IP1 (2) IP Routing

Router 3. Router 4. 10.4.6.1 / 24. 10.4.6.2 / 24. 10.1.5.1 / 16. Router 2. 192.168.1.65 / 27. 192.168.1.66 / 27. 192.168.1.193 / 27. 192.168.1.194 / 27. 10.4.7.1 / 24 ...
425KB taille 88 téléchargements 464 vues
IP1 (2) IP Routing (version 2)

Hervé TREMEUR AT&T Labs AT&T Global Network [email protected] IP1 Training

CISCO router introduction

Contents 1. Review y IP Addressing y Exercises 1 and 2

2. What is routing y How are processed the received framed packets y Route Table y Static and Dynamic Routes

3. Static Routing y Static Routing Internetwork y Static Routing configuration y Route Table example ( Cisco Router)

CISCO router introduction

Contents (cont. 1) 3. Static Routing (cont.) y y y y y y

Exercice 3 : internetwork and route table Route table lookup for packet flow Case Study 1 :Simple Static routes 3 steps : Simple Static route configuration Case Study 2 : Summary routes (1) Case Study 3 : Floating static routes (1)

4. Exercises 3. LAB on Static Routing y

Exercice 3 with configuration on Cisco Routers

CISCO router introduction

IP Address Classes 1

8

9

16

17

24

25

Class A:

0NNNNNNN

Host

Host

Host

Class B:

10NNNNNN

Network

Host

Host

Network

Network

Class C: Class D:

y y y y y

110NNNNN

1110MMMM

Multicast

Multicast

32

Host

Multicast

Class A : First bit is 0 , Network 1.0.0.0 to 126.0.0.0, 127 networks,16 777 216 Hosts Class B : First 2 bits 10 , Network 128.0.0.0 to 191.255.0.0, 16384 networks, 65 536 Hosts Class C : First 3 bits 110 , Network 192.0.0.0 to 223.255.255.0, 2097152 networks, 254 Hosts Class D : First 4 bits 1110 , Network 224.0.0.0 to 239.255.255.255 10.0.0.0, 172.16.0.0 to 172.31.0.0 and 192.168.0.0 are private and not used in public network.

CISCO router introduction

Determining Available Host Addresses Network

Host

172

16

0

0

10101100

00010000

00000000

00000000

00000000

00000001

00000000

00000010

11111111

11111111

65536

2**(N)-2 = 2**(16)-2 =65534

y Once the network portion is determined, we can determine the total number of Hosts by the formula 2 **(N) – 2

y Subtract 2 ( 1 address of all 0s for network , 1 address of all 1s for broadcast address)

CISCO router introduction

Decimal Equivalent of Bit Patterns 128

64

32

16

8

4

2

1

0

0

0

0

0

0

0

0

=

0

1

0

0

0

0

0

0

0

=

128

1

1

0

0

0

0

0

0

=

192

1

1

1

0

0

0

0

0

=

224

1

1

1

1

0

0

0

0

=

240

1

1

1

1

1

0

0

0

248

1

1

1

1

1

1

0

0

= =

1

1

1

1

1

1

1

0

254

1

1

1

1

1

1

1

1

= =

252

255

y Subnet bits come from the high-order bits of the host field y To determine a subnet mask for an address, add the decimal value of each position that has a 1 in it . For example : 224 = 128 + 64 + 32

CISCO router introduction

Class B Subnet Example IP Host Address : 172.16.2.121, Subnet Mask : 255.255.255.0

NETWORK

SUBNET

HOST

172.16.2.121

10101100

00010000

00000010

01111001

Host

255.255.255.0

11111111

11111111

11111111

00000000

Mask

172.16.2.0

10101100

00010000

00000010

00000000

172.16.2.255

10101100

00010000

00000010

11111111

Subnet Broadcast

172.16.2.1

10101100

00010000

00000010

00000001

First

172.16.2.254

10101100

00010000

00000010

11111110

Last

y This network has eight bits of subnetting that provide up to 254 subnets and 254 hosts addresses

CISCO router introduction

Class B Subnet Example (cont.) Number of bits

Subnet Mask

Number of Subnets

Number of Hosts / Subnet

17

255.255.128.0

2

32766

18

255.255.192.0

4

16382

19

255.255.224.0

8

8190

20

255.255.240.0

16

4094

21

255.255.248.0

32

2046

22

255.255.252.0

64

1022

23

255.255.254.0

128

510

24

255.255.255.0

256

254

25

255.255.255.128

512

126

26

255.255.255.192

1024

62

27

255.255.255.224

2048

30

28

255.255.255.240

4096

14

29

255.255.255.248

8192

6

30

255.255.255.252

16384

2

CISCO router introduction

Class C Subnet Planning Example 1 IP Host Address : 192.16.2.121, Subnet Mask : 255.255.255.248

NETWORK

Network

Subnet Host

11000000

00010000

00000010

01111 ! 001

Host

255.255.255.248 11111111

11111111

11111111

11111 ! 000

Mask

192.16.2.120

11000000

00010000

00000010

01111 ! 000

192.16.2.127

11000000

00010000

00000010

192.16.2.121

11000000

00010000

00000010

01111 ! 001

192.16.2.126

11000000

00010000

00000010

01111 ! 110

192.16.2.121

y

Subnet 01111 ! 111 Broadcast First Last

CISCO router introduction

Exercise 1 : Class C Subnet Planning Example 2 IP Host Address : 192.16.2.121, Subnet Mask : 255.255.255.252

NETWORK

Network

Subnet Host 011110 ! 01

10101100

00010000

00000010

255.255.255.252 11111111

11111111

11111111

11000000

00010000

00000010

11000000

00010000

00000010

11000000

00010000

00000010

11000000

00010000

00000010

192.16.2.121

Host Mask Subnet Broadcast First Last

y Determine the subnet, the broadcast address, the first and last host addresses

CISCO router introduction

Exercise 1 : Result IP Host Address : 192.16.2.121, Subnet Mask : 255.255.255.252

NETWORK

Network

Subnet Host

11000000

00010000

00000010

011110 ! 01

Host

255.255.255.252 11111111

11111111

11111111

111111 ! 00

Mask

192.16.2.120

11000000

00010000

00000010

011110 ! 00

192.16.2.123

11000000

00010000

00000010

192.16.2.121

11000000

00010000

00000010

011110 ! 01

192.16.2.122

11000000

00010000

00000010

011110 ! 10

192.16.2.121

y

Subnet 01111 0 ! 11 Broadcast First Last

CISCO router introduction

Exercice 2 : Class C Subnet Planning Example 3 All subnets used 10 Hosts / subnet Class C Address 192.168.5.0

y With this Class C Address 192.168.5.0, How many subnets containing at least 10 Hosts can be configured (We assumed that we have more than 4 routers and enough Ethernet interfaces )

CISCO router introduction

Exercice 2 : Class C Subnet Planning Example 3 (result) All subnets used 10 Hosts / subnet Class C Address 192.168.5.64

192.168.5.16 192.168.5.0

192.168.5.32 y With IP subnet zero configured on router y First subnet : 192.168.5.0 y Last subnet : 192.168.5.248 y 16 subnets possible

192.168.5.48

192.168.5.0

CISCO router introduction

Variable Length Subnet Masks (VLSM) Class B 156.26.0.0 /16 ---------- 156.26.1.0 / 24 156.26.2.0 / 24--------156.26.2.0 / 30 156.26.2.4 / 30 156.26.2.8 / 30 ……………… 156.26.2.252 / 30 -------------------------------------------------------------------------126 62 30 14 6 2 I N Hosts --------------------------------------------------------I----------------128 64 32 16 8 4 2 1 I ------------------------------------------------------- I-----------------25 26 27 28 29 30 32 I N Bits in mask --------------------------------------------------------I--- -------------128 192 224 240 248 252 I Mask

------------------------------------------- -i--------------

CISCO router introduction

Variable Length Subnet Masks (VLSM) (cont.)

192.168.50.0 ETHERNET

10 Hosts 100 Hosts Serial Link

2 Hosts Token-ring

ETHERNET 50 Hosts

ETHERNET 20 Hosts

y Use VLSM to allow the class C 192.168.50.0 to accommodate this internetwork and the hosts on each on the data link.

CISCO router introduction

Variable Length Subnet Masks (VLSM) (cont.) Data Link Token Ring

Subnet

Mask

192.168.50.128

255.255.255.128

N Bits 25

Hosts IP Addresses (Used)

Total

Needed

Hosts

Hosts

192.168.50.129

126

100

to

62

50

to

30

20

to

14

10

to

192.168.50.254 Ethernet

192.168.50.64

255.255.255.192

26

192.168.50.65 192.168.50.126

Ethernet

192.168.50.32

255.255.255.224

27

192.168.50.33 192.168.50.62

Ethernet

192.168.50.16

255.255.255.240

28

192.168.50.17 192.168.50.30

Free

192.168.50.1

to

192.168.50.15

Class C 192.168.50.0 / 24 ---------- 192.168.50.128 / 25 192.168.50.0 / 25 -------192.168.50.64 / 26 192.168.50.0 / 26 ------ 192.168.50.32 / 27

CISCO router introduction

What is Routing ?

W o rk s ta tio n

W o rk s ta tio n

T o k e n -rin g

W o rk s ta tio n

To route, the router needs to perform the following :

-

read the destination address Check the possible routes Selects the best route Maintain the Route Table by learning destinations that are not directly connected

CISCO router introduction

What is Routing ? (cont.1) y Observation : Data Link / Physical layers and the Transport/ network layers provide both a mean for conveying data from a Source to a destination across a path.

y Difference : Data Link / Physical layers open a communication across a physical path, Transport/ network layers open a communication across a logical or virtual path thru several data links.

y Data Link / Physical layers determine and store needed information for communication in ARP cache

y Transport / network layers determine and store needed information for communication in ROUTE table

CISCO router introduction

How are processed the received framed packets y The Data link identifier in the destination address field of the frame is examined, if it contains the identifier of the router interface or a broadcast identifier, the router takes the frame and passes the enclosed packet to the network layer.

y The network layer examines the destination IP address, if it is the router interface address or all broadcast address, the protocol field of the packet is examined and the data is sent to the appropriate internal router process.

y Any other destination address not directly connected, the router will do a double route table lookup to acquire the correct route.

CISCO router introduction

Route Table Each route entry in the route table must contains 2 items :

y Destination address : network address that the router can reach y A pointer to the destination called Next-hop which is the address of the next router in the path. The router will match the most specific address in the following priority order :

y y y y y y

Host address A subnet A group of subnet A major network (classfull) A group of major network numbers (supernet) A defaut address

CISCO router introduction

Static and Dynamic Routes Static Routes

y Manually entered in the router Dynamic Routes

y Determined automatically by the Routing Protocol

CISCO router introduction

Static Routing internetwork ROUTER 1 needs to reach ROUTER 3 ROUTER 3 needs to reach ROUTER 1 10.1.5.1

RT : Route Table Router 2

Router 1

Router 3

10.1.3.1 10.1.1.1

10.1.6.1

10.1.2.1

Router 4

10.1.4.2

10.1.7.1

10.1.2.2

RT 1 RT 2 Network 10.1.1.0 10.1.2.0 10.1.4.0

Next hop directly connected directly connected 10.1.2.2

10.1.6.2

10.1.4.1

Network Next hop 10.1.4.0 directly connected 10.1.5.0 directly connected 10.1.6.0 directly connected

RT 3 Network 10.1.2.0 10.1.4.0 10.1.5.0 10.1.6.0

Next hop 10.1.4.1 directly connected directly connected directly connected

RT 4

Network Next hop 10.1.6.0 directly connected 10.1.7.0 directly connected

CISCO router introduction

Static Routing configuration Router 1

Router 3 10.1.2.1

Router 2 10.1.4.2 10.1.2.2

10.1.4.1

On Router 1

y IP route 10.1.4.0 255.255.255.0 10.1.2.2 On Router 3

y IP route 10.1.2.0 255.255.255.0 10.1.4.1

CISCO router introduction

Route Table example ( Cisco Router) •Router 31# show ip route •Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP •

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area



N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2



E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP



i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default



U - per-user static route, o - ODR

• •Gateway of last resort is not set • •10.0.0.0 is subnetted, 7 subnets

y y y y

•S

10.1.3.0 [1/ 0] via 10.1.4.1

•S

10.1.2.0 [1/ 0] via 10.1.4.1,

•S

10.1.1.0 [1/ 0] via 10.1.4.1,

•S

10.1.7.0 [1/ 0] via 10.1.4.1,

•C

10.1.6.0 is directly connected, Serial1

•C

10.1.5.0 is directly connected, Ethernet0

•C

10.1.4.0 is directly connected, Serial0

[administrative distance / Metric] = [1/0] AD=0 (connected), AD=1(static), AD=100(IGRP),AD=110(OSPF), AD=120 (RIP) The lower the AD, the more believable the protocol Each protocol uses its own metric scheme to define the best route

CISCO router introduction

Exercise 3 : internetwork and route table 10.1.5.1

RT : Route Table Router 2

Router 1

Router 3

10.1.3.1 10.1.1.1

10.1.6.1

10.1.2.1

Router 4

10.1.4.2

10.1.7.1

10.1.2.2

RT 1 RT 2 Network 10.1.1.0 10.1.2.0

Next hop directly connected directly connected

10.1.6.2

10.1.4.1

Network Next hop 10.1.4.0 directly connected 10.1.5.0 directly connected 10.1.6.0 directly connected

RT 3 Network 10.1.4.0 10.1.5.0 10.1.6.0

Next hop directly connected directly connected directly connected

RT 4

Network Next hop 10.1.6.0 directly connected 10.1.7.0 directly connected

On all Routers

y write all pointers to the destinations in NEXT HOP column

CISCO router introduction

Exercise 3 : Result 10.1.5.1

Router 2

Router 1

Router 3

10.1.3.1 10.1.1.1

10.1.6.1

10.1.2.1

Router 4

10.1.4.2

10.1.7.1

10.1.2.2

RT 1 Network 10.1.1.0 10.1.2.0 10.1.3.0 10.1.4.0 10.1.5.0 10.1.6.0 10.1.7.0

Next hop directly connected directly connected 10.1.2.2 10.1.2.2 10.1.2.2 10.1.2.2 10.1.2.2

10.1.6.2

10.1.4.1

RT 2 Network Next hop 10.1.1.0 Not in RT 10.1.2.0 directly connected 10.1.3.0 directly connected 10.1.4.0 directly connected 10.1.5.0 10.1.4.2 10.1.6.0 10.1.4.2 10.1.4.2 10.1.7.0

RT 3 Network 10.1.1.0 10.1.2.0 10.1.3.0 10.1.4.0 10.1.5.0 10.1.6.0 10.1.7.0

Next hop 10.1.4.1 10.1.4.1 10.1.4.1 directly connected directly connected directly connected 10.1.6.2

RT 4 Network Next hop 10.1.1.0 10.1.6.1 10.1.2.0 10.1.6.1 10.1.3.0 10.1.6.1 10.1.4.0 10.1.6.1 10.1.5.0 10.1.6.1 10.1.6.0 directly connected 10.1.7.0 directly connected

On Router 2

y What happens if next hop is missing for network 10.1.1.0 y Every router must have consistent information for correct packet routing

CISCO router introduction

Route table lookup for packet flow 1 0 .1 .5 .1

R o u te r 2

R o u te r 1

R o u te r 3

1 0 .1 .3 .1 1 0 .1 .1 .1

1 0 .1 .6 .1

1 0 .1 .2 .1

R o u te r 4

1 0 .1 .4 .2

1 0 .1 .7 .1

1 0 .1 .2 .2

N e tw o rk 1 0 .1 .1 .0 1 0 .1 .2 .0 1 0 .1 .3 .0 1 0 .1 .4 .0 1 0 .1 .5 .0 1 0 .1 .6 .0 1 0 .1 .7 .0

N ext hop d ir e c tly c o n n e c te d d ir e c tly c o n n e c te d 1 0 .1 .2 .2 1 0 .1 .2 .2 1 0 .1 .2 .2 1 0 .1 .2 .2 1 0 .1 .2 .2

1 0 .1 .6 .2

1 0 .1 .4 .1

RT 1 RT 2 N e tw o rk 1 0 .1 .1 .0 1 0 .1 .2 .0 1 0 .1 .3 .0 1 0 .1 .4 .0 1 0 .1 .5 .0 1 0 .1 .6 .0 1 0 .1 .7 .0

N ext hop N o t in R T d ir e c tly c o n n e c te d d ir e c tly c o n n e c te d d ir e c tly c o n n e c te d 1 0 .1 .4 .2 1 0 .1 .4 .2 1 0 .1 .4 .2

RT 3 N e tw o rk 1 0 .1 .1 .0 1 0 .1 .2 .0 1 0 .1 .3 .0 1 0 .1 .4 .0 1 0 .1 .5 .0 1 0 .1 .6 .0 1 0 .1 .7 .0

N ext hop 1 0 .1 .4 .1 1 0 .1 .4 .1 1 0 .1 .4 .1 d ir e c tly c o n n e c te d d ir e c tly c o n n e c te d d ir e c tly c o n n e c te d 1 0 .1 .6 .2

RT 4 N e tw o rk Next hop 1 0 .1 .1 .0 1 0 .1 .6 .1 1 0 .1 .2 .0 1 0 .1 .6 .1 1 0 .1 .3 .0 1 0 .1 .6 .1 1 0 .1 .4 .0 1 0 .1 .6 .1 1 0 .1 .5 .0 1 0 .1 .6 .1 1 0 .1 .6 .0 d ir e c t ly c o n n e c te d 1 0 .1 .7 .0 d ir e c t ly c o n n e c te d

y Router 1 receives a packet with a source address of 10.1.1.97 and a destination address of 10.1.7.10

y Route table lookup find 10.1.7.0 subnet as best match reachable via next-hop address 10.1.2.2 on interface S0

y The packet is sent to that next router (Router 2) y Process continues until packet reaches Router 4 which sees that the destination is on Directly connected subnet 10.1.7.0

CISCO router introduction

Case Study 1 :Simple Static routes Router 2 192.168.1.1 / 27

192.168.1.65 / 27

192.168.1.193 / 27

Router 4 10.1.5.1 / 16

192.168.1.66 / 27

10.4.6.2 / 24

Router 1

192.168.1.194 / 27 10.4.6.1 / 24

10.4.7.1 / 24

Router 3

y The subnets of network 10.0.0.0 are discontiguous, a major network subnet separates 10.1.0.0 from other 10.0.0.0 subnets

y The subnets of 10.0.0.0 are also variably subnetted, the subnet mask are not consistent thru the major intermediate network

y This will not work with classfull routing protocol (RIP V1, IGRP) y Static routes work fine, Variable Length Subnet Masking (VLSM) is also useful.

CISCO router introduction

3 steps : Simple Static route configuration Router 2 192.168.1.1 / 27

192.168.1.65 / 27

192.168.1.193 / 27

Router 4 10.1.5.1 / 16

192.168.1.66 / 27

10.4.6.2 / 24

Router 1

192.168.1.194 / 27 10.4.6.1 / 24

10.4.7.1 / 24

Router 3

1. 2. 3.

For each link determine the subnet or network address For each router identify all links not directly connected For each router write a route statement for each link not directly connected

CISCO router introduction

Step 1 : Simple Static route configuration Router 2 192.168.1.1 / 27

192.168.1.65 / 27

192.168.1.193 / 27

Router 4 10.1.5.1 / 16

192.168.1.66 / 27

10.4.6.2 / 24

Router 1

192.168.1.194 / 27 10.4.6.1 / 24

The internetwork has six subnets

y 10.1.0.0 / 16 y 10.4.6.0 / 24 y10.4.7.0 / 24 y192.168.1.192 / 27 y192.168.1.64 / 27 y192.168.1.0 / 27

10.4.7.1 / 24

Router 3

CISCO router introduction

Step 2 : Simple Static route configuration Router 2 192.168.1.1 / 27

192.168.1.65 / 27

192.168.1.193 / 27

Router 4 10.1.5.1 / 16

192.168.1.66 / 27

10.4.6.2 / 24

Router 1 Router 1 :

192.168.1.194 / 27 10.4.6.1 / 24

Router 4 :

Subnets not directly connected

y 10.1.0.0 / 16 y10.4.6.0 / 24 y10.4.7.0 / 24 y192.168.1.192 / 27

10.4.7.1 / 24

Router 3

Subnets not directly connected

y10.4.6.0 / 24 y10.4.7.0 / 24 y192.168.1.64 / 27 y192.168.1.0 / 27

CISCO router introduction

Step 3 : Simple Static route configuration (cont.1) R o u te r 2

1 9 2 .1 6 8 .1 .1 / 2 7

1 9 2 .1 6 8 .1 .6 5 / 2 7

R o u te r 4

1 9 2 .1 6 8 .1 .1 9 3 / 2 7

1 0 .1 .5 .1 / 1 6 1 9 2 .1 6 8 .1 .6 6 / 2 7

1 0 .4 .6 .2 / 2 4

R o u te r 1

1 9 2 .1 6 8 .1 .1 9 4 / 2 7 1 0 .4 .6 .1 / 2 4

1 0 .4 .7 .1 / 2 4

R o u te r 3

y Router1 (confg)# ip route 192.168.1.192 255.255.255.224 192.1.168.1.66 y Router1 (confg)# ip route 10.1.0.0 255.255.0.0 192.1.168.1.66 y Router1 (confg)# ip route 10.4.6.0 255.255.0.0 192.1.168.1.66 y Router1 (confg)# ip route 10.4.7.0 255.255.0.0 192.1.168.1.66 y Router 2 (confg)# ip route 192.168.1.0 255.255.255.224 192.168.1.65 y Router 2 (confg)# ip route 10.1.0.0 255.255.0.0 192.1.168.194 y Router 2 (confg)# ip route 10.4.7.0 255.255.255.0 10.4.6.1

CISCO router introduction

Step 3 : Simple Static route configuration R o u te r 2 (cont.2) 1 9 2 .1 6 8 .1 .1 / 2 7

1 9 2 .1 6 8 .1 .6 5 / 2 7

R o u te r 4

1 9 2 .1 6 8 .1 .1 9 3 / 2 7

1 0 .1 .5 .1 / 1 6 1 9 2 .1 6 8 .1 .6 6 / 2 7

1 0 .4 .6 .2 / 2 4

R o u te r 1

1 9 2 .1 6 8 .1 .1 9 4 / 2 7 1 0 .4 .6 .1 / 2 4

1 0 .4 .7 .1 / 2 4

R o u te r 3

y Router3 (confg)# ip route 192.168.1. 0 255.255.255.224 10.4.6.2 y Router3 (confg)# ip route 192.168.1. 64 255.255.255.224 10.4.6.2 y Router3 (confg)# ip route 192.168.1. 192 255.255.255.224 10.4.6.2 y Router3 (confg)# ip route 10.1.0.0 255.255.0.0 10.4.6.2 y Router 4 (confg)# ip route 192.168.1.0 255.255.255.224 192.168.1.193 y Router 4 (confg)# ip route 192.168.1.64 255.255.255.224 192.168.1.193 y Router 4 (confg)# ip route 10.4.6.0 255.255.255.0 192.168.1.193 y Router 4 (confg)# ip route 10.4.7.0 255.255.255.0 192.168.1.193

CISCO router introduction

Case Study 2 : Summary routes (1) R o u te r 2 1 9 2 .1 6 8 .1 .1 / 2 7

1 9 2 .1 6 8 .1 .6 5 / 2 7

R o u te r 4

1 9 2 .1 6 8 .1 .1 9 3 / 2 7

1 0 .1 .5 .1 / 1 6 1 9 2 .1 6 8 .1 .6 6 / 2 7

1 0 .4 .6 .2 / 2 4

R o u te r 1

1 9 2 .1 6 8 .1 .1 9 4 / 2 7 1 0 .4 .6 .1 / 2 4

1 0 .4 .7 .1 / 2 4

R o u te r 3

Subnets 10.4.6.0/24 and 10.4.7.0/24 could be specified to Router4 with a single entry 10.4.0.0/16 Subnets 192.168.1.0/27 and 192.168.1.64/27 could be specified to Router4 with a single entry 192.168.1.0/24

y Router 4 (confg)# ip route 192.168.1.0 255.255.255.0 192.168.1.193 y Router 4 (confg)# ip route 10.4.0.0 255.255.0.0 192.168.1.193 Frpm Router 1 via Rouer 2 all subnets of network 10.0.0.0 are reachable , so a single entry to that major network is needed

y Router 1 (confg)# ip route 192.168.1.192 255.255.255.224 192.168.1.66 y Router 1 (confg)# ip route 10.0.0.0 255.0.0.0 192.168.1.66

CISCO router introduction

Case Study 2 : Summary routes (2) R o u te r 2 1 9 2 .1 6 8 .1 .1 / 2 7

1 9 2 .1 6 8 .1 .6 5 / 2 7

R o u te r 4

1 9 2 .1 6 8 .1 .1 9 3 / 2 7

1 0 .1 .5 .1 / 1 6 1 9 2 .1 6 8 .1 .6 6 / 2 7

1 0 .4 .6 .2 / 2 4

R o u te r 1

1 9 2 .1 6 8 .1 .1 9 4 / 2 7 1 0 .4 .6 .1 / 2 4

1 0 .4 .7 .1 / 2 4

R o u te r 3 Frpm Router 3 via Rouer 2 all subnets of network 192.0.0.0 are reachable , so a single entry to that major network is needed

y Router 1 (confg)# ip route 192.0.0.0 255.0.0.0 10.4.6.1 y Router 1 (confg)# ip route 10.1.0.0 255.255.0.0 10.4.6.1 Caution must be taken with simmarization to avoid unexpected routing behavior

CISCO router introduction

Case Study 3 : Floating static routes (1) Router 2 192.168.1.1 / 27

192.168.1.65 / 27

192.168.1.193 / 27

Router 4 10.1.5.1 / 16

192.168.1.66 / 27 10.4.8.2 / 24

10.4.6.2 / 24

Router 1

192.168.1.194 / 27 10.4.8.1 / 24

10.4.6.1 / 24

10.4.7.1 / 24

Router 3 y Static route is not permanently in Route Table y Appears only when preferred route fails y Administrative distance is added to static route y The router selects as primary the route with lower Administrative distance

CISCO router introduction

Case Study 3 : Floating static routes (2) Router 2 192.168.1.1 / 27

192.168.1.65 / 27

Router 4

192.168.1.193 / 27

10.1.5.1 / 16 192.168.1.66 / 27 10.4.8.2 / 24

10.4.6.2 / 24

Router 1

192.168.1.194 / 27 10.4.8.1 / 24

10.4.6.1 / 24

10.4.7.1 / 24

Router 3 y y y y y y y y

Router3 (confg)# ip route 192.168.1. 0 255.255.255.224 10.4.6.2 Router3 (confg)# ip route 192.168.1. 64 255.255.255.224 10.4.6.2 Router3 (confg)# ip route 192.168.1. 192 255.255.255.224 10.4.6.2 Router3 (confg)# ip route 10.1.0.0 255.255.0.0 10.4.6.2 Router3 (confg)# ip route 192.168.1. 0 255.255.255.224 10.4.6.2 10 Router3 (confg)# ip route 192.168.1. 64 255.255.255.224 10.4.6.2 10 Router3 (confg)# ip route 192.168.1. 192 255.255.255.224 10.4.6.2 10 Router3 (confg)# ip route 10.1.0.0 255.255.0.0 10.4.6.2 10

CISCO router introduction

Case Study 3 : Floating static routes (3) Router 2 192.168.1.1 / 27

192.168.1.65 / 27

Router 4

192.168.1.193 / 27

10.1.5.1 / 16 192.168.1.66 / 27 10.4.8.2 / 24

10.4.6.2 / 24

Router 1

192.168.1.194 / 27 10.4.8.1 / 24

10.4.6.1 / 24

10.4.7.1 / 24

Router 3

y Router 2 (confg)# ip route 10.4.7.0 255.255.255.0 10.4.6.1 y Router 2 (confg)# ip route 10.4.7.0 255.255.255.0 10.4.6.1 10