Latent process model for multivariate ... - Christophe Genolini

Psychometric tests : noisy measures of cognitive functions. → collected in discrete .... 1 discrete quantitative fluency test (IST- scale 0-40). - Time-to-event : age at ...
604KB taille 1 téléchargements 369 vues
Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Latent process model for multivariate heterogeneous longitudinal data: application to cognitive aging ´ ´ ene ` Jacqmin-Gadda Cecile Proust-Lima & Hel Department of Biostatistics, INSERM U897, University of Bordeaux 2

INSERM workshop 205 - june 2010 - Saint Raphael

Conclusion

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Cognitive aging in the elderly Dementia characterized by a progressive and continuous decline of cognitive functions → heterogeneous cognitive aging : normal/ pathological Cognition : latent process defined in continuous time → interest in the evolution of this quantity Psychometric tests : noisy measures of cognitive functions → collected in discrete times → usually one test as a reference marker of cognition → specific metrological properties (ceiling/floor effects,...)

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Objective Describe the different profiles of cognitive decline associated with dementia in the elderly 2 statistical problems addressed : 1. multiple markers of cognition (& different properties) → nonlinear latent process model 2. heterogeneity of the declines & association with dementia → joint latent class model ⇒ Joint latent class model for multivariate longitudinal data

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Latent variable modelling (LVM) Interest in a latent variable (“construct”) measured by outcomes Cognition Latent Observed Test 1 ... Test k ... Test K

ex1 : cognition measured by psychometric tests ex2 : arithmetic reasonning measured by multi-item questionnaire

Principle : - Structural equations : latent variable described according to covariates, time, etc - Measurement model : link between the latent quantity and the outcomes

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

LVM in longitudinal settings Latent process rather than latent variables defined at each time → linear mixed model for the latent process Different types of outcomes - Quantitative outcomes : standard : Gaussian (Roy, 2000) asymetric scales : non Gaussian (Proust, 2006) - Ordinal outcomes : threshold models (probit (Liu, 2006) ; proportional odds (Hambleton, 1991))

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Symetric quantitative outcome Y

Latent process → Same sensitivity at each level

Application

Conclusion

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Asymetric quantitative outcome Y

Latent process → Varying sensitivity depending on the level

Conclusion

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Ordinal outcome Y 5 4 3 2 1 0

Latent variable

→ Range of latent process values for a given test value

Conclusion

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Structural model for the latent process

Notations : subject i, occasion j, outcome k Latent process

Λ

Y1

...

YK1

Latent process model

YK1+1 ... YK

Measurement model for observed outcomes

Ordinal outcomes Quantitative outcomes

Λi (t) = X1i (t)T β + Zi (t)T ui , t ≥ 0 With ui ∼ MVN(µ, D) and identifiability constraints u i0 ∼ N(0, 1)

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Measurement models for ordinal outcomes Intermediate variable ˜y (with error, outcome-specific effects,...) : ˜yijk = Λi (tijk ) + X2i (t)T γ k + αik + ijk with outcome-specific random intercept α ik ∼ N(0, σαk ) - Ordinal/binary outcome Yk with Ck levels : Yijk = c ⇔ ηck ≤ ˜yijk < η(c+1)k with c ∈ {0, Ck − 1} → constraints : η0k = −∞ and ηCk k = +∞

→ Cumulative probit with Gaussian  ijk and proportional odds model with logistic  ijk

Conclusion

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Measurement models for quantitative outcomes - Gaussian outcomes Yk : Yijk − η1k = ˜yijk η2k - Non Gaussian quantitative outcomes Y k : Hk (yijk ; η) =

hk (yijk ; η1k ; η2k ) − η3k = ˜yijk η4k

→ hk = CDF Beta (Proust, Bcs, 2006 ; Proust-Lima, CSDA 2009) (hk (.; 1, 1) = Identity ⇔ special case for Gaussian outcomes)

→ hk = approximated by splines ...

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Estimated transformations for 4 psychometric tests (Proust-Lima et al., AJE, 2007) 30

40 35 30

20 IST15

MMSE

25

15 10

estimated hk 95% CI y=x

5 0

0

20

40

60

25 20 15 10

80

5 0

100

0

20

common factor 14

80

100

80

100

60 DSST

10 BVRT

60

70

12 8 6

50 40 30

4

20

2

10

0

40

common factor

0

20

40

60

common factor

80

100

0

0

20

40

60

common factor

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Joint latent class model (Lin et al., JASA, 2002) With a single marker, - Latent classes of subjects :

Latent class C

→ latent class membership : eξ0g +X1i

Latent Observed

Long. marker Y

Event (T,E)

πig = P(ci = g|X1i ) = PG

l=1

- Given class g, → specific marker evolution → specific risk of event



1g

eξ0l +X1i T ξ1l

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Extension to heterogeneous population : JLCM Subject i Occasion j Class g Marker k

Nonlinear latent process

Latent class C

Latent process Λ

Multinomial logistic model

Proportional hazard model

Marker 1 ... Marker k ... Marker K Y1 Yk YK

Event (T,E)

Λi (t) |ci =g = Zi (t)T uig + X2i (t)T βg ← heterogeneous mixed model Yijk | Λi (tijk , ci = g),

← constraints : u0i1 ∼ N(0, 1)

← marker-specific observation equation

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Individual contribution to the likelihood For a given number of classes G, the individual contribution is :

Li (θ) =

G X g=1

πig (θ)×f (yi |ci = g; θ)×λ(Ti |ci = g; θ)Ei S(Ti |ci = g; θ)

with f (yi |ci = g; θ) :

- closed form for quantitative outcomes (jacobian) - multivariate numerical integral over u ig & αik for ordinal outcomes

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Maximum likelihood estimators

- Log-likelihood l(ψ) = Marquardt algorithm

PN

i=1

ln(Li ) maximised by a

- Estimation achieved for a fixed number of latent classes G & G selected using the Bayesian Information Criterion (BIC) - Program in Fortran90/ R function in progress ...

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Posterior classification

2 posterior class-membership probabilities : y,T ˆ = P(ci = g | yi , (Ti , Ei ), xi ; θ) π ˆig

→ used to assess the goodness-of-fit

ˆ ˆ y ˆ = PP(ci = g | xi ; θ)f (yi | ci = g, xi ; θ) π ˆig = P(ci = g | yi , xi ; θ) G ˆ ˆ l=1 P(ci = l | xi ; θ)f (yi | ci = l, xi ; θ) → used for prognostic tools

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Prediction : prognostic /early detection tools H i(s): marker information until time s

Marker /latent process evolution

probability of event? s

s+t

age

Predicted probability of event in (s,s+t) : ˆ = P(Ti ≤ s + t | Ti > s, Hi (s), Xi ; θ) =

G X g=1

ˆ × P(ci = g | Hi (s), Xi , Ti > s; θ) ˆ P(Ti ≤ s + t | ci = g, Ti > s, Xi ; θ) | {z } ys π ˆ ig

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Profiles of semantic memory decline associated with onset of Alzheimer’s disease (AD) in the elderly - Longitudinal outcomes : 2 measures of semantic memory → 1 ordinal similarities test (WST- scale 0-10) → 1 discrete quantitative fluency test (IST- scale 0-40) - Time-to-event : age at onset of AD → truncated data : entry in the cohort at age>65 - Binary covariates : education, gender - Subsample from a French cohort on aging (PAQUID) : N=2484 → followed-up during 14 years → 417 (16.8%) incident AD

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Distribution of the tests A

25

6 frequency (%)

frequency (%)

20 15 10 5 0

B

7

5 4 3 2 1

0

2

4

6 WST

8

10

0

0

5

10

15

20 IST

25

30

→ Median of 3 (IQR=[1,5]) repeated measures for IST → Median of 4 (IQR=[2,6]) repeated measures for WST

35

40

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Predicted mean evolution of the latent process and probability of being free of dementia A

0 -2 -4 -6 class 1 class 2 class 3

-8 -10

65

70

75 80 age (in years)

B

1 probability of being free of AD

latent semantic memory

2

85

Predicted mean evolution of the latent process in each class

90

0.8 0.6 0.4 0.2 0

65

70

75 80 age (in years)

85

90

Predicted probability of being free of AD in each class

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Predicted transformations of the markers 40

10

IST 35 WST

8

30 25

6

20 4

15 10

2

5 0

-15

-10

-5

0

latent semantic memory

5

0

WST

IST

Context

Conclusion

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Goodness-of-fit : class-specific marginal predictions 1 - For an ordinal outcome (k = 1, ..., K 1 ) : ˆ ci = g) = ˆyijk |ci =g = E(yijk |θ;

CX k −1

ˆ ci = g) l × P(ηlk ≤ ˜yijk < η(l+1)k |θ;

l=0

= Ck − 1 −

CX k −2

ˆ ci = g) P(˜yijk < η(l+1)k |θ;

l=0

- For a quantitative outcome (k = K1 + 1, ..., K) : ˆ ci = g) ˆyijk |ci =g = E(Hk−1 (˜yijk ; ηˆk )|θ; → numerical integration of h−1 yijk ; ηˆk ) over the k (˜ multivariate Gaussian distribution of ˜y ik |ci =g .

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Class-specific marginal predictions in the test scale WST Class 2

8

8

8

6

6

6

4

4

2

2

0

0

65

70

75

80

85

90

95

100

WST

10

4 2

65

70

75

age (year)

80

85

90

95

0

100

30

30

25

25

25

20

20

20

IST

30 IST

35

15

15

15

10

10

10

5

5 75

80

85

age (year)

90

95

100

0

80

85

90

95

100

90

95

100

IST Class 3 40

35

70

75

IST Class 2 40

35

65

70

age (year)

40

0

65

age (year)

IST Class 1

IST

WST Class 3

10

WST

WST

WST Class 1 10

5 65

70

75

80

85

age (year)

90

95

100

0

65

70

75

80

85

age (year)

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Goodness-of-fit : table of posterior classification Final classif.

Number of subjects (%)

Mean of the class-membership probabilities in class : 1 2 3

1

2074 (83.5%)

82.9

2.3

14.8

2

142 (5.7%)

8.7

78.3

13.0

3

268 (10.8%)

18.5

7.7

73.8

→ unambiguous posterior classification

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

40

0.8

35

0.7

30

0.6

25

0.5

20

0.4

15

0.3

10

0.2

5

0.1

0

74

76

78

80

82

age (years)

84

86

88

0

probability of AD

scores

Dynamic predictive tool of AD Probability of dementia in 5 years updated every 3 years

Diagnosed at 87 years old x IST • WST + Prediction with 95%CI

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

Concluding remarks Advantages of the model : - several markers (latent process part) → avoids biases due to nonlinearity + ordinal scales → increases the power of the analyses - time-to-event (joint model part) → avoids the selection biases - latent class approach → explicit interpretation of the association + heterogeneity Possible applications : - describe the natural history of a disease - evaluate risk factors, treatments, ... - develop tools for early detection/prognosis

Context

Latent variables

Latent process model

Joint latent class model

Estimation

Application

Conclusion

References -

Hambleton R., Swaninathan H. & Rogers H. (1991). Fundamentals of item response theory. Newbury Park, CA : Sage.

- Lin H., Turnbull B.W. et al. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data : application to longitudinal prostate-specific antigen readings and prostate cancer, Journal of the American Statistical Association, 97,53-65 - Proust C., Jacqmin-Gadda H. et al. (2006). A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data, Biometrics, 62,1014-24 - Proust-Lima C., Amieva H. et al. (2007). Properties of 4 psychometric tests to measure cognitive changes in brain aging population based-studies, American Journal of Epidemiology, 165, 344-50 - Proust-Lima C., Joly P. et al. (2008). Joint modelling of multivariate longitudinal outcomes & a time-to-event : a nonlinear latent class approach, Computational Statistics & Data Analysis, 53, 1142-54 - Roy J., & Lin X. (2000). Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics, 56, 1047-1054.