 5.97 8.55 12.0 16.8 22.9

lw' ft. 21.6 23.7 26.1 29.0 32.7 36.4 40.4 44.6

o.d. 1.300 Molypermalloy Q Curves 1000 800 600

i.d. 0.785/ht. 0.440 1000 800 600

14 µµ

400

300

300

200

200

26 µµ 0.

Q

20 30 40

60

100

20 10

200

400 600 1000

Frequency-Kilohertz 1000 800 600

f 44 p

8 10

Cd Hy, 0.1

6

d= ,C Hy

3 4

30

6 pf =3

2

1.

40

pf

1

= 44

f

10

pf

41 p

20

= 42

= Cd y,

30

100 80 60

0

1.0 H

40

d y, C 1H 0.0

, Cd Hy 0.1

100 80 60

, Cd Hy 01 0.0

Q

pf 38 d= ,C Hy pf 1 38 00 d= ,C Hy 01 0. pf = 46

400

1

2

3 4

6

8 10

20 30 40

60

100

200

400 600 1000

Frequency-Kilohertz

60µµ

400 300 200

Q

= 43

30 20

f 6p =3 d ,C Hy 1 00 f 0. 37 p d= ,C Hy 01 0. pf = 45

40

Cd Hy, 0.1

Cd Hy, 1.0

100 80 60

pf

10 1

2

3 4

6

8 10

20 30 40

60

100

200

400 600 1000

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.67 February 2003

o.d. 1.350 i.d. 0.920/ht. 0.350 Dimensions Outside Diameter

CORNERS: 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.350 in 34.29 mm

0.920 in 23.37 mm

0.350 in 8.89 mm

After Coating (Blue Epoxy)

1.382 in Max. 35.10 mm Max.

0.888 in Min. 22.56 mm Min.

0.387 in Max. 9.83 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.0704 in2 0.454 cm2

3.523 in 8.948 cm

0.2485 in3 4.0633 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.6193 in2 3.9956 cm2 788,544 cmil

0.081 lbs 35 g

1.24 in 3.16 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

9 16 38 47 56 79 93 101 109 130

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-347009-2 A-346016-2 A-345038-2 — — A-585079-2 A-149093-2 A-304101-2 A-177109-2 A-212130-2

HF-135014-2 HF-135026-2 HF-135060-2 — — HF-135125-2 HF-135147-2 HF-135160-2 — —

— MS-135026-2 MS-135060-2 MS-135075-2 MS-135090-2 MS-135125-2 — — — —

0.38 0.20 0.082 0.066 0.055 0.040 0.034 0.031 0.029 0.024

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.68 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

61 76 95 118 148 185 231 288 358 446 559 692 863 1073 1339 1655 2069 2539

0.01185 0.01836 0.0285 0.0443 0.0691 0.1068 0.1667 0.259 0.402 0.625 0.984 1.514 2.37 3.69 5.80 8.95 14.13 21.5

27 30 34 38 43 49 55 61 69 77 87 96 108 121 135 150 168 186

0.00533 0.00740 0.0102 0.0143 0.0199 0.0277 0.0388 0.0541 0.0754 0.105 0.148 0.206 0.288 0.404 0.569 0.789 1.11 1.53

3.35 3.70 4.06 4.49 4.96 5.49 6.07 6.73 7.44 8.26 9.17 10.1 11.2 12.5 13.9 15.3 17.0 18.8

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36

3188 3967 4856 6080 7627 9558 11918

Rdc' Ω 34.3 53.6 81.0 128.4 204.0 323.0 503.0

Single Layer Winding Turns 208 230 253 282 319 356 396

Rdc' Ω 2.17 3.01 4.10 5.78 8.27 11.6 16.2

lw' ft. 20.9 23.0 25.3 28.1 31.7 35.2 39.1

o.d. 1.350 Molypermalloy Q Curves 1000 800 600

i.d. 0.920/ht. 0.350 1000 800 600

14µµ

400

400

300

300

200

200

300

300

200

200

Q

3 4

6 8 10

20 30 40

60

100

0.0 1H y, C

3 4

6 8 10

20 30 40

60

100

200

40 30 20 10 0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

=

2

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µ 147µµ

400

205 µ 173µµ

300

300

200

200

0.0 1

Q

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

30 20 10 0.1

.2 .3 .4

.6 .8 1

2

3 4

0. 01

Hy ,

pf 29 = pf 25 Cd d= ,C Hy pf 1 0. d = 31 ,C Hy

20

40

f = 32 p

30

100 80 60

0 1.

40

d

Cd Hy, 10

Hy ,C

Q

pf pf 30 30 = d= ,C Hy 1 pf 0. = 30 , Cd Hy 1.0

100 80 60

10 0.1

d

pf f 8 34 p d= ,C Hy 0.1 = 33 pf

2

400 600 1000

Cd Hy, 1.0

f 0p =3 d ,C Hy 1 00 f 0. 31 p d= ,C Hy 01 0. pf = 30

35

1

100 80 60

Cd Hy, 0.1

d= Hy, C 1.0

10

200

125 µµ

Q

20

pf 31

1000 800 600 400

30

d= y, C

pf

2

Frequency-Kilohertz

60 µµ

40

1H

1

400

100 80 60

00

10

400 600 1000

Frequency-Kilohertz 1000 800 600

0.

200

= 31

100

f 30 p

60

20

d y, C 1H 0.0

20 30 40

f 35 p

6 8 10

d= ,C Hy 0.1

3 4

d= ,C Hy

2

30

pf 30

1

40

d=

20

pf

f 35 p

= 29

30

y, C

, Cd Hy

d=

40

1.

100 80 60

0

1 0.0

,C Hy 0.1

100 80 60

Q

H 01 0.0

Q

10

26 µµ

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.69 February 2003

o.d. 1.410 i.d. 0.880/ht. 0.412 Dimensions Outside Diameter

CORNERS: 0.063 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.410 in 35.81 mm

0.880 in 22.35 mm

0.412 in 10.46 mm

After Coating (Blue Epoxy)

1.442 in Max. 36.63 mm Max.

0.848 in Min. 21.54 mm Min.

0.444 in Max. 11.28 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.1051 in2 0.678 cm2

3.54 in 8.98 cm

0.3721 in3 6.0884 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.5648 in2 3.6438 cm2 719,104 cmil

0.112 lbs 51 g

1.46 in 3.72 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

13 24 56 70.2 84.3 117 138 150 162 192

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-080013-2 A-078024-2 A-076056-2 — — A-324117-2 A-150138-2 A-305150-2 A-178162-2 A-213192-2

HF-141014-2 HF-141026-2 HF-141060-2 — — HF-141125-2 HF-141147-2 HF-141160-2 — —

— MS-141026-2 MS-141060-2 MS-141075-2 MS-141090-2 MS-141125-2 — — — —

0.32 0.17 0.074 0.060 0.050 0.035 0.030 0.028 0.026 0.022

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.70 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

55 69 87 108 135 169 211 263 327 408 511 632 788 980 1223 1512 1890 2319

0.01241 0.01927 0.0300 0.0467 0.0730 0.1131 0.1768 0.275 0.427 0.666 1.050 1.617 2.53 3.95 6.22 9.59 15.16 23.0

25 29 32 37 41 46 52 58 65 74 82 92 103 115 129 143 160 177

0.00579 0.00809 0.0112 0.0157 0.0220 0.0306 0.0429 0.0600 0.0837 0.117 0.166 0.229 0.322 0.452 0.637 0.885 1.25 1.71

3.65 4.04 4.45 4.93 5.47 6.06 6.72 7.46 8.27 9.19 10.2 11.3 12.5 14.0 15.5 17.2 19.1 21.1

AWG

Full Winding (Half of I.D. Remaining) Turns

30 31 32 33 34 35 36

2913 3623 4435 5554 6967 8730 10886

Rdc' Ω 36.8 57.7 87.1 139.1 220.0 348.0 543.0

Single Layer Winding Turns 199 219 242 270 305 340 378

Rdc' Ω 2.44 3.39 4.61 6.51 9.32 13.1 18.3

lw' ft. 23.5 25.9 28.5 31.7 35.7 39.7 44.0

Page 47

o.d. 1.410 Molypermalloy Q Curves 1000 800 600

i.d. 0.880/ht. 0.412 1000 800 600

14 µ

400

400

300

300 200

200

0.

2

3 4

6 8 10

10 0.1

20 30 40 60 100

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

200

Q

38 pf

20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

100 80 60 40 30 20 10 0.1

0.

pf 36 = pf Cd 37 y, H d= ,C Hy 1 7 pf 0. =3 Cd y, 0H 1. f = 41 p

30

H

Cd Hy, 10

40

0. 01

Q

pf 35 = f 1p Cd =4 y, Cd y, 1H 0. pf = 39

Cd Hy, 1.0

Cd = Hy, 10

100 80 60

10 0.1

.6 .8 1

pf

20

f 38 p

30

d 38

40

Hy ,C

=

.6 .8 1

pf 35

100 80 60

= 45 pf

.2 .3 .4

d=

f

pf

10 0.1

C y,

0.0 1

200

Q

= Cd y, 1H 0.

20

400 600 1000

300

43 pf

= 38

30

200

Cd Hy, 1.0

40

100

125 µµ

d= Hy, C 10

Cd Hy, 1.0

100 80 60

1H 00

Q

20 30 40 60

400

pf 41 = pf Cd y, = 40 , Cd Hy 0.1

0.001 Hy , 0.0 Cd = 1 33 H p

200

2 pf =4

60 µµ

300

8 10

P

Frequency-Kilohertz 1000 800 600

400

6

d y, C

3 4

1H 0.0

2

Frequency-Kilohertz 1000 800 600

pf

10 1

400 600 1000

= 41

20

pf

200

Cd Hy, 0.1

100

30

= 39

20 30 40 60

d y, C 0H 1.

8 10

Page 47

40

pf 39

6

d=

3 4

pf

pf

2

= 39

20

pf

45

= 38

d= ,C Hy

30

100 80 60

y, C

1.0

40

d y, C 1H 0.0

, Cd Hy 0.1

100 80 60

Q

H 01 0.0

Q

10 1

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

01

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.71 February 2003

o.d. 1.570 i.d. 0.950/ht. 0.570 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.570 in 39.88 mm

0.950 in 24.13 mm

0.570 in 14.48 mm

After Coating (Blue Epoxy)

1.602 in Max. 40.69 mm Max.

0.918 in Min. 23.32 mm Min.

0.605 in Max. 15.37 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.1662 in2 1.072 cm2

3.877 in 9.848 cm

0.6449 in3 10.5485 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.6619 in2 4.2702 cm2 842,724 cmil

0.206 lbs 92 g

1.87 in 4.76 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

19 35 81 101 121 168 198 215 233 276

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-086019-2 A-085035-2 A-083081-2 — — A-254168-2 A-151198-2 A-306215-2 A-179233-2 A-214276-2

HF-157014-2 HF-157026-2 HF-157060-2 — — HF-157125-2 HF-157147-2 HF-157160-2 — —

— MS-157026-2 MS-157060-2 MS-157075-2 MS-157090-2 MS-157125-2 — — — —

0.24 0.13 0.060 0.045 0.038 0.027 0.023 0.021 0.019 0.016

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.72 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

— — 65 81 101 126 158 197 247 307 383 477 597 739 921 1145 1429 1767

— — 0.01803 0.0281 0.0438 0.0683 0.1071 0.1662 0.260 0.406 0.632 0.986 1.557 2.40 3.77 5.88 9.26 14.31

22 25 28 31 35 40 45 50 57 64 71 80 90 100 112 125 140 155

0.00389 0.00545 0.00762 0.0107 0.0148 0.0208 0.0292 0.0408 0.0574 0.0804 0.112 0.158 0.223 0.309 0.435 0.611 0.862 1.20

3.89 4.32 4.80 5.33 5.88 6.55 7.27 8.08 8.98 9.99 11.1 12.4 13.8 15.2 16.9 18.9 21.0 23.3

AWG

Full Winding (Half of I.D. Remaining) Turns

28 29 30 31 32 33 34 35

2209 2710 3404 4234 5183 6491 8142 10202

Rdc' Ω 22.6 34.4 55.1 86.3 130.4 207.0 329.0 521.0

Single Layer Winding Turns 174 192 215 238 262 292 330 368

Rdc' Ω 1.69 2.32 3.31 4.60 6.26 8.85 12.7 17.8

lw' ft. 25.9 28.6 31.9 35.1 38.7 43.0 48.5 54.0

Page 49

o.d. 1.570 Molypermalloy Q Curves 1000 800 600

i.d. 0.950/ht. 0.570 1000 800 600

14 µ

400

400

300

300

10 1

400 600 1000

2

3 4

6

8 10

Frequency-Kilohertz 1000 800 600

60 µ

0.001 Hy ,C d = 0. 45 01 pf H

300 200

20 10 0.1

300

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

0. 01

200

Q 100 80 60 40 30 20 10 0.1

20 30 40 60 100

.2 .3 .4

.6 .8 1

Frequency-Kilohertz 1000 800 600 400

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

205 µµ 173 µµ

300

300

200

200

Q

30 20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

100 80 60 40 30 20 10 0.1

0.

pf 39 = Cd pf y, H 51 d= ,C Hy f 1 50 p 0. d= y, C 0H 1. f = 51 p

40

Q Cd Hy, 10

01

pf 47 = f Cd 48 p y, H d= ,C Hy 1 0. f 48 p d= y, C 0H 1. pf = 55

0.

, Cd Hy 10

100 80 60

10 0.1

2

H

pf 44 = Cd pf y, = 54 Cd Hy, 0.1 = 52 pf

30

400 600 1000

Cd Hy, 1.0

40

200

125 µ

50 pf y, Cd = 10 H

100 80 60

100

400

d y, C 0H 1.

pf 48 = Cd f y, 48 p d= y, C 1H 0. pf = 57

Q

20 30 40 60

Frequency-Kilohertz 1000 800 600

400

pf 48

200

0 pf =5

100

d= ,C Hy

20 30 40 60

1 00 0.

8 10

d y, C 1H 0.0

6

pf

3 4

20

= 49

2

30

f 58 p

10 1

1

Page 49

40

f

f 54 p

20

100 80 60

d= ,C Hy

30

p 55

d= ,C Hy

40

200

Q Cd Hy, 0.1

1.0

d= y, C 0H 1.

100 80 60

d y, C 1H 0.0

Q

.0

f 6p =4 Cd y, 1H 00 7 pf 0. =4

200

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

01

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.73 February 2003

Pag

o.d. 1.840 i.d. 0.950/ht. 0.710 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.840 in 46.74 mm

0.950 in 24.13 mm

0.710 in 18.03 mm

After Coating (Blue Epoxy)

1.875 in Max. 47.63 mm Max.

0.918 in Min. 23.32 mm Min.

0.745 in Max. 18.92 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.308 in2 1.990 cm2

4.230 in 10.743 cm

1.303 in3 21.373 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.6619 in2 4.2702 cm2 842,724 cmil

0.396 lbs 180 g

2.42 in 6.16 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

32 59 135 169 202 281 330 360 390 462

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-088032-2 A-087059-2 A-759135-2 — — A-438281-2 A-152330-2 A-325360-2 A-180390-2 A-215462-2

HF-184014-2 HF-184026-2 HF-184060-2 — — HF-184125-2 HF-184147-2 HF-184160-2 — —

— MS-184026-2 MS-184060-2 MS-184075-2 MS-184090-2 MS-184125-2 — — — —

0.18 0.097 0.043 0.034 0.028 0.020 0.017 0.016 0.015 0.012

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.74 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

— — 65 81 101 126 158 197 247 307 383 477 597 739 921 1145 1429 1767

— — 0.02275 0.0355 0.0556 0.0868 0.1363 0.212 0.333 0.520 0.810 1.265 2.00 3.09 4.85 7.58 11.96 18.49

22 25 28 31 35 40 45 50 57 64 71 80 90 100 112 125 140 155

0.00488 0.00688 0.00966 0.0136 0.0189 0.0267 0.0375 0.0526 0.0740 0.104 0.146 0.205 0.290 0.403 0.567 0.798 1.13 1.57

4.89 5.45 6.08 6.78 7.51 8.38 9.34 10.4 11.6 12.9 14.4 16.0 17.9 19.8 22.1 24.6 27.5 30.4

AWG

Full Winding (Half of I.D. Remaining) Turns

28 29 30 31 32 33 34 35

2209 2710 3404 4234 5183 6491 8142 10202

Rdc' Ω 29.3 44.6 71.3 111.7 169.0 268.0 427.0 676.0

Single Layer Winding Turns 174 192 215 238 262 292 330 368

Rdc' Ω 2.22 3.04 4.34 6.03 8.22 11.6 16.6 23.5

lw' ft. 33.9 37.5 41.8 46.1 50.7 56.5 63.7 70.9

o.d. 1.840 Molypermalloy Q Curves 1000 800 600

i.d. 0.950/ht. 0.710 1000 800 600

14 µ

400

400

300

300

y, C 1H 00 0.

6 8 10

0. 01

200

Q 100 80 60 40 30 20 10 0.1

20 30 40 60 100

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

.6 .8 1

2

3 4

Hy

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

0. 01

Q

20

.2 .3 .4

.6 .8 1

2

3 4

y

6 8 10

Frequency-Kilohertz

20 30 40 60 100

100 80 60 40 30 20 10 0.1

0.

01

pf 63 = Cd pf y, 66 H d= ,C Hy 1 pf 0. = 74 , Cd Hy 1.0 f = 70 p

30

H

Cd Hy, 10

= 80 pf

40

200

Q

pf 67 = d pf 70 ,C d= ,C Hy 1 68 pf 0. Cd = Hy, 1.0

Cd Hy, 10

100 80 60

10 0.1

pf 69

3 4

125 µ

pf 65 = d f 65 p ,C d= ,C Hy 0.1 f = 78 p

2

400 600 1000

Cd Hy, 1.0

.6 .8 1

200

300

pf

.2 .3 .4

100

400

74 pf

pf

= 81

20

1000 800 600

d= Hy, C 10

30

= 84

d y, C 0H

40

10 0.1

d y, C 0H 1.

1

f pf 0p =7 d ,C pf Hy = 70 Cd Hy, 0.1

01

Q 100 80 60

d= ,C Hy

200

20 30 40 60

Frequency-Kilohertz

0.001 Hy ,C d = 63 0.

300

01

60 µ

400

8 10

pf

1000 800 600

6

0 .0

3 4

= 73

2

d y, C

10 1

400 600 1000

Frequency-Kilohertz

1H

200

pf

100

pf

20 30 40 60

= 73

30 20

8 10

Cd Hy, 0.1

= 70

6

pf

3 4

66

2

pf

10 1

40

f

f 79 p

20

69

30

83 p

d= ,C Hy

40

100 80 60

d y, C 0H 1.

1.0

d= ,C Hy

100 80 60

200

Q 0.0

0.1

Q

d=

d= ,C Hy 01 0.

200

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.75 February 2003

o.d. 1.840 i.d. 1.130/ht. 0.600 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

1.840 in 46.74 mm

1.130 in 28.70 mm

0.600 in 15.24 mm

After Coating (Blue Epoxy)

1.875 in Max. 47.63 mm Max.

1.098 in Min. 27.89 mm Min.

0.635 in Max. 16.13 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.208 in2 1.340 cm2

4.575 in 11.620 cm

0.9526 in3 15.584 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.9469 in2 6.1089 cm2 1,205,604 cmil

0.286 lbs 130 g

2.11 in 5.36 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

20 37 86 107 128 178 210 228 246 292

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-092020-2 A-091037-2 A-090086-2 — — A-089178-2 A-153210-2 A-326228-2 A-195246-2 A-216292-2

HF-185014-2 HF-185026-2 HF-185060-2 — — HF-185125-2 HF-185147-2 HF-185160-2 — —

— MS-185026-2 MS-185060-2 MS-185075-2 MS-185090-2 MS-185125-2 — — — —

0.17 0.090 0.039 0.031 0.026 0.019 0.016 0.015 0.014 0.011

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

— — 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.76 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

— — 92 115 144 180 225 280 351 437 544 678 849 1051 1310 1629 2033 2514

— — 0.0276 0.0430 0.0671 0.1047 0.1640 0.255 0.399 0.623 0.969 1.512 2.39 3.69 5.79 9.03 14.24 22.0

26 30 34 38 43 48 54 61 68 77 86 96 108 120 134 150 168 186

0.00505 0.00708 0.00990 0.0139 0.0193 0.0270 0.0380 0.0530 0.0745 0.104 0.146 0.205 0.290 0.402 0.565 0.795 1.12 1.56

5.05 5.61 6.23 6.92 7.64 8.50 9.45 10.5 11.7 13.0 14.4 16.0 17.9 19.8 22.0 24.6 27.3 30.3

AWG

Full Winding (Half of I.D. Remaining) Turns

28 29 30 31 32 33 34

3142 3855 4842 6024 7374 9234 11583

Rdc' Ω 34.8 52.9 84.7 132.7 201.0 318.0 506.0

Single Layer Winding Turns 208 231 258 285 314 350 395

Rdc' Ω 2.20 3.02 4.31 5.98 8.15 11.5 16.5

lw' ft. 33.7 37.2 41.5 45.7 50.3 56.0 63.1

o.d. 1.840 Molypermalloy Q Curves 1000 800 600

i.d. 1.130/ht. 0.600 1000 800 600

14 µ

400

400

300

300

200

200

0.

Q 100 80 60 40 30 20 10

20 30 40 60 100

0.1

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

.6 .8 1

2

3 4

Hy ,C

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

205 µµ 173 µµ

300

300

200

200

0.

40 30 20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

H

y,

20 30 40 60 100

100 80 60 40 30 20 10 0.1

0.

01

Hy ,

pf 51 = pf 52 Cd d= ,C Hy f 1 51 p 0. d= y, C 0H 1. f = 53 p

Cd Hy, 10

100 80 60

Q Cd Hy, 10

01

pf 48 = pf Cd 51 d= ,C Hy 1 0. f 58 p d= ,C Hy 1.0 = 55 pf

Q

10 0.1

pf 50

6 8 10

= Cd y,

3 4

200

pf 56 f = = 56 p d , Cd Hy 0.1 f = 54 p

2

pf

.6 .8 1

1H

.2 .3 .4

400 600 1000

Cd Hy, 1.0

20

0.0 1

300

p

63 pf

30

200

125 µ

d= Hy, C 10

40

100

400

Cd Hy, 1.0

100 80 60

10 0.1

1000 800 600

f pf 49 = Cd f y, 60 p d= y, C 1H 0. pf = 57

Q

00

200

= 51

300

20 30 40 60

Frequency-Kilohertz

0.00 1H y, Cd 0.0 = 1 46 H

400

8 10

d y, C

60 µ

6

1H

3 4

0 .0

2

Frequency-Kilohertz 1000 800 600

pf

pf

20 10 1

= 62

30

400 600 1000

Cd Hy, 0.1

200

= 59

100

, Cd Hy 1.0

20 30 40 60

40

pf 47

8 10

d=

6

100 80 60

,C Hy

3 4

01

2

Q

9 pf =5

53 pf

20

Cd

30

7 pf =5

d= ,C Hy .0

40

0 .0

1

Hy,

, Cd Hy 0.1

100 80 60

1 0.0

Q

10 1

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.77 February 2003

o.d. 2.000 i.d. 1.250/ht. 0.530 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

2.000 in 50.80 mm

1.250 in 31.75 mm

0.530 in 13.46 mm

After Coating (Blue Epoxy)

2.035 in Max. 51.69 mm Max.

1.218 in Min. 30.94 mm Min.

0.565 in Max. 14.35 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.194 in2 1.251 cm2

5.013 in 12.733 cm

0.9739 in3 15.929 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

1.165 in2 7.517 cm2 1,483,524 cmil

0.313 lbs 133 g

2.01 in 5.11 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

17 32 73 91.2 109 152 179 195 210 249

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-349017-2 A-348032-2 A-106073-2 — — A-715152-2 A-154179-2 A-327195-2 A-181210-2 A-217249-2

HF-200014-2 HF-200026-2 HF-200060-2 — — HF-200125-2 HF-200147-2 HF-200160-2 — —

— MS-200026-2 MS-200060-2 MS-200075-2 MS-200090-2 MS-200125-2 — — — —

0.15 0.080 0.035 0.028 0.023 0.017 0.014 0.013 0.012 0.010

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

p. 17.78 February 2003

Single Layer Winding

Turns

Rdc' Ω

Turns

Rdc' Ω

lw' ft.

— — 113 141 177 221 276 344 430 537 668 832 1042 1289 1608

— — 0.0324 0.0505 0.0788 0.1227 0.1922 0.298 0.467 0.728 1.133 1.768 2.79 4.31 6.76

30 33 38 43 48 54 60 68 76 85 95 107 120 133 149

0.00539 0.00754 0.0105 0.0147 0.0205 0.0287 0.0402 0.0562 0.0788 0.110 0.154 0.216 0.306 0.424 0.596

5.40 5.98 6.64 7.36 8.11 9.02 10.0 11.1 12.3 13.7 15.2 16.9 18.9 20.9 23.2

AWG

Full Winding (Half of I.D. Remaining) Turns

25 26 27 28 29 30 31 32 33

1999 2495 3084 3855 4730 5941 7391 9048 11330

Rdc' Ω 10.55 16.62 25.7 40.6 61.8 98.8 154.8 234.0 371.0

Single Layer Winding Turns 167 186 207 231 256 287 316 349 389

Rdc' Ω 0.838 1.18 1.64 2.32 3.18 4.53 6.29 8.57 12.1

lw' ft. 25.9 28.8 31.9 35.5 39.2 43.7 48.1 52.9 58.9

o.d. 2.000 Molypermalloy Q Curves 1000 800 600

i.d. 1.250/ht. 0.530 1000 800 600

14 µ

300

300

200

200

60 µ

300 200

3 4

6 8 10

9

pf

Q 100 80 60 40 30 20 10 0.1

20 30 40 60 100

.2 .3 .4

Frequency-Kilohertz 1000 800 600 400

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

205 µµ 173 µµ

300

300 200

0.

Q

20

.2 .3 .4

.6 .8 1

2

3 4

H

6 8 10

Frequency-Kilohertz

20 30 40 60 100

0.

100 80 60 40 30 20 10 0.1

01

pf 45 = pf d 49 ,C d= ,C Hy f 1 0. 54 p d= y, C 0H 1. = 52 pf

= 50 pf

30

1

Q Cd Hy, 10

40

200

00

pf 51 = pf Cd 52 y, d= ,C Hy pf 01 = 50 0. Cd Hy, 0.1

Cd Hy, 10

100 80 60

10 0.1

.6 .8 1

Hy ,

Cd Hy, 1.0

2

0. 01

200

54 pf

.6 .8 1

125 µ

300

f 2p =5

pf

.2 .3 .4

20 30 40 60 100

400

2 pf =5

= 50

10 0.1

Cd Hy, 0.1

Cd Hy, 1.0

20

6 8 10

pf 48 8 pf = =4 Cd Cd y, 1H 0. pf = 57

Q

30

3 4

y, Cd = 10 H

d ,C Hy 01

0.00 1H y, Cd = 0. 4

400

40

2

Frequency-Kilohertz 1000 800 600

100 80 60

.6 .8 1

f 5p

.2 .3 .4

Frequency-Kilohertz 1000 800 600

pf 54

10 0.1

=5

pf

20

p

d=

30

400 600 1000

,C Hy 0.1

= 51

200

d y, C 0H 1.

100

40

pf 50

20 30 40 60

100 80 60

d= ,C Hy

8 10

f 1p =5

6

Q

01

3 4

d y, C

2

1H

20

0 .0

f 57 p

f 49 p

30

d=

d= ,C Hy

40

10 1

,C Hy 0.1

0 1.

100 80 60

0 .0

Q

0.001 Hy, Cd = 0.0 53 1

26 µ

f

400

d ,C Hy

400

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

H y

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.79 February 2003

o.d. 2.250 i.d. 1.039/ht. 0.600 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

2.250 in 57.15 mm

1.039 in 26.39 mm

0.600 in 15.24 mm

After Coating (Blue Epoxy)

2.285 in Max. 58.04 mm Max.

1.007 in Min. 25.58 mm Min.

0.635 in Max. 16.13 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.3545 in2 2.2871 cm2

4.924 in 12.506 cm

1.745 in3 28.603 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

0.7964 in2 5.1383 cm2 1,014,049 cmil

0.55 lbs 249 g

3.23 in 8.20 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

32 60 138 172 207 287 338 368 398 460

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-710032-2 A-711060-2 A-712138-2 — — A-713287-2 A-714338-2 A-716368-2 A-717398-2 A-718460-2

HF-226014-2 HF-226026-2 HF-226060-2 — — HF-226125-2 HF-226147-2 HF-226160-2 — —

— MS-226026-2 MS-226060-2 MS-226075-2 MS-226090-2 MS-226125-2 — — — —

0.19 0.10 0.043 0.035 0.029 0.021 0.018 0.016 0.015 0.013

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.80 February 2003

Turns

Rdc' Ω

42 48 77 97 121 151 189 236 295 368 458 570 714 884 1102 1370 1710 2115

0.0113 0.0163 0.0330 0.0522 0.0821 0.129 0.205 0.321 0.507 0.797 1.25 1.96 3.11 4.83 7.62 11.9 18.9 29.2

Single Layer Winding Turns

Rdc' Ω

lw' ft.

24 27 31 35 39 44 49 56 62 70 78 88 98 110 123 137 154 171

0.00560 0.00788 0.0111 0.0156 0.0217 0.0305 0.0430 0.0602 0.0848 0.119 0.167 0.234 0.332 0.461 0.649 0.914 1.29 1.79

5.61 6.25 6.97 7.77 8.60 9.60 10.7 11.9 13.3 14.8 16.5 18.4 20.5 22.7 25.3 28.2 31.5 34.9

AWG

Full Winding (Half of I.D. Remaining) Turns

28 29 30 31 32

2643 3242 4073 5067 6202

Rdc' Ω 46.5 70.9 114.0 179.0 270.0

Single Layer Winding Turns 191 211 236 261 288

Rdc' Ω 2.54 3.49 4.97 6.91 9.42

lw' ft. 38.9 42.9 47.9 52.8 58.1

o.d. 2.250 Molypermalloy Q Curves

i.d. 1.039/ht. 0.600

Curves are currently not available. Please contact our Powder Core Application Engineer for curve information at 1-800-545-4578.

p. 17.81 February 2003

o.d. 2.250 i.d. 1.400/ht. 0.550 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

2.250 in 57.15 mm

1.400 in 35.56 mm

0.550 in 13.97 mm

After Coating (Blue Epoxy)

2.285 in Max. 58.04 mm Max.

1.368 in Min. 34.75 mm Min.

0.585 in Max. 14.86 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.224 in2 1.444 cm2

5.628 in 14.296 cm

1.261 in3 20.65 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

1.470 in2 9.483 cm2 1,871,424 cmil

0.385 lbs 175 g

2.15 in 5.47 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

18 33 75 93.6 112 156 185 200 218 259

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-096018-2 A-094033-2 A-488075-2 — — A-109156-2 A-155185-2 A-328200-2 A-182218-2 A-218259-2

HF-225014-2 HF-225026-2 HF-225060-2 — — HF-225125-2 HF-225147-2 HF-225160-2 — —

— MS-225026-2 MS-225060-2 MS-225075-2 MS-225090-2 MS-225125-2 — — — —

0.12 0.066 0.029 0.023 0.019 0.014 0.012 0.011 0.010 0.0084

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.82 February 2003

Turns

Rdc' Ω

— — 142 177 222 277 347 433 541 675 840 1046 1311 1622 2022 2514 3139 3880

— — 0.0435 0.0677 0.1057 0.165 0.258 0.401 0.628 0.980 1.525 2.38 3.76 5.80 9.11 14.22 22.4 34.6

Single Layer Winding Turns

Rdc' Ω

lw' ft.

34 38 43 48 54 61 68 76 86 96 107 120 135 150 168 188 210 233

0.00649 0.00908 0.0127 0.0177 0.0247 0.0346 0.0485 0.0678 0.0951 0.133 0.186 0.261 0.369 0.512 0.720 1.01 1.43 1.98

6.50 7.20 7.99 8.87 9.78 10.9 12.1 13.4 14.9 16.6 18.4 20.5 22.8 25.2 28.1 31.3 34.8 38.6

AWG

Full Winding (Half of I.D. Remaining) Turns

28 29 30 31 32

4850 5950 7473 9297 11380

Rdc' Ω 54.8 83.3 133.3 209.0 316.0

Single Layer Winding Turns 260 288 322 355 392

Rdc' Ω 2.80 3.85 5.48 7.62 10.4

lw' ft. 42.9 47.4 52.9 58.2 64.1

o.d. 2.250 Molypermalloy Q Curves 1000 800 600

i.d. 1.400/ht. 0.550 1000 800 600

14 µ

400

400

300

300

1H 00 0.

200

2

3 4

6 8 10

pf

.6 .8 1

f 53 p

.2 .3 .4

53

0.1

=

10

d

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

160 µµ 147 µµ

400

300

205 µµ 173 µµ

300

200

200

Q

0.

53 pf

20

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

Frequency-Kilohertz

20 30 40 60 100

100 80 60 40 30 20 10 0.1

0.

01

pf 50 = pf Cd 54 y, d= ,C Hy pf 1 = 53 0. , Cd Hy 1.0 = 57 pf

30

01

Cd Hy, 10

40

Q

pf 56 = 7 pf Cd =5 y, H Cd , Hy 1 0. 56 pf Cd = Hy, 1.0

d= Hy, C 10

100 80 60

10 0.1

f 8p =4

400

Cd Hy,

20

Hy ,C

pf

30

01

d= ,C Hy

20 30 40 60 100

40

Frequency-Kilohertz 1000 800 600

01

6 8 10

100 80 60

= 63

3 4

400 600 1000

1 0.

2

f

.6 .8 1

Q

Cd Hy, 1.0

.2 .3 .4

200

f = 60 p

20

0.

300

pf

= 55

30

200

125 µ

Cd Hy, 10

40

100

400

Cd Hy, 1.0

100 80 60

10 0.1

1000 800 600

pf 58 = pf Cd = 57 y, Cd Hy, 0.1 pf

Q

0p

200

20 30 40 60

Frequency-Kilohertz

0.00 1H y, Cd 0.0 = 1 54 H

300

=6

60 µ

400

8 10

0 .0

1000 800 600

6

d y, C 1H

3 4

0 .0

2

Frequency-Kilohertz

f 59 p

10 1

400 600 1000

= Cd

200

pf

100

Hy,

30 20

20 30 40 60

0 .1

40

= 56

8 10

Cd Hy, 1.0

6

pf 56

3 4

100 80 60

d=

2

Q

y, C

10 1

200

6 pf =5

f 52 p

20

pf 55

30

d=

40

d y, C 1H 0.0

d= y, C 0H 1.

100 80 60

,C Hy 0.1

Q

26 µ

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

H

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.83 February 2003

o.d. 3.063 i.d. 1.938/ht. 0.500 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

3.063 in 77.80 mm

1.938 in 49.23 mm

0.500 in 12.70 mm

After Coating (Blue Epoxy)

3.108 in Max. 78.94 mm Max.

1.888 in Min. 47.96 mm Min.

0.550 in Max. 13.97 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.2748 in2 1.7729 cm2

7.721 in 19.612 cm

2.122 in3 34.770 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

2.800 in2 18.062 cm2 3,564,544 cmil

0.64 lbs 290 g

2.36 in 5.99 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

16 30 68 85.2 102 142 167 182 197 233

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-335016-2 A-124030-2 A-123068-2 — — A-866142-2 A-156167-2 A-685182-2 A-183197-2 A-219233-2

HF-300014-2 HF-300026-2 HF-300060-2 — — HF-300125-2 HF-300147-2 HF-300160-2 — —

— MS-300026-2 MS-300060-2 MS-300075-2 MS-300090-2 MS-300125-2 — — — —

0.076 0.041 0.018 0.014 0.012 0.0086 0.0073 0.0067 0.0062 0.0052

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining) Turns

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p. 17.84 February 2003

— — 271 339 424 511 664 827 1034 1231 1605 1912 2504 3099 3863 4803 5996 7412 9265 11368

Single Layer Winding

Rdc,' Ω

Turns

— — 0.0908 0.1414 0.221 0.344 0.540 0.838 1.314 2.05 3.19 4.98 7.88 12.16 19.09 29.81 47.0 72.6 114.9 174.9

47 53 60 68 75 85 95 107 119 134 149 167 187 208 232 260 290 323 360 399

Rdc' Ω

lw' ft.

0.0100 0.0140 0.0196 0.0274 0.0381 0.0534 0.0749 0.105 0.147 0.206 0.288 0.404 0.570 0.792 1.11 1.56 2.21 3.07 4.33 5.95

10.0 11.1 12.3 13.7 15.1 16.8 18.6 20.7 23.0 25.6 28.4 31.6 35.2 39.0 43.3 48.3 53.8 59.6 66.4 73.2

o.d. 3.063 Molypermalloy Q Curves 1000 800 600

i.d. 1.938/ht. 0.500 1000 800 600

14µµ

300

300

pf

20

pf

pf

30

66

65

= 62

pf 59

pf 58

40

d=

Cd Hy, 1.0

d= ,C Hy

100 80 60

,C Hy 0.1

200

10 2

3 4

6

8 10

20 30 40 60

100

200

0.1

400 600 1000

.2 .3 .4

Frequency-Kilohertz 1000 800 600

0.

Q

01

10 1

d= y, C

f 66 p

20

1H

30

0 .0

d=

40

7 pf =5

,C Hy 1.0

100 80 60

Cd Hy, 0.1

Q

0 .0

200

26µµ

d= ,C Hy

400

01

400

60µµ

0. 01

400

200

6 8 10

20 30 40 60 100

0.

f 60 p

40

63 pf

30

pf

20

8 pf =6 Cd y, 1H f = 66 p y, Cd

= y, Cd 10 H

pf 61

100 80 60

H 1.0

Q

d=

= 57

20

200

=

,C Hy

d y, C

30

125µ µ

300

d

0 .1 H 1.0

40

3 4

400

C y, H

300

100 80 60

2

F Frequency-Kilohertz Kil h 1000 800 600

Q

.6 .8 1

10

10 0.1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

0.1

20 30 40 60 100

.2 .3 .4

1000 800 600

1000 800 600

147µ µ

400

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Frequency-Kilohertz

173µ µ

400

300

300

200

0.

Q

68 pf

20 10

pf 62 = d ,C pf 64 d= ,C Hy f 1 63 p 0. d= ,C Hy 1.0 pf = 59

30

d

Cd Hy, 10

40

Hy ,C

Q

pf 59 = pf 60 d= ,C Hy 0.1 58 pf Cd = Hy, 1.0

= y, Cd 10 H

100 80 60

200

01

100 80 60 40 30 20

0.

01

H y

10 0.1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

0.1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

205µ µ

400 300 200

Q

0.

6 8 10

pf

3 4

pf

2

58

.6 .8 1

= 68

.2 .3 .4

=

, Cd Hy

10 0.1

64 pf

20

d

30

H C y,

40

1

1 .0

= y, Cd 10 H

100 80 60

20 30 40 60 100

Frequency-Kilohertz Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.85 February 2003

o.d. 3.063 i.d. 1.938/ht. 0.625 Dimensions Outside Diameter

CORNERS: 0.094 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

3.063 in 77.80 mm

1.938 in 49.23 mm

0.625 in 15.88 mm

After Coating (Blue Epoxy)

3.108 in Max. 78.94 mm Max.

1.888 in Min. 47.96 mm Min.

0.675 in Max. 17.15 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.3440 in2 2.2192 cm2

7.721 in 19.612 cm

2.656 in3 43.523 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

2.800 in2 18.062 cm2 3,564,544 cmil

0.83 lbs 377 g

3.90 in 9.90 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

19.9 37.0 85.3 107 128 178 209 228 246 284

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-735020-2 A-736037-2 A-737085-2 — — A-740178-2 A-741209-2 A-742228-2 A-743246-2 A-744284-2

HF-301014-2 HF-301026-2 HF-301060-2 — — HF-301125-2 HF-301147-2 HF-301160-2 — —

MS-301014-2 MS-301026-2 MS-301060-2 MS-301075-2 MS-301090-2 MS-301125-2 — — — —

0.10 0.056 0.024 0.019 0.016 0.012 0.010 0.0090 0.0083 0.0072

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining) Turns

10 11 12 13 14 15 16 17 18 19 20 21

p. 17.86 February 2003

— — 275 345 424 532 664 829 1036 1289 1608 2001

Rdc,' Ω — — 0.142 0.224 0.347 0.549 0.867 1.36 2.15 3.37 5.27 8.32

Single Layer Winding Turns 47 53 60 68 75 85 95 107 119 134 149 167

Rdc' Ω

lw' ft.

0.0110 0.0154 0.0216 0.0302 0.0420 0.0590 0.0829 0.116 0.163 0.228 0.318 0.449

11.0 12.2 13.6 15.1 16.7 18.5 20.6 22.9 25.5 28.4 31.5 35.1

Heavy Film Magnet Wire Winding Data (Approximate) AWG

22 23 24 25 26 27 28 29

Full Winding (Half of I.D. Remaining)

Single Layer Winding

Turns

Rdc,' Ω

Turns

2499 3081 3829 4793 5951 7322 9116 11126

13.1 20.3 32.0 50.4 79.2 122 193 293

187 208 232 260 290 323 360 399

Rdc' Ω 0.634 0.880 1.24 1.74 2.45 3.41 4.82 6.62

lw' ft. 39.1 43.3 48.2 53.8 59.9 66.3 73.9 81.5

o.d. 3.063 Molypermalloy Q Curves

i.d. 1.938/ht. 0.625

Curves are currently not available. Please contact our Powder Core Application Engineer for curve information at 1-800-545-4578.

p. 17.87 February 2003

o.d. 4.000 i.d. 2.250/ht. 0.535 Dimensions Outside Diameter

CORNERS: 0.125 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

4.000 in 101.60 mm

2.250 in 57.15 mm

0.535 in 13.59 mm

After Coating (Blue Epoxy)

4.050 in Max. 102.87 mm Max.

2.195 in Min. 55.75 mm Min.

0.585 in Max. 14.86 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.4606 in2 2.9716 cm2

9.555 in 24.271 cm

4.401 in3 72.122 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

3.784 in2 24.413 cm2 4,818,025 cmils

1.21 lbs 550 g

3.05 in 7.76 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ

21.5 40.0 92.3 115 139 192 226 246 266 308

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-651022-2 A-126040-2 A-652092-2 — — A-653192-2 A-654226-2 A-655246-2 A-656266-2 A-657308-2

HF-401014-2 HF-401026-2 HF-401060-2 — — HF-401125-2 HF-401147-2 HF-401160-2 — —

— MS-401026-2 MS-401060-2 MS-401075-2 MS-401090-2 MS-401125-2 — — — —

0.055 0.029 0.013 0.010 0.0086 0.0062 0.0053 0.0048 0.0045 0.0039

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining) Turns

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.88 February 2003

— — 366 457 573 716 896 1116 1396 1740 2166 2698 3380 4183 5215 6483 8094 10004

Single Layer Winding

Rdc' Ω

Turns

— — 0.1567 0.244 0.383 0.598 0.939 1.461 2.29 3.59 5.59 8.74 13.83 21.4 33.6 52.5 82.8 128.1

56 63 70 79 88 99 111 124 139 156 174 195 218 242 271 303 338 376

Rdc' Ω

lw' ft.

0.0147 0.0207 0.0289 0.0406 0.0565 0.0794 0.112 0.156 0.219 0.308 0.431 0.605 0.856 1.19 1.67 2.35 3.32 4.62

14.8 16.4 18.2 20.3 22.4 25.0 27.8 30.9 34.4 38.3 42.5 47.4 52.8 58.6 65.1 72.7 81.0 89.7

o.d. 4.000 Molypermalloy Q Curves 1000 800 600

i.d. 2.250/ht. 0.535

26µµ

400

d= ,C Hy 01 0.

300 200

= 84

30 20

pf 88

40

7 pf =8

Cd Hy, 1.0

100 80 60

Cd Hy, 0.1

Q

pf

10 0.1

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.89 February 2003

o.d. 4.000 i.d. 2.250/ht. 0.650 Dimensions Outside Diameter

CORNERS: 0.125 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

4.000 in 101.60 mm

2.250 in 57.15 mm

0.650 in 16.51 mm

After Coating (Blue Epoxy)

4.050 in Max. 102.87 mm Max.

2.195 in Min. 55.75 mm Min.

0.700 in Max. 17.78 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.5460 in2 3.5226 cm2

9.555 in 24.271 cm

5.217 in3 85.495 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

3.784 in2 24.413 cm2 4,818,025 cmil

1.61 lbs 730 g

3.29 in 8.35 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

25.6 47.4 112 137 164 228 268 292 316 374

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-658026-2 A-659047-2 A-125112-2 — — A-542228-2 A-157268-2 A-660292-2 A-184316-2 A-220374-2

HF-400014-2 HF-400026-2 HF-400060-2 — — HF-400125-2 HF-400147-2 HF-400160-2 — —

— MS-400026-2 MS-400060-2 MS-400075-2 MS-400090-2 MS-400125-2 — — — —

0.049 0.027 0.011 0.0092 0.0076 0.0055 0.0047 0.0043 0.0040 0.0034

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining) Turns

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p. 17.90 February 2003

— — 366 457 573 716 896 1116 1396 1740 2166 2698 3380 4183 5215 6483 8094 10004

Single Layer Winding

Rdc' Ω

Turns

— — 0.1678 0.262 0.410 0.641 1.008 1.569 2.47 3.85 6.01 9.40 14.88 25.0 36.1 56.5 89.2 137.9

56 63 70 79 88 99 111 124 139 156 174 195 218 242 271 303 338 376

Rdc' Ω

lw' ft.

0.0158 0.0222 0.0311 0.0436 0.0608 0.0854 0.120 0.168 0.236 0.332 0.464 0.653 0.924 1.28 1.81 2.54 3.59 4.99

15.8 17.6 19.6 21.8 24.1 26.9 29.9 33.3 37.0 41.3 45.8 51.1 57.0 63.2 70.3 78.5 87.5 96.9

o.d. 4.000 Molypermalloy Q Curves 1000 800 600

i.d. 2.250/ht. 0.650 1000 800 600

60µµ

125µ µ

400

400

0. 0

300

.2 .3 .4

.6 .8 1

2

3 4

6 8 10

0.1

20 30 40 60 100

.2 .3 .4

147µ µ

0.1 Hy, Cd =9 1.0 7p Hy f ,

300

20 30 40 60 100

1000 800 600

173µ µ

0.1 H y, C d= 1.0 85 Hy pf ,

400 300

Q

20

pf

30

20

f 3p 10

40

30

=

100 80 60

= 99

40

6 8 10

Cd

100 80 60

3 4

Cd Hy, 10

Q

2

200

pf 95 = Cd 92 pf Cd = Hy, 10

200

.6 .8 1

Frequency-Kilohertz

Frequency-Kilohertz

10

10 0.01 .02 .03 .04 .06 .08 .1

.2 .3 .4

.6 .8 1

2

3 4

6

8 10

0.01 .02 .03 .04 .06 .08 .1

.2 .3 .4

.6 .8 1

2

3 4

6

8 10

Frequency-Kilohertz

Frequency-Kilohertz 1000 800 600

f 90 p

0.1

400

pf

10

10

1000 800 600

= 89

20

d= ,C Hy

30

pf

20

1 0.

40

Cd Hy, 1.0

30

100 80 60

105 pf

= 92

40

Q

= y, Cd 10 H

100 80 60

200

Cd Hy, 1.0

Cd Hy, 10

Q

300

f 8p =9 d ,C pf Hy 99 1 d= ,C Hy 0.1 pf = 97

200

205µ µ 0.1 Hy ,C d = 1. 92 0

400 300 200

pf

pf 91 d= ,C 87 pf Hy Cd = Hy, 10

Q 100 80 60 40 30 20 10 0.01 .02 .03 .04 .06 .08 .1

.2 .3 .4

.6 .8 1

2

3 4

6

8 10

Frequency-Kilohertz

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.91 February 2003

o.d. 5.218 i.d. 3.094/ht. 0.800 Dimensions Outside Diameter

CORNERS: 0.125 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

5.218 in 132.54 mm

3.094 in 78.59 mm

0.800 in 20.32 mm

After Coating (Blue Epoxy)

5.274 in Max. 133.96 mm Max.

3.033 in Min. 77.04 mm Min.

0.855 in Max. 21.72 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

0.8288 in2 5.3471 cm2

12.767 in 33.12 cm

10.58 in3 173.40 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

7.225 in2 46.612 cm2 9,199,089 cmil

3.19 lbs 1450 g

3.97 in 10.09 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 205µ

26 54 124 155 187 259 304 332 358 425

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-430026-2 A-129054-2 A-128124-2 — — A-127259-2 A-158304-2 A-661332-2 A-185358-2 A-221425-2

HF-520014-2 HF-520026-2 HF-520060-2 — — HF-520125-2 HF-520147-2 HF-520160-2 — —

— MS-520026-2 MS-520060-2 MS-520075-2 MS-520090-2 MS-520125-2 — — — —

0.031 0.015 0.0064 0.0052 0.0043 0.0031 0.0026 0.0024 0.0022 0.0019

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining) Turns

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

p. 17.92 February 2003

— — 695 869 1088 1360 1702 2121 2652 3307 4116 5127 6421 7947 9908 12318

Rdc' Ω — — 0.382 0.598 0.937 1.467 2.31 3.60 5.65 8.84 13.80 21.6 34.2 52.9 83.2 130.1

Single Layer Winding Turns 78 88 98 110 123 138 155 173 193 216 241 270 302 336 375 420

Rdc' Ω

lw' ft.

0.0266 0.0374 0.0524 0.0735 0.103 0.144 0.203 0.284 0.400 0.562 0.786 1.11 1.56 2.17 3.06 4.31

26.6 29.6 33.0 36.7 40.6 45.3 50.5 56.2 62.6 69.8 77.6 86.5 96.5 107 119 133

o.d. 5.218 Molypermalloy Q Curves 1000 800 600

i.d. 3.094/ht. 0.800 1000 800 600

14 µµ

200

10 20 30 40 60 100

0.1

.2 .3 .4

Frequency-Kilohertz 1000 800 600

.6 .8 1

2

3 4

6 8 10

20 30 40 60 100

Frequency-Kilohertz 1000 800 600

60 µµ

400

300

300

200

0.1 Hy, Cd

=1 10 1.0 pf Hy

125µµ

d ,C

400

.6 .8 1

2

3 4

6 8 10

40

0 pf = 12

.2 .3 .4

Cd

0.1

100 80 60

Hy,

10

117 pf

20

Cd =

1 pf = 12

30

Hy,

y, Cd

40

Q

0.1

1.0

H 10

100 80 60

pf 09 f =1 = 105 p y, Cd 10 H

200

Q

30 20 10

20 30 40 60 100

0.01 .02 .03 .04 .06 .08 .1

Frequency-Kilohertz 1000 800 600

300

1000 800 600

2

3 4

6

8 10

200

f 3p 10

30

pf

20

20

=

= 123

40

d ,C

Cd Hy, 10

f 8p 11

100 80 60

pf

30

0.1 Hy ,C d= 1.0 12 Hy 7 pf

Q

=

40

173 µµ

300

= 114

100 80 60

.6 .8 1

400

Cd

Cd Hy, 10

200

Q

.2 .3 .4

Frequency-Kilohertz

0.1 Hy , Cd =1 1.0 18 Hy , pf

147µµ

400

pf

20

150

6 8 10

30

d=

3 4

40

f 24 p =1

2

Cd

.6 .8 1

Hy,

.2 .3 .4

0 .1

0.1

f 20 p =1

10

, Cd Hy 1.0

20

9 pf = 10

5 pf = 10

30

pf

Cd

d y, C

40

100 80 60

1 10

Hy,

H 1.0

100 80 60

200

Q

d=

0.1

Q

300

y, C 1H 0.0

300

26 µµ

400

y, C 1H 0.0

400

10

10 0.01 .02 .03 .04 .06 .08 .1

.2 .3 .4

.6 .8 1

2

3 4

6

8 10

Frequency-Kilohertz 1000 800 600

0.01 .02 .03 .04 .06 .08 .1

.2 .3 .4

.6 .8 1

2

3 4

6

8 10

Frequency-Kilohertz

205 µµ 1.0 Hy ,C d

400 300 200

=

Cd Hy, 10

Q

1

pf

= 10

100 80 60

11

40

7 pf

30 20 10 0.01 .02 .03 .04 .06 .08 .1

.2 .3 .4

.6 .8 1

2

3 4

6

8 10

Frequency-Kilohertz Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.93 February 2003

o.d. 5.218 i.d. 3.094/ht. 1.000 Dimensions Outside Diameter

CORNERS: 0.125 Approx. Radius (Typical)

Inside Diameter

Height

Before Coating Nominal

5.218 in 132.54 mm

3.094 in 78.59 mm

1.000 in 25.40 mm

After Coating (Blue Epoxy)

5.274 in Max. 133.96 mm Max.

3.033 in Min. 77.04 mm Min.

1.055 in Max. 26.80 mm Max.

Physical Specifications Effective Cross Sectional Area of Magnetic Path, Ae (Reference)

Effective Magnetic Path Length, le (Reference)

Effective Core Volume, Ve (Reference)

1.040 in2 6.710 cm2

12.767 in 32.429 cm

13.28 in3 217.58 cm3

Minimum Window Area (Reference)

Approximate Weight of Finished 125µ MPP Core

Approximate Mean Length of Turn for Full Winding (Half of I.D. Remaining)

7.225 in2 46.612 cm2 9,199,089 cmil

4.00 lbs 1820 g

4.37 in 11.10 cm

Electrical Specifications

Nominal Permeability

Inductance Factor, mH +/- 8% for 1000 turns

14µ 26µ 60µ 75µ 90µ 125µ 147µ 160µ 173µ 200µ

36.4 67.6 156 195 234 325 382 416 450 520

Approximate Ratio of DC Resistance to Inductance for Full Winding (Half of I.D. Remaining), Ω/mH

Part Numbers Molypermalloy

HI-FLUX

SUPER-MSS

A-662036-2 A-663068-2 A-664156-2 — — A-665325-2 A-666382-2 A-667416-2 A-668450-2 A-669520-2

HF-521014-2 HF-521026-2 HF-521060-2 — — HF-521125-2 HF-521147-2 HF-521160-2 — —

— MS-521026-2 MS-521060-2 MS-521075-2 MS-521090-2 MS-521125-2 — — — —

0.024 0.013 0.0056 0.0045 0.0037 0.0027 0.0023 0.0021 0.0020 0.0017

Heavy Film Magnet Wire Winding Data (Approximate) AWG

Full Winding (Half of I.D. Remaining) Turns

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

p. 17.94 February 2003

— — 695 869 1088 1360 1702 2121 2652 3307 4116 5127 6421 7947 9908 12318

Rdc' Ω — — 0.420 0.658 1.03 1.61 2.54 3.96 6.22 9.73 15.2 23.8 37.6 58.2 91.6 143

Single Layer Winding Turns 78 88 98 110 123 138 155 173 193 216 241 270 302 336 375 420

Rdc' Ω

lw' ft.

0.0292 0.0410 0.0576 0.0809 0.113 0.159 0.224 0.313 0.441 0.620 0.867 1.22 1.73 2.40 3.38 4.76

29.2 32.5 36.3 40.4 44.7 49.9 55.6 62.0 69.0 77.0 85.6 95.6 107 118 132 147

o.d. 5.218 Molypermalloy Q Curves

i.d. 3.094/ht. 1.000

Curves are currently not available. Please contact our Powder Core Application Engineer for curve information at 1-800-545-4578.

Typical Molypermalloy Q vs. frequency curves at indicated inductance and distributed capacitance.

p. 17.95 February 2003

Index Molybdenum Permalloy Powder A Material

MPP



206

068

Catalog Number

Inductance

Page No.

A-050056-2..............46 A-051027-2..............46 A-052012-2..............46 A-053006-2..............46 A-057008-2..............52 A-059043-2..............54 A-060019-2............. 54 A-062010-2............. 54 A-066032-2............. 60 A-068018-2............. 60 A-071065-2..............66 A-073028-2..............66 A-074015-2..............66 A-076056-2............. 70 A-078024-2............. 70 A-080013-2............. 70 A-083081-2............. 72 A-085035-2............. 72 A-086019-2............. 72 A-087059-2............. 74 A-088032-2............. 74 A-089178-2............. 76 A-090086-2............. 76 A-091037-2............. 76 A-092020-2............. 76 A-094033-2............. 82 A-096018-2............. 82 A-106073-2............. 78 A-109156-2............. 82 A-123068-2............. 84 A-124030-2............. 84 A-125112-2............. 88 A-126040-2............. 86 A-127259-2............. 90 A-128124-2............. 90 A-129054-2............. 90 A-134103-8............. 32 A-135050-8............. 32 A-137052-8............. 36 A-138025-8............. 36 A-143067-2............. 46 A-144081-2............. 52 A-145185-2............. 60 A-147106-2............. 54 A-148150-2............. 64 A-149093-2............. 68 A-150138-2............. 70 A-151198-2............. 72 A-152330-2............. 74 A-153210-2............. 76 A-154179-2............. 78

p. 17.96 February 2003



2 Finish

MPP

Page No.

A-155185-2............. 82 A-156167-2............. 84 A-157268-2............. 88 A-158304-2............. 90 A-162129-2............. 62 A-166151-2............. 62 A-172079-2............. 46 A-173096-2............. 52 A-174124-2............. 54 A-175217-2............. 60 A-176176-2............. 64 A-177109-2............. 68 A-178162-2............. 70 A-179233-2............. 72 A-180390-2............. 74 A-181210-2............. 78 A-182218-2............. 82 A-183197-2............. 84 A-184316-2............. 88 A-185358-2............. 90 A-187010-2............. 50 A-188019-2............. 50 A-189043-2............. 50 A-190089-2............. 50 A-193105-2............. 50 A-194123-2............. 50 A-195246-2............. 76 A-197109-2............. 62 A-200170-8............. 32 A-201086-8............. 36 A-202109-8............. 40 A-203088-2............. 44 A-204093-2............. 46 A-205146-2............. 50 A-206068-2............. 52 A-207113-2............. 52 A-208147-2............. 54 A-209257-2............. 60 A-210180-2............. 62 A-211208-2............. 64 A-212130-2............. 68 A-213192-2............. 70 A-214276-2............. 72 A-215462-2............. 74 A-216292-2............. 76 A-217249-2............. 78 A-218259-2............. 82 A-219233-2............. 84 A-220374-2............. 88 A-221425-2............. 90 A-222144-8............. 32

MPP

Page No.

A-223073-8............. 36 A-224122-8............. 32 A-225062-8............. 36 A-238092-2............. 42 A-239078-2............. 42 A-240084-8............. 40 A-241083-2............. 52 A-244092-8............. 40 A-245078-8............. 40 A-246066-8............. 40 A-247032-8............. 40 A-248014-8............. 40 A-249007-8............. 40 A-250053-8............. 38 A-251074-2............. 44 A-252063-2............. 44 A-253053-2............. 44 A-254168-2............. 72 A-255026-2............. 44 A-256011-2............. 44 A-257006-2............. 44 A-261045-2............. 46 A-262123-2............. 48 A-263104-2..............48 A-264088-2............. 48 A-266036-2............. 48 A-267015-2............. 48 A-268008-2............. 48 A-271087-2............. 52 A-272173-2............. 56 A-281072-2............. 48 A-285092-2............. 48 A-291061-2............. 64 A-292066-2............. 42 A-298028-2............. 64 A-300115-2............. 54 A-301072-2............. 46 A-302201-2............. 60 A-303163-2............. 64 A-304101-2............. 68 A-305150-2............. 70 A-306215-2............. 72 A-307032-2............. 42 A-308084-2............. 42 A-309105-2............. 42 A-310090-2............. 54 A-324117-2............. 70 A-325360-2............. 74 A-326228-2............. 76 A-327195-2............. 78 A-328200-2............. 82

MPP

Page No.

A-330170-2............. 58 A-331054-8............. 30 A-335016-2............. 84 A-337296-8............. 32 A-338066-8............. 36 A-339011-8............. 36 A-340006-8............. 36 A-341014-2............. 42 A-342007-2............. 42 A-344014-2............. 64 A-345038-2............. 68 A-346016-2............. 68 A-347009-2............. 68 A-348032-2............. 78 A-349017-2............. 78 A-350005-8............. 26 A-351009-8............. 26 A-352020-8............. 26 A-353042-8............. 26 A-354049-8............. 26 A-355053-8............. 26 A-356057-8............. 26 A-357068-8............. 26 A-358083-8............. 26 A-362108-8............. 30 A-363206-8............. 32 A-364104-8............. 36 A-365132-8............. 40 A-366132-2............. 42 A-367106-2............. 44 A-368112-2............. 46 A-369144-2............. 48 A-370178-2............. 50 A-371136-2............. 52 A-372180-2............. 54 A-373314-2............. 60 A-374254-2............. 64 A-384130-8............. 30 A-385247-8............. 32 A-386124-8............. 36 A-387159-8............. 40 A-388159-2............. 42 A-389127-2............. 44 A-390134-2............. 46 A-391173-2............. 48 A-392214-2............. 50 A-393163-2............. 52 A-394216-2............. 54 A-396377-2............. 60 A-406151-8............. 30 A-407145-8............. 36

MPP

Page No.

A-408185-8............. 40 A-409185-2............. 42 A-410148-2............. 44 A-412157-2............. 46 A-430026-2............. 90 A-438281-2............. 74 A-439012-2............. 56 A-440022-2............. 56 A-441051-2............. 56 A-442105-2............. 56 A-443124-2............. 56 A-444135-2............. 56 A-445146-2............. 56 A-446211-2............. 56 A-447253-2............. 56 A-453113-8............. 34 A-460026-8............. 30 A-461069-8............. 30 A-462089-8............. 30 A-464064-8............. 30 A-465075-8............. 30 A-467004-8............. 24 A-468007-8............. 24 A-469017-8............. 24 A-470035-8............. 24 A-471041-8............. 24 A-472045-8............. 24 A-473048-8............. 24 A-474057-8............. 24 A-475070-8............. 24 A-479026-8............. 22 A-480031-8............. 22 A-481033-8............. 22 A-482036-8............. 22 A-483052-8............. 22 A-488075-2............. 82 A-493149-8............. 38 A-494128-8............. 38 A-495106-8............. 38 A-496084-8............. 38 A-497074-8............. 38 A-498068-8............. 38 A-499063-8............. 38 A-500025-8............. 38 A-501011-8............. 38 A-502006-8............. 38 A-511014-2............. 52 A-512082-8............. 28 A-520052-8............. 28 A-521120-8............. 28 A-522043-8............. 22

Index (Cont.) Molybdenum Permalloy Powder A Material

MPP



206

068

Catalog Number

Inductance

Page No.

A-525100-8............. 28 A-526069-8............. 28 A-527064-8............. 28 A-528058-8............. 28 A-529024-8............. 28 A-530010-8............. 28 A-531006-8............. 28 A-532194-8............. 34 A-533166-8............. 34 A-534138-8............. 34 A-535095-8............. 34 A-536089-8............. 34 A-537081-8............. 34 A-538070-8............. 34 A-539033-8............. 34 A-540014-8............. 34 A-541008-8............. 34 A-542228-2............. 88 A-543140-8............. 28 A-548127-2............. 64 A-559114-2............. 50 A-585079-2............. 68 A-630012-8............. 32 A-638132-8............. 32 A-639021-8............. 32 A-640012-2............. 62 A-641022-2............. 62 A-642051-2............. 62 A-643136-2............. 62 A-644213-2............. 62 A-645135-2............. 66 A-646158-2............. 66 A-647172-2............. 66 A-648186-2............. 66 A-649215-2............. 66 A-650269-2............. 66 A-651022-2............. 86 A-652092-2............. 86 A-653192-2............. 86 A-654226-2............. 86 A-655246-2............. 86 A-656266-2............. 86 A-657308-2............. 86 A-658026-2............. 88 A-659047-2............. 88 A-660292-2............. 88 A-661332-2............. 90 A-662036-2............. 92 A-663068-2............. 92 A-664156-2............. 92 A-665325-2............. 92 A-666382-2............. 92

p. 17.97 February 2003



HI-FLUX

2

HF

Finish

Material

MPP

Page No.

A-667416-2............. 92 A-668450-2............. 92 A-669520-2............. 92 A-670068-2............. 44 A-674006-8............. 30 A-675011-8............. 30 A-676014-2............. 58 A-677026-2............. 58 A-678059-2............. 58 A-679123-2............. 58 A-680145-2............. 58 A-681157-2............. 58 A-682197-2............. 58 A-683246-2............. 58 A-684295-2............. 58 A-685182-2............. 84 A-710032-2............. 80 A-711060-2............. 80 A-712138-2............. 80 A-713287-2............. 80 A-714338-2............. 80 A-715152-2............. 78 A-716368-2............. 80 A-717398-2............. 80 A-718460-2............. 80 A-735020-2..............86 A-736037-2..............86 A-737085-2..............86 A-740178-2..............86 A-741209-2..............86 A-742228-2..............86 A-743246-2..............86 A-744284-2..............86 A-759135-2............. 74 A-848032-2............. 52 A-866142-2............. 84 A-894075-2............. 60 A-930157-2............. 60

HF



184

125



Size Permeability Designation

Page No.

HF-014060-8 ........... 22 HF-014125-8 ........... 22 HF-014147-8 ........... 22 HF-014160-8 ........... 22 HF-015014-8 ........... 24 HF-015026-8 ........... 24 HF-015060-8 ........... 24 HF-015125-8 ........... 24 HF-015147-8 ........... 24 HF-015160-8 ........... 24 HF-018014-8 ........... 26 HF-018026-8 ........... 26 HF-018060-8 ........... 26 HF-018125-8 ........... 26 HF-018147-8 ........... 26 HF-018160-8 ........... 26 HF-025014-8 ........... 28 HF-025026-8 ........... 28 HF-025060-8 ........... 28 HF-025125-8 ........... 28 HF-025147-8 ........... 28 HF-025160-8 ........... 28 HF-026014-8 ........... 32 HF-026026-8 ........... 32 HF-026060-8 ........... 32 HF-026125-8 ........... 32 HF-026147-8 ........... 32 HF-026160-8 ........... 32 HF-027014-8 ........... 30 HF-027026-8 ........... 30 HF-027060-8 ........... 30 HF-027125-8 ........... 30 HF-027147-8 ........... 30 HF-027160-8 ........... 30 HF-028014-8 ........... 34 HF-028026-8 ........... 34 HF-028060-8 ........... 34 HF-028125-8 ........... 34 HF-028147-8 ........... 34 HF-028160-8 ........... 34 HF-031014-8 ........... 36 HF-031026-8 ........... 36 HF-031060-8 ........... 36 HF-031125-8 ........... 36

HF

2 Finish

Page No.

HF-031147-8 ........... 36 HF-031160-8 ........... 36 HF-038014-8 ........... 40 HF-038026-8 ........... 40 HF-038060-8 ........... 40 HF-038125-8 ........... 40 HF-038147-8 ........... 40 HF-038160-8 ........... 40 HF-039014-8 ........... 38 HF-039026-8 ........... 38 HF-039060-8 ........... 38 HF-039125-8 ........... 38 HF-039147-8 ........... 38 HF-039160-8 ........... 38 HF-040014-2 ........... 42 HF-040026-2 ........... 42 HF-040060-2 ........... 42 HF-040125-2 ........... 42 HF-040147-2 ........... 42 HF-040160-2 ........... 42 HF-044014-2 ........... 44 HF-044026-2 ........... 44 HF-044060-2 ........... 44 HF-044125-2 ........... 44 HF-044147-2 ........... 44 HF-044160-2 ........... 44 HF-050014-2 ........... 46 HF-050026-2 ........... 46 HF-050060-2 ........... 46 HF-050125-2 ........... 46 HF-050147-2 ........... 46 HF-050160-2 ........... 46 HF-065014-2 ........... 48 HF-065026-2 ........... 48 HF-065060-2 ........... 48 HF-065125-2 ........... 48 HF-065147-2 ........... 48 HF-065160-2 ........... 48 HF-068014-2 ........... 50 HF-068026-2 ........... 50 HF-068060-2 ........... 50 HF-068125-2 ........... 50 HF-068147-2 ........... 50 HF-068160-2 ........... 50 HF-080014-2 ........... 52 HF-080026-2 ........... 52 HF-080060-2 ........... 52 HF-080125-2 ........... 52 HF-080147-2 ........... 52 HF-080160-2 ........... 52 HF-090014-2 ........... 54 HF-090026-2 ........... 54

HF

Page No.

HF-090060-2 ........... 54 HF-090125-2 ........... 54 HF-090147-2 ........... 54 HF-090160-2 ........... 54 HF-092014-2 ........... 56 HF-092026-2 ........... 56 HF-092060-2 ........... 56 HF-092125-2 ........... 56 HF-092147-2 ........... 56 HF-092160-2 ........... 56 HF-106014-2 ........... 60 HF-106026-2 ........... 60 HF-106060-2 ........... 60 HF-106125-2 ........... 60 HF-106147-2 ........... 60 HF-106160-2 ........... 60 HF-107014-2 ........... 58 HF-107026-2 ........... 58 HF-107060-2 ........... 58 HF-107125-2 ........... 58 HF-107147-2 ........... 58 HF-107160-2 ........... 58 HF-130014-2 ........... 64 HF-130026-2 ........... 64 HF-130060-2 ........... 64 HF-130125-2 ........... 64 HF-130147-2 ........... 64 HF-130160-2 ........... 64 HF-131014-2 ........... 62 HF-131026-2 ........... 62 HF-131060-2 ........... 62 HF-131125-2 ........... 62 HF-131147-2 ........... 62 HF-131160-2 ........... 62 HF-132014-2 ........... 66 HF-132026-2 ........... 66 HF-132060-2 ........... 66 HF-132125-2 ........... 66 HF-132147-2 ........... 66 HF-132160-2 ........... 66 HF-135014-2 ........... 68 HF-135026-2 ........... 68 HF-135060-2 ........... 68 HF-135125-2 ........... 68 HF-135147-2 ........... 68 HF-135160-2 ........... 68 HF-141014-2 ........... 70 HF-141026-2 ........... 70 HF-141060-2 ........... 70 HF-141125-2 ........... 70 HF-141147-2 ........... 70 HF-141160-2 ........... 70

Index (Cont.) HI-FLUX HF Material

HF

SUPER-MSS



184

125



Size Permeability Designation

Page No.

HF-184060-2 ........... 74 HF-184125-2 ........... 74 HF-184147-2 ........... 74 HF-184160-2 ........... 74 HF-185014-2 ........... 76 HF-185026-2 ........... 76 HF-185060-2 ........... 76 HF-185125-2 ........... 76 HF-185147-2 ........... 76 HF-185160-2 ........... 76 HF-200014-2 ........... 78 HF-200026-2 ........... 78 HF-200060-2 ........... 78 HF-200125-2 ........... 78 HF-200147-2 ........... 78 HF-200160-2 ........... 78 HF-225014-2 ........... 82 HF-225026-2 ........... 82 HF-225060-2 ........... 82 HF-225125-2 ........... 82 HF-225147-2 ........... 82 HF-225160-2 ........... 82 HF-226014-2 ........... 80 HF-226026-2 ........... 80 HF-226060-2 ........... 80 HF-226125-2 ........... 80 HF-226147-2 ........... 80 HF-226160-2 ........... 80 HF-300014-2 ........... 84 HF-300026-2 ........... 84 HF-300060-2 ........... 84 HF-300125-2 ........... 84 HF-300147-2 ........... 84 HF-300160-2 ........... 84 HF-301014-2 ............86 HF-301026-2 ............86 HF-301060-2 ............86 HF-301125-2 ............86 HF-301147-2 ............86 HF-301160-2 ............86 HF-400014-2 ........... 88 HF-400026-2 ........... 88 HF-400060-2 ........... 88 HF-400125-2 ........... 88 HF-400147-2 ........... 88 HF-400160-2 ........... 88 HF-401014-2 ........... 86 HF-401026-2 ........... 86 HF-401060-2 ........... 86 HF-401125-2 ........... 86 HF-401147-2 ........... 86 HF-401160-2 ........... 86

p. 17.98 February 2003

2

MS

Finish

Material

HF

Page No.

HF-520014-2 ........... 90 HF-520026-2 ........... 90 HF-520060-2 ........... 90 HF-520125-2 ........... 90 HF-520147-2 ........... 90 HF-520160-2 ........... 90 HF-521014-2 ........... 92 HF-521026-2 ........... 92 HF-521060-2 ........... 92 HF-521125-2 ........... 92 HF-521147-2 ........... 92 HF-521160-2 ........... 92

SMSS

Page No.

MS-014060-8.......... 22 MS-014075-8.......... 22 MS-014090-8.......... 22 MS-014125-8.......... 22 MS-015060-8.......... 24 MS-015075-8.......... 24 MS-015090-8.......... 24 MS-015125-8.......... 24 MS-018060-8.......... 26 MS-018075-8.......... 26 MS-018090-8.......... 26 MS-018125-8.......... 26 MS-025060-8.......... 28 MS-025075-8.......... 28 MS-025090-8.......... 28 MS-025125-8.......... 28 MS-026060-8.......... 32 MS-026075-8.......... 32 MS-026090-8.......... 32 MS-026125-8.......... 32 MS-027060-8.......... 30 MS-027075-8.......... 30 MS-027090-8.......... 30 MS-027125-8.......... 30 MS-028060-8.......... 34 MS-028075-8.......... 34 MS-028090-8.......... 34 MS-028125-8.......... 34 MS-031060-8.......... 36 MS-031075-8.......... 36 MS-031090-8.......... 36 MS-031125-8.......... 36 MS-038060-8.......... 40 MS-038075-8.......... 40 MS-038090-8.......... 40

SMSS



184

125



Size Permeability Designation

Page No.

MS-038125-8.......... 40 MS-039060-8.......... 38 MS-039075-8.......... 38 MS-039090-8.......... 38 MS-039125-8.......... 38 MS-040060-2.......... 42 MS-040075-2.......... 42 MS-040090-2.......... 42 MS-040125-2.......... 42 MS-044060-2.......... 44 MS-044075-2.......... 44 MS-044090-2.......... 44 MS-044125-2.......... 44 MS-050060-2.......... 46 MS-050075-2.......... 46 MS-050090-2.......... 46 MS-050125-2.......... 46 MS-065060-2.......... 48 MS-065075-2.......... 48 MS-065090-2.......... 48 MS-065125-2.......... 48 MS-068060-2.......... 50 MS-068075-2.......... 50 MS-068090-2.......... 50 MS-068125-2.......... 50 MS-080060-2.......... 52 MS-080075-2.......... 52 MS-080090-2.......... 52 MS-080125-2.......... 52 MS-090026-2 ...........54 MS-090060-2.......... 54 MS-090075-2.......... 54 MS-090090-2.......... 54 MS-090125-2.......... 54 MS-092026-2 ...........56 MS-092060-2.......... 56 MS-092075-2.......... 56 MS-092090-2.......... 56 MS-092125-2.......... 56 MS-106026-2 ...........60 MS-106060-2.......... 60 MS-106075-2.......... 60 MS-106090-2.......... 60 MS-106125-2.......... 60 MS-107026-2 ...........58 MS-107060-2.......... 58 MS-107075-2.......... 58 MS-107090-2.......... 58 MS-107125-2.......... 58 MS-130026-2 ...........64 MS-130060-2.......... 64 MS-130075-2.......... 64

2 Finish

SMSS

Page No.

MS-130090-2.......... 64 MS-130125-2.......... 64 MS-131026-2 ...........62 MS-131060-2.......... 62 MS-131075-2.......... 62 MS-131090-2.......... 62 MS-131125-2.......... 62 MS-132026-2 ...........66 MS-132060-2.......... 66 MS-132075-2.......... 66 MS-132090-2.......... 66 MS-132125-2.......... 66 MS-135026-2 ...........68 MS-135060-2.......... 68 MS-135075-2.......... 68 MS-135090-2.......... 68 MS-135125-2.......... 68 MS-141026-2 ...........70 MS-141060-2.......... 70 MS-141075-2.......... 70 MS-141090-2.......... 70 MS-141125-2.......... 70 MS-157026-2.......... 72 MS-157060-2.......... 72 MS-157075-2.......... 72 MS-157090-2.......... 72 MS-157125-2.......... 72 MS-184026-2 ...........74 MS-184060-2.......... 74 MS-184075-2.......... 74 MS-184090-2.......... 74 MS-184125-2.......... 74 MS-185026-2 ...........76 MS-185060-2.......... 76 MS-185075-2.......... 76 MS-185090-2.......... 76 MS-185125-2.......... 76 MS-200026-2 ...........78 MS-200060-2.......... 78 MS-200075-2.......... 78 MS-200090-2.......... 78 MS-200125-2.......... 78 MS-225026-2 ...........82 MS-225060-2.......... 82 MS-225075-2.......... 82 MS-225090-2.......... 82 MS-225125-2.......... 82 MS-226026-2.......... 80 MS-226060-2.......... 80 MS-226075-2.......... 80 MS-226090-2.......... 80 MS-226125-2........... 80

SMSS

Page No.

MS-300026-2 ...........84 MS-300060-2.......... 84 MS-300075-2.......... 84 MS-300090-2.......... 84 MS-300125-2.......... 84 MS-301014-2 ...........86 MS-301026-2 ...........86 MS-301060-2 ...........86 MS-301075-2 ...........86 MS-301090-2 ...........86 MS-301125-2 ...........86 MS-400026-2 ...........88 MS-400060-2.......... 88 MS-400075-2.......... 88 MS-400090-2.......... 88 MS-400125-2.......... 88 MS-401026-2 ...........86 MS-401060-2.......... 86 MS-401075-2.......... 86 MS-401090-2.......... 86 MS-401125-2.......... 86 MS-520026-2 ...........90 MS-520060-2.......... 90 MS-520075-2.......... 90 MS-520090-2.......... 90 MS-520125-2.......... 90 MS-521026-2 ...........92 MS-521060-2.......... 92 MS-521075-2.......... 92 MS-521090-2.......... 92 MS-521125-2.......... 92

Warranty Limited Warranty and Exclusive Remedy Arnold Magnetics Ltd. warrants that these products conform to industry standards specific herein and will be free from defects in material and workmanship. THIS WARRANTY IS EXPRESSLY GIVEN IN LIEU OF ANY AND ALL OTHER EXPRESS OR IMPLIED WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND IN LIEU OF ANY OTHER OBLIGATION ON THE PART OF ARNOLD MAGNETICS LTD. Arnold Magnetics Ltd. will, at its option, repair or replace free of charge (excluding all shipping and handling costs) any products which have not been subject to misuse, abuse, or modification and which in its sole determination were not manufactured in compliance with the warranty given above. THE REMEDY PROVIDED FOR HEREIN SHALL BE THE EXCLUSIVE REMEDY FOR ANY BREACH OF WARRANTY OR ANY CLAIM ARISING IN ANY WAY OUT OF THE MANUFACTURE, SALE, OR USE OF THESE PRODUCTS. In no event shall Arnold Magnetics Ltd. and its parent company, SPS Technologies, Inc., be liable for consequential, incidental or any other damages of any nature whatsoever except those specifically provided herein for any breach of warranty or any claim arising in any way out of the manufacture, sale, or use of these products. No other person is authorized by Arnold Magnetics Ltd. to give any other warranty, written or oral, pertaining to the products.

p. 17.99 February 2003

& RUSSIA

ASIA-PACIFIC

Arnold Magnetics (HK) Ltd Unit 5, 10Fl., Kingsford Industrial Centre 13 Wang Hoi Road Kowloon Bay, Hong Kong Tel: (+852) 3106-3737 Fax: (+852) 3105-1955 Email: [email protected]

NORTH &

SOUTH AMERICA

EUROPE, AFRICA & RUSSIA Swift Levick Magnets Ltd. High Hazels Road Barlborough Links, Barlborough Derbyshire S43 4TZ United Kingdom Tel: (+44) 1246-570500 Fax: (+44) 1246-573000 Email: [email protected]

Arnold Linden Ave. Rochester, NY 14625-2764 USA Tel: 800-593-9127 International: (+1) 585-385-9010 Fax: (+1) 585-385-9017 Email: [email protected]

ARNOLD MAGNETICS LTD Bldg. D-6, Xin Tang Industrial Zone Baishixia, Fuyong Town, Baoan County, Shenzhen, PRC Tel: (+86) 755-2739-1771 • Fax: (+86) 755-2738-3210 Email: [email protected]

www.arnoldmagnetics.com

P. 17.100 February 2003

©2003 Arnold, SPS Technologies