Imaging power of multi-fibered nulling telescopes for extra-solar

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization. 1 .... Magnitude of target star. S ig n a l to. N o is e. R a tio. SRT (B=3m).
1MB taille 2 téléchargements 243 vues
Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

François Hénault UMR 6525 H. Fizeau, Université de Nice-Sophia Antipolis Centre National de la Recherche Scientifique Observatoire de la Côte d’Azur Parc Valrose, 06108 Nice – France

Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

San Diego, 08-23-11

1

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Three reasons to build space nulling telescopes • Usable for exploratory science missions: exo-zodiacal clouds characterization, hot and cold Jupiter-like planets… • Allows validating most of Darwin/TPF-I required technologies (achromatic phase shifters, WFE filtering, OPD control…) • If rotating, allows validating the envisioned algorithms for planet finding and characterization

Previous publications • “Fibered nulling telescope for extra-solar coronagraphy,” Optics Letters 34, n° 7, p. 1096–1098 (2009) • “Simple Fourier optics formalism for high angular resolution systems and nulling interferometry,” JOSA A 27, p. 435-449 (2010) • “PSF and Field of View characteristics of imaging and nulling interferometers,” Proceedings of the SPIE 7734, p. 773419 (2010) Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

San Diego, 08-23-11

2

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Super-Resolving Telescope (SRT) Monolithic telescope Secondary Mirror Metrology beam 1

Metrology beam 2

APS 1

(P) Primary Mirror

Relay optics Converging optics Diverging optics FoldFoV mirror Rotator Beamsplitter Acromatic Phase Shifter

Multi-axial combiner (exit pupil plane)

APS 2

(P’) P’1

O’ B’

P’2 F’

Focal plane

Z Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

X” SMW Array Y”

Z San Diego, 08-23-11

3

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Sheared-Pupil Telescope (SPT) Monolithic telescope Secondary Mirror APS 1

APS 2

(P) Primary Mirror

Relay optics

Multi-axial combiner

O’

Lyot stop in F’ exit pupil plane

Focal plane

X” SMW Arra y

Y” Z Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

(P’)

P’2

P’ 1

FoV Rotator

Metrology beams

Z San Diego, 08-23-11

4

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Two different types of nulling telescopes Input pupil plane

Output pupil plane Y ’

Y

Unmasked output sub-pupils (SRT)

O

All input and output sub-pupils are identical and optically conjugated

Masked output sub-pupils (SPT)

D’

X

O’

X’

D

Y

D

O

Monolithic pupil telescope

X

B Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

D’

B’ Y ’

O’

Lyot stop in exit pupil plane X’

B’ San Diego, 08-23-11

5

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Analytical expression of SRT nulling maps • Star leakage into SMW pointed along direction s ˆ  PS (s) = IS G * (s) ⊗ B ( s ) a exp [ i φ ] exp − i k s O' P' / m  ∑ n D n n n =1   N

[

2

]

• Planet signal coupled into SMW ˆ (s) ⊗ ∑ a exp[i φ ] exp − i k s O' P' / m  PP (s) ≈ I P G * B D n n n  n =1  N

[

2

]

• Where: – – – – – – –

G(s) : SMW filtering function ˆ (s ) B D : complex amplitude generated by one single sub-pupil, back projected onto the sky an : amplitude transmission factor for sub-pupil #n ϕn : phase-shift for sub-pupil #n k = 2π/λ where λ is the monochromatic wavelength O’P’n : coordinates of sub-pupil #n m : optical compression factor of relaying optics (= D’/D)

Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

San Diego, 08-23-11

6

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

SPT nulling maps • Star leakage into SMW = ideal null + “null floor” N0 2

N

∑a

PS (s) = IS

n

exp[i φ n ] + N 0

n =1

• Planet signal coupled into SMW N

PP (s) ≈ I P

∑a

n

[

exp[i φ n ] exp i k s OPn

]

2

n =1

• Signal to Noise Ratio (SNR) SNR (s) ≈

Effective collecting area

PP (s) η A τ

Integration time

[PS (s) + N 0 IS + I EZ ] η A τ + σ 2N

Exo-zodiacal cloud / Background Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

Detection noise San Diego, 08-23-11

7

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Example of SRT numerical simulation

IW

Nulling map

SRT exit pupil 1.E-2 !

5 SNR map

Star leakage

A

4 arcsec

B=3m

Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

San Diego, 08-23-11

8

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

SPT numerical simulation

IW

Nulling map

SPT effective entrance pupil

2 Constant, equal to nulll floor 1.E-4

SNR map

Star leakage

A

4 arcsec

D=5m

Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

San Diego, 08-23-11

9

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

SNR sensitivity curves 10

8

SRT (B=2m) SPT (B=3m)

6

SPT (B=2m)

4

3 2

0 4

6

8 8

10

12

SRT (B=3m)

Signal to Noise Ratio

Signal to Noise Ratio

Magnitude of target star

SRT (B=3m)

Integration time in minutes

10

SRT (B=2m)

8

SPT (B=3m) 6

SPT (B=2m)

44 2

0 0

10 10

5

Magnitude of target star

30

SRT (B=2m) SPT (B=3m)

4

SPT (B=2m)

33 2 1 0 5.0E-04

1.E-3 1.0E-03

1.5E-03

2.0E-03

Exo-zodi/star flux ratio

Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

SRT (B=3m)

Signal to Noise Ratio

5

Detection noise in # electrons

Signal to Noise Ratio

25

4 SRT (B=3m)

Background/ Star flux ratio

20

Integration time (mn)

6

0.0E+00

15

SRT (B=2m)

3 3

SPT (B=3m) SPT (B=2m)

2

1

0 0

2020

40

60

80

100

Detection noise (electrons)

San Diego, 08-23-11

10

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Performance vs. shear/entrance baseline B 10

SRT2

0.6

0.4

0.2

0 0

1

2

3

4

5 5

Signa to Noise Ratio (SNR) Signal to Noise Ratio

0.8

SRT2

SRT4

SPT cut-off

Radiometric efficiency

Radiometric efficiency

1

SRT8 SPT2 SPT4 SPT8

6

7

8

9

10

SRT4

8

SRT8 6

SPT4 SPT8

SPT

4 4

2

0 0

2.5Entrance baseline B (m)

1

2

Entrance baseline B (m)

Entrance baseline B

3

4

5

6

7

8

SRT8 SPT2 SPT4

SRT

0.6

0.4 0.4

SPT8

0.2 0.2

0 0

1

2.5

2

3

4

5 5

6

7

8

10

9

10

Entrance baseline B (m)

Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

SRT2 SRT4

8.E-04

Null floor + star leaks

SPT

SRT4

Null floor & Star leaks

1.E-03

SRT2 0.8

9

Entrance baseline B

1

Inner Working Angle (arcsec) Inner Working Angle (arcsec)

SPT2

SRT

6

SRT8

Only at few locations in SRT focal plane

6.E-04

SPT2 SPT4 SPT8

4.E-04

2.E-04

1E-4 0.E+00 0

1

2

3

4

5

6

7

8

9

10

Entrance baseline B (m)

San Diego, 08-23-11

11

Imaging power of multi-fibered nulling telescopes for extra-solar planet characterization

Conclusion • Both concepts of nulling telescopes seem suitable for hot Jupiters and exo-zodiacal clouds characterization • SRT and SPT show adverse advantages and drawbacks: – SRT  Better radiometric and SNR performance, smaller Inner Working Angle (IWA), but suffers from non-uniform nulling rates – SPT  Better and uniform nulling rates, but limited by larger IWA and lower SNR (requires longer integration times)

• Possible remedies: – Adjustable/removable Lyot stop in the exit pupil plane – Use “blinded” SMWs to calibrate and subtract SRT stellar leaks – Add anamorphic optics into the optical train… Conf. 8151 Techniques and Instrumentation for Detection of Exoplanets V

San Diego, 08-23-11

12