Growth and Pattern Formation in the KPZ equation - Out of Equilibrium

Non equilibrium defined by dynamics ..... Principle of least action is ...... Asymmetric exclusion process. 2 ... Map SEP and ASEP to spin ½ model, Pauli spins.
3MB taille 1 téléchargements 278 vues
Growth and Pattern Formation in the KPZ equation Hans Fogedby Aarhus University and Niels Bohr Institute Denmark

Outline • • • • • • • • • • • • • • • •

NON EQUILIBRIUM GROWTH SIMULATIONS SCALING KPZ EQUATION KPZ SCALING WEAK NOISE OSCILLATOR GENERAL WEAK NOISE WEAK NOISE KPZ GROWTH MODES PATTERN FORMATION SCALING UPPER CRITICAL DIMENSION OTHER TOPICS CONCLUSION Paris 2007

Four-monopole weak noise configuration

KPZ equation

2

NON EQUILIBRIUM • • • •

Fundamental issue in statistical physics No ensemble available Non equilibrium defined by dynamics Models:



Issues:

simulations discrete growth models continuum growth models scaling phase transitions growth modes pattern formation stationary states distributions correlations etc

Paris 2007

KPZ equation

3

NON EQUILIBRIUM Equilibrium

Pn0 ∝ exp(− En / kT )

Boltzmann factor

Non equilibrium

dPn = ∑ ( Pm wm→n − Pn wn→m ) dt m

Master equation

dxn 1 = − Fn + ηn dt 2

Langevin equation

Issues Pn (t )

Distribution

Pn0 = lim Pn (t )

Stationary distribution

< xn (t ) xm (t ') >

Correlations etc

t →∞

Paris 2007

KPZ equation

4

GROWTH Growing interfaces

Molecular beam epitaxi

Paris 2007

Bacterial growth

KPZ equation

Deposition of snow

5

Propagating flame front old setup

newer setup

digitized fronts

Paris 2007

KPZ equation

6

SIMULATIONS Random deposition

time

Random deposition with relaxation

time

Paris 2007

Ballistic deposition

time

KPZ equation

7

SCALING Dynamical scaling hypothesis

w( L,t ) ∝ Lζ F (t / Lz ) • • • • • •

Height profile: h Saturation width: w System size: L Roughness exponent: ς Dynamic exponent: z Scaling function: F

w ~Lζ

w0

t

t 0~Lz

Paris 2007

KPZ equation

8

Fractal properties

Growing interface is self-affine fractal h( x) ∝ b −ζ h(bx) b scale parameter Fractal dimension dF = 2 − ζ

ζ = 1/ 2, random walk d F = 3 / 2 ( > 1) Paris 2007

KPZ equation

9

KPZ EQUATION • • • • •

Continuum growth model for interface Field theoretical Langevin equation Intrinsic non equilibrium model Scaling properties KPZ maps to:

Directed polymers (disorder) Burgers equation (turbulence)

• KPZ studied by:

Perturbative DRG Strong coupling DRG Mode coupling Weak noise (present approach)

Paris 2007

KPZ equation

10

Edwards-Wilkinson (EW) equation G ∂h(r , t ) G G 2 = υ∇ h ( r , t ) − F + η ( r , t ) ∂t Diffusion

Drift

G d G < ηη > (r , t ) = Δδ (r )δ (t )

Noise

Noise strength

White noise

Local correlations

• • • • • • • •

Equation for height profile: h(r,t) Damping coefficient: ν Constant drift: F Noise representing environment: η Noise strength: Δ Roughness exponent ς=(2-d)/2, d=1, ς=1/2 Dynamic exponent z=2 FD theorem - describes equilibrium interface

Paris 2007

KPZ equation

Flattening effect

11

Kardar-Parisi-Zhang (KPZ) equation ∂h λG G G G 2 = υ∇ h + ∇h ⋅ ∇h − F + η , < ηη > ( r , t ) = Δδ d ( r )δ (t ) 2 ∂t Diffusion Growth

• • • • • •

Drift Noise

Strength

Growing interface

Height profile of interface: h(r,t) Damping coefficient: ν Growth parameter: λ Constant drift: F Noise representing environment: η Noise strength: Δ Growth term

Lateral growth

δ h = ((vδ t ) 2 + (vδ t∇h) 2 )1/ 2 ≈ vδ t (1 + (∇h) 2 )1/ 2 gradient expansion δh v ≈ v + (∇h) 2 + .. δt 2 Paris 2007

KPZ equation

12

Noisy Burgers equation G G G G u ( r , t ) = ∇h( r , t ), local slope G G G G G G G G G ∂u ( r , t ) 2G G = υ∇ u ( r , t ) + λ (u ( r , t ) ⋅ ∇)u ( r , t ) + ∇η ( r , t ) ∂t Diffusion

Convection

• Burgers equation describes slope of interface • Burgers equation used to model irrotational hydrodynamics: rot u=0 • Burgers equation toy model for turbulence (inverse cascade, shocks) Paris 2007

KPZ equation

Conserved noise

Slope of growing interface

13

Cole-Hopf equation Cole-Hopf transformation

⎛ 2υ ⎞ ⎛ λ ⎞ = h= ⎜ log w , w exp ⎟ ⎜ h⎟ ⎝ λ ⎠ ⎝ 2υ ⎠ maps the KPZ equation • •

∂h λG G 2 = υ∇ h + ∇h ⋅ ∇h − F + η 2 ∂t

Linear diffusion equation Driven by multiplicative noise

to the Cole-Hopf equation

∂w ⎛ λ ⎞ ⎛ λ ⎞ 2 = υ∇ w − ⎜ ⎟ wF + ⎜ ⎟ wη ∂t ⎝ 2υ ⎠ ⎝ 2υ ⎠

Paris 2007

KPZ equation

Multiplicative noise

14

Directed polymers Cole Hopf equation ∂w ⎛ λ ⎞ ⎛ λ ⎞ = υ∇2 w − ⎜ ⎟ wF + ⎜ ⎟ wη ∂t ⎝ 2υ ⎠ ⎝ 2υ ⎠

Functional integral solution of Cole Hopf equation Partition function for directed polymer in quenched random potential

line tension

Paris 2007

Directed polymers along diagonals of square lattice with random bonds

random potential

KPZ equation

15

KPZ SCALING • • • • • • • • •

Dynamical Renormalization group calculation (DRG) d=2 lower critical dimension Expansion in d-2 Strong coupling fixed point in d=1, z=3/2 Kinetic phase transition for d>2 zL Lässig (operator expansion) zWK Wolf-Kertesz (numerical) zKK Kim-Kosterlitz (numerical) d=4 upper critical dimension

DRG phase diagram Δλ 2

υ3

Δλ 2

υ3

d DRG equation

g= Paris 2007

KPZ equation

Δλ 2

υ3

,

dg = (2 − d ) g + cst. g 2 dl 16

WEAK NOISE Langevin equation

dx 1 = − F ( x) + η (t ) dt 2 Drift

Noise

• •

Noise η drives x into stationary stochastic state Noise strength Δ singular parameter Δ=0, relaxational behavior Δ~0, stationary behavior Crossover time diverges as Δ→0

Noise correlations

• • •

= Δδ (t)

Working hypothesis:

Noise strength

Paris 2007

Weak noise limit Δ→0 captures interesting physics KPZ equation

17

Langevin equation

dx 1 = − F ( x ) + η (t ) 2 dt Fokker-Planck equation

∂P 1 ∂ 2 P 1 ∂ = Δ 2 + ( FP ) ∂t 2 ∂x 2 ∂x Diffusion

Drift

• Δ is effective Planck constant • Δd/dx is the momentum operator • Distribution P is the wave function • Weak noise corresponds to classical limit (ћ→0)

WKB ansatz

Schrödinger equation in imaginary time

⎛ S⎞ P ∝ exp ⎜ − ⎟ ⎝ Δ⎠

∂P 1 2 ∂ P Δ ∂ Δ = Δ + ( FP ) 2 ∂t 2 ∂x 2 ∂x 2

Time Kinetic evolution energy

Paris 2007

Potential energy (velocity dependent)

KPZ equation

Classical action

Noise strength

18

Weak noise limit Δ→0

Weak noise recipe

Hamiltonian H=



1 2 1 ∂S ∂S p − Fp, p = , H =− 2 2 ∂x ∂t

Equations of motion

dx 1 = − F ( x) + p dt 2 dp 1 dF ( x) = p dt 2 dx

Noise replaced by momentum Equation for momentum

Action

Comments •

x ,T

S ( x, xi , T ) =

Solve equations of motion for orbit from initial xi to final x in time T • Momentum p is a ”slaved” variable • Evaluate action S(xi,x,T) for orbit • Evaluate transition probability according to WKB ansatz P(xi,x,T)≈exp[- S(xi,x,T)/Δ]

⎛ dx ⎞ dt ∫ ⎜⎝ p dt − H ⎟⎠ x ,0



Stochastic problem replaced by dynamical problem in weak noise limit Dynamical action is generic weight function (compare with Boltzmann factor exp(-E/kT))

i

Paris 2007

KPZ equation

19

Phase space description • • • • • • •

Stochastic Langevin equation replaced by coupled deterministic Hamilton equations of motion Noise replaced by canonical momentum p Solutions of equations of motion determine orbits in canonical phase space spanned by x and p Energy is conserved – orbits lie on energy surfaces Long time orbits through saddle point (SP) Orbits on zero-energy surface yield stationary state Action evaluated for orbit from x0 to x in time t yields transition probability from x0 to x in time t Paris 2007

KPZ equation

Canonical Phase Space

20

Stochastic – Quantum analogue • • • • • •

Distribution corresponds to wave function Fokker-Planck equation corresponds to Schrödingers equation Noise yields kinetic energy Drift yields (v-dependent) potential energy Small noise strength corresponds to small Planck constant Weak noise corresponds to small quantum fluctuations, i.e., the correspondence limit Paris 2007

• • • • • •

KPZ equation

WKB approximation yields in both cases a ”classical” action Principle of least action is ”operational” Classical orbits and phase space discussion Structure of energy manifolds different Stationary zero-energy state corresponds to saddle point in stochastic case Method goes back to Onsager 21

OSCILLATOR Langevin equation for overdamped oscillator

dx = −γ x + η (t ) , η (t ) dt = Δδ (t )

elementary step

Example

white noise

Mean square displacement



Suspended Brownian particle of size R in viscous medium with viscosity η

Δ 2γ

γ

Fokker-Planck equation for overdamped oscillator

∂P ( x, t ) 1 ∂ ⎡ ∂⎤ γ = + Δ 2 x P ( x, t ) ∂t 2 ∂x ⎢⎣ ∂x ⎥⎦

dx = − kx + ξ (t ) dt

< ξ (t )ξ (0) >= 2Tk Bγδ (t )

Stokes law

γ = 6π Rη

Time-dependent distribution

⎛ γ [ x − x0 exp( −γ t )]2 ⎞ P ( x, t ) ∝ exp ⎜ − ⎟ Δ − − [1 exp( 2 γ t )] ⎝ ⎠ Stationary distribution

⎛ γ x2 ⎞ Pstat ( x) ∝ exp ⎜ − ⎟ ⎝ Δ ⎠ Paris 2007

KPZ equation

22

Weak noise limit Δ→0 Langevin equation

Action

dx = −γ x + η , F = 2γ x dt

γ [ x − xi exp( −γ T )]2 S ( x, xi , T ) = 2 1 − exp( −2γ T )

Hamiltonian

H=

1 2 p − γ xp 2

Distribution

⎛ γ [ x − xi exp( −γ T )]2 ⎞ P ( x, xi , T ) ∝ exp ⎜ − ⎟ Δ − − 2 1 exp( 2 γ T ) ⎝ ⎠

Equations of motion

dx = −γ x + p dt dp =γ p dt Paris 2007

Text book result

Stationary distribution

⎛ γ x2 ⎞ Pstat ( x ) ∝ exp ⎜ − ⎟ 2 Δ ⎝ ⎠ KPZ equation

Gaussian distribution

23

Phase space discussion Hamiltonian

H=

1 2 1 p − γ xp = p ( p − 2γ x) 2 2

Canonical phase space

Stationary manifold

Finite time orbit Infinite time orbit

Transient manifold

Saddle point (long time orbits pass close to saddle point)

Paris 2007

KPZ equation

24

GENERAL WEAK NOISE Generic Langevin equation for stochastic field wn(t) (Stratonovich formulation):

1 Δ d = − Fp − ∑ Gmn G pn + ∑ G pnηn , p = 1...N 2 2 mn dt dwm n

dwp

< ηn (t )ηm (0) >= Δδ nmδ (t ), Fp ({wq }), Gmn ({wq }) Generic Fokker-Planck equation for distribution P({wn},t):

dP 1 d = ∑ dt 2 n dwn

⎡ ⎤ d K mn ⎥ P ⎢ Fn + Δ ∑ m dwm ⎣ ⎦

K pm ({wq })= ∑ G pn ({wq }) Gmn ({wq }) n

Paris 2007

KPZ equation

25

Weak noise scheme WKB ansatz

Equations of motion

⎛ S⎞ P ≅ exp ⎜ − ⎟ ⎝ Δ⎠

dwn 1 = − Fn + ∑ K nm pm dt 2 m dpn 1 dF 1 d = ∑ pm m − ∑ pm pq K mq dt dwn 2 mq dwn 2 m

Hamilton-Jacobi equation

Action

∂S +H =0 , ∂t

∂S p= ∂w

w,T

S=



dt ∑ pn n

dwn − HT dt

Hamiltonian

Reduced action

1 1 H = K nm pn pm − pn Fn 2 2

1 S= 2

Paris 2007

w,T

∫ dt ∑ K

KPZ equation

nm

pn pm

nm

26

Generic canonical phase space

Stationary manifold (zero energy, H=0)

Finite time orbit (on H≠0 manifold Infinite time orbit (on H=0 manifolds) Saddle point (Markov behavior)

Transient manifold (zero energy, H=0)

Paris 2007

KPZ equation

27

WEAK NOISE KPZ The KPZ equation ∂h λG G 2 = υ∇ h + ∇h ⋅ ∇h − F + η 2 ∂t Diffusion

Growth

Drift

Noise

Noise correlations

G d G < ηη > ( r , t ) = Δδ ( r )δ (t )

Height field

Noise strength

Paris 2007

White noise



The Kardar-Parisi-Zhang (KPZ) equation is a generic continuum nonequilibrium growth model • The KPZ equation is a nonlinear Langevin equation driven by locally correlated white noise • The KPZ equation is at a critical point and has strong coupling scaling properties • The KPZ equation is amenable to the weak noise analysis

KPZ equation

28

Weak noise scheme Nonlinear Cole-Hopf transformation

⎛ 2υ ⎞ ⎛ λ ⎞ h= ⎜ ⎟ log w, w = exp ⎜ h ⎟ ⎝ λ ⎠ ⎝ 2υ ⎠ maps the KPZ equation

∂h λG G 2 = υ∇ h + ∇h ⋅ ∇h − F + η 2 ∂t to the Cole-Hopf equation



Langevin equation with multiplicative noise • Weak noise scheme also works in the case of multiplicative noise

∂w ⎛ λ ⎞ ⎛ λ ⎞ = υ∇ 2 w − ⎜ ⎟ wF + ⎜ ⎟ wη ∂t ⎝ 2υ ⎠ ⎝ 2υ ⎠

Paris 2007

KPZ equation

Multiplicative noise

29

Weak noise scheme Cole-Hopf Hamiltonian

1 ⎡ ⎤ H = ∫ d x ⎢ −υ∇w ⋅ ∇p − υ k 2 wp + k02 w2 p 2 ⎥ 2 ⎣ ⎦ d

Parameters

λF λ , k = , F drift in KPZ equation 0 2 2υ 2υ Field equations k2 =

∂w = +υ∇2 w − υ k 2 w + k02 w2 p ∂t ∂p = −υ∇2 p + υ k 2 p − k02 p 2 w ∂t Paris 2007

KPZ equation

Action w ,T

1 S = k02 ∫ d d xdt (wp ) 2 2 wi ,0 Transition probability

P  exp [ − S / Δ ]

Phase space

30

GROWTH MODES Program: • • •

Seek localized solutions to static field equations Boost static solutions to propagating growth modes Construct dynamical network of dynamical growth modes Static field equations

υ∇2 w − υ k 2 w + k02 w2 p = 0

Linear diffusion equation 2 2

∇ w = k w, p = 0

υ∇2 p − υ k 2 p + k02 p 2 w = 0

Nonlinear Schrödinger equation

consistent for p=0 (or w=0) identical for p≈w

∇2 w = k 2 w − k02 w3 , p ∝ w

Paris 2007

KPZ equation

Nonlinear

31

Diffusion equation

Diffusion equation

∇2 w = k 2 w, p = 0 d 2 w ( d − 1) dw 2 + = k w 2 dr r dr



Cone



Radial Cole-Hopf, height and slope fields



w+ ( r ) ∝ r (1−d ) / 2 exp( kr )



h+ ( r ) =(1/ k0 ) log[ w+ ( r )] ∝ ( k / k0 ) r G G G u+ ( r ) =∇h+ ( r ) ∝ ( k / k0 )( r / r )



Cole-Hopf field exponentially growing Height field linearly growing cone (pit) Slope field constant amplitude monopole field - positive charge k continuous charge, k2≈F, F drift in KPZ equation Drift F fixes charge k

Positive monopole Radial vector field

Paris 2007

KPZ equation

32

Non linear Schrödinger equation NLSE bound state

Nonlinear Schrödinger equation (NLSE)

∇2 w = k 2 w − k02 w3 , p = υ w d 2 w ( d − 1) dw 2 2 3 + = k w − k 0w 2 dr r dr Radial Cole-Hopf, height and slope fields

w− ( r ) ∝ r

(1− d ) / 2

• •

Inverted cone

• •

exp( − kr )

h− ( r ) =(1/ k0 ) log[ w− ( r )] ∝ −(k / k0 ) r G G G u− ( r ) =∇h+ ( r ) ∝ −(k / k0 )( r / r )



Cole-Hopf field exponentially damped Height field linearly growing inverted cone (tip) Slope field fixed amplitude monopole field - negative charge k continuous charge, k2≈F, F drift in KPZ equation Drift F fixes charge k

Negative monopole Radial vector field

Paris 2007

KPZ equation

33

Bound state solution for the NLSE Solution of radial NLSE by Runge-Kutta (matlab) In d=1

Bound states (numerical)

w− ( x) = 2(k / k0 ) cosh −1 (kx) h− ( x) = −(1/ k0 ) ln cosh(kx) u− ( x) = −(k / k0 ) tanh(kx)

w_(r)

1D domain wall

In higher d bound state narrows, amplitude increases In d≥4 bound state disappears! Paris 2007

KPZ equation

r 34

Galilei transformation KPZ - Burgers - Cole-Hopf scheme admits dynamical symmetry Galilei boost

G G G0 r → r − λu t G0 G h → h +u ⋅r G G G u → u + u0

Growth modes in 2D Moving frame Constant slope Constant shift

Tilted height cone

Propagating growth modes

G G G G G h± ( r , t ) ≈ ± ( k / k0 ) | r − ri (t ) | + u 0 ⋅ r G G G G r − ri (t ) G u± ( r , t ) ≈ ± ( k / k 0 ) G G + u0 | r − ri (t ) | G G G ri (t ) = r i0 − λ u 0t Paris 2007

Shifted vector slope field

KPZ equation

35

PATTERN FORMATION Dynamical network Global solution built from localized modes Low density ’instanton’ scheme • • • • • • • • • • •

Localized modes as building blocks Boost modes by means of Galilei transformation Treat amplitudes k as charges, k2≈F Use charge language – positive and negative charges Growing mode, positive charge Decaying mode, negative charge Impose flat interface at infinity – zero slope Form self-consistent dynamical network from nodes Convenient to implement for slope field Flat interface at infinity corresponds to charge neutrality Evolving network corresponds to growing interface

Paris 2007

KPZ equation

36

Dynamical network Construct network of static modes in terms of vector slope field Assign velocities to modes according to Galilean invariance and matching conditions

G G0 r − ri G G u (r ) = (1/ k0 )∑ ki G G 0 , | r − ri | i G G ri 0 − rl 0 G vi = −2υ ∑ kl G 0 G 0 | ri − rl | l ≠i

∑k i

t

Boost modes to assigned velocities

G G G0 ri (t ) = ∫ vi (t ')dt '+ ri 0

Construct self-consistent dynamical network in terms of slope field and height field

G G r − r (t ) G G u (r , t ) = (1/ k0 )∑ ki G Gi | r − ri (t ) | i G G G h(r , t ) = (1/ k0 )∑ ki | r − ri (t ) | i

Paris 2007

KPZ equation

37

i

=0

Pattern formation in 1D Positive charge Right hand domain wall u

Negative charge Left hand domain wall u

u+ u--

u--

u

u3

u4

u1

u+ x

h

;; ;;;

Growing interface

u5

x

x

x h

u2

p

x x

x

Two-soliton excitation – quasi particle h

x

Paris 2007

KPZ equation

38

Pattern formation in 2D Dipole mode in 2D

Propagating height mode

Propagating slope mode

Velocity

Monopoles

Paris 2007

KPZ equation

39

Four-monopole height profile in 2D

Asymptotically flat interface with height offset Height field

As monopoles propagate subject to periodic boundary conditions interface grows

x-y plane

Paris 2007

KPZ equation

40

SCALING Dipole mode

Action

Distribution

S ∝ Tk 4− d , k charge

L4− d S ∝ 3− d , P ( L, T ) ∝ exp(− S / Δ ) T P ( L, T ) ∝ exp(−cst.L4− d / T 3− d )

Pair velocity

v∝k Distance in time T

L = vT Hurst exponent

3− d H= 4−d

Displacement

< δ L2 >∝ T 2 H = T 2 / z Dipole random walk

Hurst exponent vs d

Dynamic exponent

zdip

4−d = 3− d

Paris 2007

KPZ equation

41

Scaling in 1D Dipole mode

Dynamics

Dispersion law

Action: S ∝ υλ u T 3

Energy: E ∝ −υλ u

3

Momentum: Π ∝ υ u 2

E∝−

λ 3/ 2 | Π | υ 1/ 2

Spectral representation

< uu > ( x, t ) = ∫ d ΠF (Π ) exp(− Et / Δ + iΠ x / Δ ) Dynamical scaling

< uu > (r , t ) ∝ F (t / r z ) E ∝ Πz z = 3/ 2 Paris 2007

• • • • • •

Stochastic interpretration Spectrum of dipole mode Gapless dispersion Spectral representation Comparison with dynamical scaling ansatz Dispersion law exponent yields dynamical exponent z

Dynamical scaling exponent

z = 3/ 2 KPZ equation

42

KPZ SCALING • • • • • • • • •

Dynamical Renormalization group calculation (DRG) d=2 lower critical dimension Expansion in d-2 Strong coupling fixed point in d=1, z=3/2 Kinetic phase transition for d>2 zL Lässig (operator expansion) zWK Wolf-Kertesz (numerical) zKK Kim-Kosterlitz (numerical) d=4 upper critical dimension

DRG phase diagram Δλ 2

υ3

Δλ 2

υ3

d DRG equation

g= Paris 2007

KPZ equation

Δλ 2

υ3

,

dg = (2 − d ) g + cst. g 2 dl 43

UPPER CRITICAL DIMENSION General remarks • • • • • •



Upper critical dimension usually considered in scaling context Mode coupling gives d=4; above d=4 maybe glassy, complex behavior (Moore et al.) DRG shows singular behavior in d=4 (Wiese) Numerics inconclusive! Issue of upper critical dimension unclear and controversial In present context we interprete upper critical dimension as dimension beyond which growth modes cease to exist Numerical computation of bound state shows

DRG phase diagram

Δλ 2

υ3

d

d=4

Paris 2007

KPZ equation

44

Derrick’s theorem Scale transformation:

NLSE from variational principle yields IDENTITY 1 Scale transformation yields IDENTITY 2 IDENTITY 2 involves dimension d Demanding finite norm of bound state implies d 0 and I > 0 it follows that

d (t ) = Δδ (t )δ nm dt 2 dΦ Fn = , Pstat ( xn ) ∝ exp(−Φ / Δ ), FD theorem dxn Fn ≠

∂P = HP, HPstat = 0 ∂t zero energy eigenvalue

Δ

dΦ , Pstat ( xn ) = ?, no FD theorem dxn

Weak noise method

Phase space (one degree of freedom)

One degree of freedom 1 2 1 1 p − Fp = p ( p − F ) 2 2 2 zero energy manifolds: p = 0 and p = F dΦ F= FD theorem, Φ free energy dx dx S = ∫ dt ( p − H ) → ∫ Fdx = Φ dt Pstat ∝ exp( −Φ / Δ ) Boltzmann H=

Paris 2007

KPZ equation

47

Stationary state

1D Noisy Burgers case Phase space (1D Burgers)

Hamiltonian manifolds

Hamiltonian: H = E = ∫ dx hdensity ( x ) Hamiltonian density: hdensity ( x ) hdensity ( x ) = p[υ∇ 2u + λ u∇u − (1/ 2)∇ 2 p ] Zero energy manifolds, H = 0 for p = 0, transient manifold p = 2υ u, stationary manifold (hdensity = (2 / 3)υλ∇(u 3 ) = total differential)

Stationary state Action du ⎡ du ⎤ S = ∫ dtdx ⎢ p − hdensity ⎥ → 2υ ∫ dtdxu dt ⎣ dt ⎦ → υ ∫ dxu = υ ∫ dx (∇h ) 2

2

Stationary state ⎛ υ ⎞ Pstat ∝ exp ⎜ − ∫ dx (∇h )2 ⎟ ⎝ Δ ⎠ FD theorem in 1D

Paris 2007

Comments:

• Stationary state given by zero-energy manifold • Zero-energy manifold not identified in D>1 • Hamiltonian density has form: G G G G G G G 2G hdensity = p[υ∇ u + λ (u ⋅ ∇)u − (1/ 2)∇(∇ ⋅ p )] KPZ equation

48

Symmetric exclusion process 1D interacting lattice model with exclusion Defined by Master equation Particle density ρ, 0< ρ ( x, t ) = Δδ ( x)δ (t ) Paris 2007

KPZ equation

Langevin equation Noise correlations

49

Asymmetric exclusion process 1D interacting lattice model with exclusion Defined by Master equation Particle density ρ, 0< ρ >1, hopping rates p≠q Bulk-driven non equilibrium state

Hydrodynamical limit

∂ρ υ 2 = ∇ ρ − λ∇( ρ (1 − ρ )) + ∇ ( ρ (1 − ρ )η ), λ ∝ p − q ∂t 2 < ηη > ( x, t ) = Δδ ( x)δ (t )

Paris 2007

KPZ equation

Langevin equation Noise correlations

50

Scaling limit of SEP and ASEP • • • • • • • • •

Map SEP and ASEP to spin ½ model, Pauli spins Spin up - occupied site, spin down - empty site Employ quantum language Represent configurations by basis states Represent distribution by wave function Map Master equation to Schroedinger equation Identify Hamiltonian driving the system Ground state corresponds to stationary distribution Spectrum yields relaxation rates

Paris 2007

KPZ equation

51

Details of scheme

Quantum scheme

Master equation

n → σ , σ = ±1

dPn = ∑ ( wm→n Pm − wn→m Pn ) dt m

Paris 2007

| Ψ (t ) >= ∑ P (t )| σ > σ

d | Ψ (t ) > = − H | Ψ (t ) > dt P (σ → σ ', t ) =< σ | exp(− Ht ) | σ ' > KPZ equation

52

Hamiltonians H SEP

JJG JG = −∑ [σ i ⋅ σ i +1 − 1] i

SEP mapped to isotropic Heisenberg spin ½ chain Hamiltonian is hermitian Stationary state corresponds to aligned FM state Excitations: Spin waves, quadratic dispersion Dynamics is diffusive

H ASEP

JJG JG JJJGJG JG = −∑ [σ i ⋅ σ i +1 − 1 + iε e ⋅ (σ i × σ i +1 )], ε = ( p − q ) /( p + q ) i

ASEP mapped to Heisenberg spin ½ chain with spin wave interaction Hamiltonian is non-hermitian (signature of non equilibrium) Stationary state corresponds to aligned FM state Excitations: domain walls with superimposed spin waves Dynamics is ballistic with superimposed diffusion Paris 2007

KPZ equation

53

Excitations Align chain in x direction – half occupancy Construct Kadanoff block spins, spin length s Oscillator representation of spins about FM state Scaling/continuum limit a→0 (a lattice distance)

< 0 | σ x | 0 >= s, < 0 | σ z | 0 >= 0, < 0 | σ y | 0 >= 0 1 2 [ ϕˆi , uˆi ] = iδ ik , ϕˆi position, uˆi momentum

σ x = s − (uˆi2 + ϕˆi2 ), σ y = s1/ 2ϕˆi , σ y = s1/ 2uˆi

uˆ ( x) = a −1/ 2uˆi , ϕˆ ( x) = a −1/ 2ϕˆi [uˆ ( x), ϕˆ ( x ')] = iδ ( x − x ') Expand HASEP

spin waves

Paris 2007

spin wave interaction

KPZ equation

54

Equations of motion

Classical limit Permanent profile solutions Domain walls (kinks, solitons) u

u u+

u--

u-u+ x

x

Velocity

v = −ε [u+ + u− ]

Width

w∝ J /v

Paris 2007

KPZ equation

55

Dispersion Energy 2 2 ⎧ J ⎡⎛ ∂u ⎞ ⎛ ∂ϕ ⎞ ⎤ 2 ∂ϕ ⎫ E ∝ ∫ dx ⎨ ⎢⎜ ⎟ + ⎜ ⎬ ⎟ ⎥ + iε u ∂x ⎭ ⎩ 2 ⎢⎣⎝ ∂x ⎠ ⎝ ∂x ⎠ ⎥⎦

Momentum P ∝ ∫ dxu

∂ϕ ∂x

Pair of kinks Elementary excitation

E ∝ v3 / ε 2 P ∝ v2 / ε 2 E ∝ ε P 3/ 2

Quantization E → ω, P → k

ω ∝ εkz, z = 3/ 2

Paris 2007

KPZ equation

56

CONCLUSION • • • • • • • • • •

Nonperturbative asymptotic weak noise approach Equivalent to WKB approximation in QM Stochastic problem mapped to dynamical problem Stochastic equation replaced by dynamical equations Canonical phase space representation Scheme captures strong coupling features For KPZ equation localized propagating growth modes Dynamical network represents strong coupling aspects Method yields a picture of stochastic pattern formation Only NLSE localized mode below d=4, upper critical dimension for KPZ equation !

Paris 2007

KPZ equation

57

FIN

Paris 2007

KPZ equation

58