Fully achromatic nulling interferometer (FANI) for high SNR exoplanet

Dec 8, 2015 - B. Beam collimatng optics. L5. L4. FC. FD. B'0. FD. Focal plane. Exit pupil plane. O”. O'. O. L'1. Multi-axial combining stage. Entrance baseline.
366KB taille 1 téléchargements 240 vues
Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

François Hénault Institut de Planétologie et d’Astrophysique de Grenoble Université Joseph Fourier Centre National de la Recherche Scientifique BP 53, 38041 Grenoble – France

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

1

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Plan of presentation • Principle and Mathematics • System definition – Dimensioning the grism element – Simulated fringe patterns

• Optical design – Performance – Tolerance analysis

• Potential SNR gain • Conclusion Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

2

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Classical interferometer Beam relaying optics

Telescope 1

L1

Multi-axial Beam collimatng combining stage optics

L2 M1

F

X” L’1

L4

L5

L3

F’

Entrance O baseline B B

M2

Telescope 2

B’0

FD

O”

O’

FD

FC Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

Multi-axial combining optics

Z

Focal plane

Exit pupil plane San Diego, 08-12-15

3

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Principle and Mathematics • The transmission map of Bracewell’s nulling interferometer (two telescopes) writes as:

Tλ (r ,θ ) = AiryT (π Dr /λ ) sin 2 (π B r cos θ λ ) v Fringes envelope (single telescope PSF)

r

θ

u

Fringe pattern (chromatic)

• Having a variable baseline B(λ ) = B0 λ λ 0 would cancel the 1/λ chromatism inherent to diffraction Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

4

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Fully achromatic nulling interferometer Beam relaying optics

Telescope 1

L1

L2

Beam dispersing optics

M1

F

X” Grism lens

L3

L4

L5

F’ M2

B’0

Telescope 2

Entrance O baseline B B

Grism lens

FD

O”

O’

FD

Grism mirrors FC

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

Multi-axial combining optics

Z

Focal plane

Exit pupil plane San Diego, 08-12-15

5

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Fully achromatic nulling interferometer Dispersed exit pupil

Entrance pupil

Y

O

Y’

X

B Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

O’

X’

B’(λ0) San Diego, 08-12-15

6

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Dimensioning the grism element h′

a α

β (λ)

Grism

β (λ)

λR λ0

h′(λ ′) Collimating lens L4

h’(λ0) = B’(λ0)/2

h′ FD

Grism equation Ray impact on L4

β (λ ) ≈ −

tan α

λ0

λB λ0

{λ0 n(λ ) − λ n(λ0 ) + λ − λ0 }

β (λ ) ≈

h′ λ − λ0 dh′(λ ) + FD λ0 FD

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

7

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Dimensioning the grism element • The grism is optimized using first-order dispersion law of its n(λ ) = n0 + ν 0 (λ −λ0 ) + dn (λ ) material refractive index • Application to mid-IR materials (TPF-I or Darwin-like missions) Material CdTe Csi KBr KCl KRS5 NaCl ZnS ZnSe

Grism angle

Refractive index at λ0 2.700 1.747 1.548 1.496 2.392 1.526 2.336 2.470

Spectral slope ν0 (µm-1) -2.7E-03 -8.2E-04 -2.3E-03 -4.0E-03 -2.2E-03 -1.2E-05 -1.4E-02 -6.5E-03

tan α =

Grism angle (°) 6.710 14.982 20.018 21.934 8.174 20.802 8.488 7.741

h′ FD (n0 − 1 − ν 0λ0 )

Distortion wrt linear dependence in λ Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

Groove RMS period (µm) distortion (%) 53.77 2.1E-02 54.98 1.7E-02 58.40 7.8E-02 61.85 1.6E-01 53.92 2.2E-02 56.17 1.3E-03 59.69 2.6E-01 55.55 9.2E-02

dh′(λ ) dn(λ ) = h′ n0 − 1 − ν 0λ0 San Diego, 08-12-15

8

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Simulated fringe patterns

4 telescopes

Spectral range 7-14 µm Entrance baseline B = 20 m Telescope diameter D=5m Compression factor m = 1/500 Dispersive material ZnSe Fizeau interferometer at λ = 10.5 µm

8 telescopes

Specifications

2 telescopes

Monochromatic PSF

π

Wideband PSF

Corrected PSF at centre

0

π

0 1”

π

0 0

π

π 0

0 π

π

0

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

9

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Preliminary optical design • All-reflective design excepting grism • Well below diffraction limit of one individual telescope Achromatic phase shifter (APS) Compressed beam from telescope

Spot-diagram Focusing Mirror (L3)

Multi-axial combining mirror

+λ/5

Spot-diagram

FD

Grism mirror

OPD fans

Diffraction limit

OPD fan

Deformable collimating Mirror (L4)

-λ/5

Focusing mirror

Grism mirror

X”

B’0/2

Collimating mirror

O’ Exit pupil plane

O” F’

Z

Focal plane

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

Focal point

San Diego, 08-12-15

10

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Preliminary optical design • Achromatic phase shifter (APS) Couples of ZnSe/ZnS wedge plates • Null depth ≤ 10-6 over 7-13.5 µm range • Alignment and manufacturing tolerances of dispersive element are mild, demonstrate their feasibility Geometrical parameter Grism mirror translation along Z-axis Grism mirror decenter (along X’ and Y’ axes) Grism mirror tilt around X’-axis Grism mirror tilt around Y’-axis Grism mirror roll angle(around Z-axis) Grism thickness at centre Grism angle α Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

Tolerance ≤ 0.1 mm ≤ 1 mm ≤ 5 degs. ≤ 1 deg. ≤ 5 degs. ≤ 0.1 mm ≤ 1 deg. San Diego, 08-12-15

11

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Potential SNR gain • Planet detection possible on all bright fringes Higher Signal • If used as a widebabd imaging stellar interferometer, SNR gain ≈ n for read noises Low dispersion spectrograph

Slit or multi-object spectrograph

Single mode fiber

T(u,v)

Detector array

Star

Single mode fibers

Detector array

Planet

u Broadband interferogram

FANI interferogram

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

12

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Conclusion • Setting dispersive elements at intermediate image planes allows full achromatization of the fringe pattern created by an interferometer • The core dispersive element can be a grism mirror • Manufacturing and alignment tolerances of dispersive optics are reasonable • High SNR gains for exoplanets characterization are expected • The principle is also applicable to imaging stellar interferometers Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

13

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

• Would you like to help us building a Science Case for FANI ? Please contact : [email protected]

Conf. 9605 – Techniques and Instrumentation for Detection of Exoplanets VII

San Diego, 08-12-15

14