Introduction to Computer Vision - Thierry CHATEAU

understanding images and, in general, high- dimensional .... Image Processing/Analysis .... Digital Picture Processing. ... Signal Processing for Computer Vision.
29MB taille 3 téléchargements 314 vues
Introduction to Computer Vision

Content

1.State of the art 2.Why Computer Vision is Challenging ? 3.Related fields 4.Typical tasks of computer vision 5.Computer vision systems 6.Further reading

2014

T. Chateau

T. Chateau

Institut Pascal

1

2

Computer Vision: Definition

Computer Vision: State of the art

Computer vision is a field that includes methods for acquiring, processing, analyzing, and understanding images and, in general, highdimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions

1950: Image processing 1960: first image processing algorithms

Processing

Acquiring

High Dimensional data

binary and edge based technics Analyzing

Understanding T. Chateau

Institut Pascal

3

T. Chateau

Institut Pascal

4

Computer Vision: State of the art

Computer Vision: State of the art

1990: projective geometry, a major contribution to Computer Vision

T. Chateau

>2000: toward robust and realtime algorithms

Institut Pascal

T. Chateau

5

ComSee, Pascal Institute, 2005

Institut Pascal

6

Computer Vision: State of the art

Content

>2000: Learning based methods

1.State of the art 2.Why Computer Vision is Challenging ? 3.Related fields 4.Typical tasks of computer vision 5.Computer vision systems 6.Further reading Deep learning, Y. LeCun T. Chateau

Institut Pascal

7

T. Chateau

Institut Pascal

8

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

what  about  the  animal  vision  system  ?

• what  about  the  animal  vision  system  ?   • perspec5ve  projec5on  (from  3D  to  2D)   • object  reflectance   • visual  features  

T. Chateau

Institut Pascal

T. Chateau

9

prey:  360°  field  of  view

predator:  stereoscopic   vision Institut Pascal

10

Camera Models

Why Computer Vision is Challenging ?

perspec5ve  projec5on  (from  3D  to  2D)  

Pinhole  model

Image plane Pinhole

Virtual image 11

T. Chateau

Institut Pascal

11

T. Chateau

Institut Pascal

12

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

Scene  rendering  :  the  direct  problem  

exemples  of  virtual  images

Produce  an  image  from  parameters

Wikipedia T. Chateau

Institut Pascal

T. Chateau

13

Institut Pascal

14

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

Computer  Vision  :  the  inverse  problem   Es5mate  parameters  from  images

To  solve  the  inverse  problem,  we  need   to  extract  image  features

Wikipedia T. Chateau

Wikipedia Institut Pascal

15

T. Chateau

Institut Pascal

16

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

visual  features:   edges

visual  features:   shadow

T. Chateau

Institut Pascal

T. Chateau

17

Institut Pascal

18

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

Most  popular  geometric  features  used  in  Computer   Vision

visual  features:   texture

T. Chateau

Institut Pascal

19

T. Chateau

Institut Pascal

20

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

Edges

T. Chateau

Interest  Points

Institut Pascal

T. Chateau

21

Institut Pascal

22

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

Should  we  rely  to  the  human  vision  ?

But:  should  we  rely  on  human  vision?

T. Chateau

Institut Pascal

23

T. Chateau

Institut Pascal

24

Why Computer Vision is Challenging ?

Why Computer Vision is Challenging ?

Should  we  rely  to  the  human  vision  ?

Should  we  rely  to  the  human  vision  ?    which  is  the  darkest  square  between  A  and  B?

which  is  the  longest  s5ck  ?    which  is  the  longest  table  ?

T. Chateau

Institut Pascal

T. Chateau

25

Institut Pascal

26

Why Computer Vision is Challenging ?

Content

Should  we  rely  to  the  human  vision  ?    which  is  the  darkest  square  between  A  and  B?

T. Chateau

Institut Pascal

27

1.State of the art 2.Why Computer Vision is Challenging ? 3.Related fields 4.Typical tasks of computer vision 5.Computer vision systems 6.Further reading

T. Chateau

Institut Pascal

28

Computer Vision: Related Fields

Content

1.State of the art 2.Why Computer Vision is Challenging ? 3.Related fields 4.Typical tasks of computer vision 5.Computer vision systems 6.Further reading

(from Wiki) T. Chateau

Institut Pascal

T. Chateau

29

Institut Pascal

30

Typical tasks in Computer Vision

Typical tasks in Computer Vision

Image  Processing/Analysis

• Image  Processing   • Object  detec5on  and  tracking   • 2D  geometry     • 3D  geometry   for  medical  applica5ons

T. Chateau

Institut Pascal

31

T. Chateau

Institut Pascal

32

Typical tasks in Computer Vision

Typical tasks in Computer Vision

Image  Processing/Analysis

Image  Processing/Analysis

original

denoising

T. Chateau

T. Chateau

33

Institut Pascal

34

Typical tasks in Computer Vision

Typical tasks in Computer Vision

Object  detec5on  and  tracking

Object  detec5on  and  tracking

pedestrian  detec5on

face  detec5on Institut Pascal

35

result  

Inpain5ng

Institut Pascal

T. Chateau

mask  image

T. Chateau

Institut Pascal

36

Typical tasks in Computer Vision

Typical tasks in Computer Vision

Object  detec5on  and  tracking

Object  detec5on  and  tracking

object  detec5on  and  tracking

object  tracking:  meanshiU T. Chateau

Institut Pascal

T. Chateau

37

Institut Pascal

Typical tasks in Computer Vision

2D  geometry

2D  geometry:  2D  paVern  tracking

V.  Lepe5t,  EPFL,  Lausanne,  2006

Interest  point  matching

Institut Pascal

39

ComSee, Pascal Institute, 2009 38

Typical tasks in Computer Vision

T. Chateau

MOT:  Mul5  objects  tracking

T. Chateau

Institut Pascal

40

Typical tasks in Computer Vision

Typical tasks in Computer Vision

2D  geometry:  video  stabiliza5on

before

2D  geometry:  augmented  reality

aUer

Pascal  Ins5tute,  France,  2006 T. Chateau

ComSee,  Pascal  Ins5tute,  France,  2011 Institut Pascal

T. Chateau

41

Institut Pascal

42

Typical tasks in Computer Vision

Typical tasks in Computer Vision

3D  geometry:  3D  reconstruc5on

3D  geometry 2D interest points

2D/3D optical center

3D model

matching

2D Image

T. Chateau

M.  Lhuillier,  2002 Institut Pascal

43

T. Chateau

Institut Pascal

44

Typical tasks in Computer Vision

Typical tasks in Computer Vision

3D  geometry:  3D  reconstruc5on

3D  geometry:  3D  reconstruc5on

ComSee,  Pascal  Ins5tute,  2008 T. Chateau

Institut Pascal

T. Chateau

ComSee  Pascal  Ins5tute/Cea,  France,  2005 Institut Pascal

45

ISPR/ComSee: 3D-Localisation

Monocular  based  localisa/on  for  automa/c  guidance  

46 Visual Memory: Matching

Step  2:  3D  reconstruc5on

Step  1:  supervised  guidance  and  video  recording • Interest point detection (1500 per image) • Correlation ZNCC (11x11 pixels ROI)

image t

47

image t+1

48

Visual memory: interest points detection

Visual Memory: key images selection process

Step  2:  3D  reconstruc5on

Step  2:  3D  reconstruc5on • Key images: – far enough to produce a precise 3D reconstruction – close enough to keep matching points.

Nb matching > M

N=300, M=400

Nb matching > N

Interest point detection

10

11

49 Visual memory: 3D reconstruction algorithm

Step  2:  3D  reconstruc5on Key images

50 Visual memory: 3D reconstruction algorithm

Step  2:  3D  reconstruc5on

1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4

51

3 4 5 6

52

Visual memory: 3D reconstruction algorithm

Visual memory: 3D reconstruction algorithm

Step  2:  3D  reconstruc5on

Step  2:  3D  reconstruc5on

1 2 3 4 5 6 1 2 3 4 1 2 3

1 2 3 4 5 6

3 4 5 6

1 2 3 4

2 3 4

1 2 3

3 4 5 6

2 3 4

Bundle Adjustment :

3D geometry estimation of the first 3 images

E13

• Essential matrix (5 points algorithm)

estimate

that minimize:

• 3D points reconstruction • Bundle adjustment.

1

2

3

53

54

Visual memory: 3D reconstruction algorithm

Visual memory: 3D reconstruction algorithm

Step  2:  3D  reconstruc5on

Step  2:  3D  reconstruc5on

1 2 3 4 5 6 1 2 3 4 1 2 3

1 2 3 4 5 6

3 4 5 6

1 2 3 4

2 3 4

1 2 3

3D reconstruction is made for each subset of 3 key images triangulation



N-1

55

2 3 4

Fusion step: 3D points

1

3 4 5 6

• based on subsets with common images pose estimation

N

N+1

1

56

2

3

4

Visual Memory: 3D textured points

Visual Memory: 3D points

Step  2:  3D  reconstruc5on

Step  2:  3D  reconstruc5on

10 m

3D reconstructed points (125 m, 172 key images, 23000 3D image)

(125 m, 172 key images, 23000 3D points) 18

57

19

58

Visual based localization

Processus Innovant : Guidage Temps Réel vidéo

Step  3:  real5me  online  localiza5on Visual memory 3D patchs

2D/3D matching and localization

Camera localization 6 dof

Current image

Realtime localization (15 fps) – precision: 10cm Eric Royer, Maxime Lhuillier, Michel Dhome and Thierry Chateau, Localization in urban environments : monocular vision compared to a differential gps sensor. IEEE CVPR2005, Computer Vision and Pattern Recognition. San Diego, USA, June 2005 20

59

21

60

Expérimentation en milieu urbain : Place de jaude

ISPR/ComSee: 3D-Localisation

Monocular  based  localisa/on  for  automa/c  guidance   Toward  the  Vipa  Project:  using  two  cameras  (rear-­‐front)

Clermont Fd downtown

23

61

ISPR/ComSee: 3D-Localisation

62

Typical tasks in Computer Vision

Monocular  based  localisa/on  for  automa/c  guidance  

3D  geometry:  localisa5on,  augmented  reality

Toward  the  Vipa  Project:  using  two  cameras  (rear-­‐front)

T. Chateau

63

CVlab,  EPFL,  Lausanne Institut Pascal

64

Typical tasks in Computer Vision

Typical tasks in Computer Vision

3D  geometry:  localisa5on,  augmented  reality,  

T. Chateau

ComSee,  Pascal  Ins5tute/Cea,  France,  2013 Institut Pascal

3D  geometry:  localisa5on,  augmented  reality,  

ComSee,  Pascal  Ins5tute/Cea,  France,  2011 T. Chateau

65

66

Typical tasks in Computer Vision

Typical tasks in Computer Vision And  many  other  applica5ons  ...

3D  geometry:  localisa5on,  augmented  reality,  

T. Chateau

ComSee,  Pascal  Ins5tute  /Cea,  France,  2011 Institut Pascal

67

Institut Pascal

T. Chateau

Lasmea/France 68

Institut Pascal

Content

Computer Vision Systems

•Image  acquisi5on   •Pre-­‐processing   •Feature  extrac5on   •Detec5on,  segmenta5on   •High  level  processing

1.State of the art 2.Why Computer Vision is Challenging ? 3.Related fields 4.Typical tasks of computer vision 5.Computer vision systems 6.Further reading

T. Chateau

Institut Pascal

T. Chateau

Institut Pascal

69

70

Computer Vision Systems

Computer Vision Systems

Image  acquisi5on:  sensors  

T. Chateau

Institut Pascal

71

Rolling  shuVer  Vs  Global  shuVer  

T. Chateau

Institut Pascal

72

Computer Vision Systems

Kinect 1 : structured IR active camera

color  cameras  

T. Chateau

Institut Pascal

73

Kinect 1 : structured IR active camera

75 Institut Pascal

75

Institut Pascal

74

Kinect 1 : structured IR active camera

T. Chateau

74

T. Chateau

76

T. Chateau

Institut Pascal

76

Kinect 2 : time of flight camera

Kinect 2 : time of flight camera

77

T. Chateau

Institut Pascal

77

Kinect 2 : time of flight camera

79 Institut Pascal

79

Institut Pascal

78

Kinect 2 : time of flight camera

T. Chateau

78

T. Chateau

80

T. Chateau

Institut Pascal

80

Kinect 2 : time of flight camera

Kinect 2 : time of flight camera

81

T. Chateau

Institut Pascal

82

T. Chateau

81

Institut Pascal

82

plenoptic cameras

plenoptic cameras

83

T. Chateau

Institut Pascal

83

84

T. Chateau

Institut Pascal

84

plenoptic cameras

plenoptic cameras

85

T. Chateau

Institut Pascal

86

T. Chateau

Institut Pascal

85

86

plenoptic cameras

Computer Vision Systems

Image  acquisi5on:  communica5on  

87

T. Chateau

Institut Pascal

87

T. Chateau

Institut Pascal

88

Computer Vision Systems

Computer Vision Systems

Image  processing:  hardware  

T. Chateau

Image  processing:  soUware  

Institut Pascal

T. Chateau

89

90

Further Readings (from Wiki) ■

Institut Pascal

Further Readings (from Wiki)

Dana H. Ballard and Christopher M. Brown (1982). Computer Vision. Prentice Hall. ISBN 0131653164.



Bernd Jähne (2002). Digital Image Processing. Springer. ISBN 3-540-67754-2.



David A. Forsyth and Jean Ponce (2003). Computer Vision, A Modern Approach. Prentice Hall. ISBN 0-13-085198-1.



David Marr (1982). Vision. W. H. Freeman and Company. ISBN 0-7167-1284-9.



Azriel Rosenfeld and Avinash Kak (1982). Digital Picture Processing. Academic Press. ISBN 0-12-597301-2.



Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in Computer Vision. Cambridge University Press. ISBN 0-521-54051-8.



Berthold Klaus Paul Horn (1986). Robot Vision. MIT Press. ISBN 0-262-08159-8.





Olivier Faugeras (1993). Three-Dimensional Computer Vision, A Geometric Viewpoint. MIT Press. ISBN 0-262-06158-9.

Gérard Medioni and Sing Bing Kang (2004). Emerging Topics in Computer Vision. Prentice Hall. ISBN 0-13-101366-1.





Tony Lindeberg (1994). Scale-Space Theory in Computer Vision. Springer. ISBN 0-7923-9418-6.

Tim Morris (2004). Computer Vision and Image Processing. Palgrave Macmillan. ISBN 0-333-99451-5.



James L. Crowley and Henrik I. Christensen (Eds.) (1995). Vision as Process. Springer-Verlag. ISBN 3-540-58143-X and ISBN 0-387-58143-X.



E. Roy Davies (2005). Machine Vision : Theory, Algorithms, Practicalities. Morgan Kaufmann. ISBN 0-12-206093-8.



Gösta H. Granlund and Hans Knutsson (1995). Signal Processing for Computer Vision. Kluwer Academic Publisher. ISBN 0-7923-9530-1.



R. Fisher, K Dawson-Howe, A. Fitzgibbon, C. Robertson, E. Trucco (2005). Dictionary of Computer Vision and Image Processing. John Wiley. ISBN 0-470-01526-8.



Reinhard Klette, Karsten Schluens and Andreas Koschan (1998). Computer Vision - ThreeDimensional Data from Images. Springer, Singapore. ISBN 981-3083-71-9.



Nikos Paragios and Yunmei Chen and Olivier Faugeras (2005). Handbook of Mathematical Models in Computer Vision. Springer. ISBN 0-387-26371-3.



Emanuele Trucco and Alessandro Verri (1998). Introductory Techniques for 3-D Computer Vision. Prentice Hall. ISBN 0132611082.



Wilhelm Burger and Mark J. Burge (2007). Digital Image Processing: An Algorithmic Approach Using Java. Springer. ISBN 1846283795 and ISBN 3540309403.



Milan Sonka, Vaclav Hlavac and Roger Boyle (1999). Image Processing, Analysis, and Machine Vision. PWS Publishing. ISBN 0-534-95393-X.



Pedram Azad, Tilo Gockel, Rüdiger Dillmann (2008). Computer Vision - Principles and Practice. Elektor International Media BV. ISBN 0905705718.



Bernd Jähne and Horst Haußecker (2000). Computer Vision and Applications, A Guide for Students and Practitioners. Academic Press. ISBN 0-12-379777-2.



Linda G. Shapiro and George C. Stockman (2001). Computer Vision. Prentice Hall. ISBN 0-13-030796-3.

T. Chateau

Institut Pascal

91

T. Chateau

Institut Pascal

92