

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Foundation in synchronization and resource management - Mathieu

Resource allocation and management. 2.2. Resources-allocation ... Resource management protocols. 2.6. Safe and in charge of the resource management.

 Télécharger le PDF

 382KB taille
 1 téléchargements
 335 vues

 commentaire

 Report

Real-time systems “Foundation in synchronization and resource management” Mathieu Delalandre François-Rabelais University, Tours city, France

1

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

2

Introduction to synchronization (1) Cooperating/independent process: A process is cooperating if it can affect (or be affected) by the other processes. Clearly, any process than shares data and uses Inter-Process Communication is a cooperating process. Any process that does not share data with any other process is independent. Inter-process communication (IPC) refers to the set of techniques for the exchange of data among different processes. There are several reasons for providing an environment allowing IPC: Information sharing: Several processes could be interested in the same piece of information, we must provide a framework to allow concurrent access to this information. Modularity: We may to construct the system in a modular fashion, dividing the system functions into separate block. Convenience: Even an individual user may work on many related tasks at the same time e.g. editing, printing and compiling a program. Speedup: With paralellism, if we are interested to run faster a particular task, we must break it into sub-tasks.

3

Introduction to synchronization (2) Process synchronization: It refers to the idea that multiple processes are to join up or handshake at a certain point, so as to reach an agreement or to commit to a certain sequence of action. Clearly, any cooperating process is concerned with synchronization. We can classify the ways in which processes synchronize on the basis of the degree to which they are aware of each other’s existence: Processes unaware of each other: These are independent processes that are not intended to work together. Although the processes are not working together, the OS needs to be concerned about concurrency and mutual exclusion problems with resources. Processes indirectly aware of each other: These are processes that are not necessarily aware of each other by their respective process ids, but that share access to some objects such as an I/O buffer. Such process exhibit coordination in sharing common objects. Processes directly aware of each other: These are cooperating processes that are able to communicate with each other by process ids and that are designed to work jointly in some activity. Again, such processes exhibit coordination. Degree of awareness

Synchronization

Processes unaware of each other

Mutual exclusion

Process synchronization

Processes indirectly aware of each other Coordination by sharing Processes directly aware of each other

Coordination by communication

Mutual exclusion

Coordination

4

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

5

Principles of concurrency (1) Inter-process communication (IPC) is a set of techniques for the exchange of data among multiple processes or threads. Race conditions arise when separate processes of execution depend on some shared states. Operations upon shared states could result in harmful collisions between these processes. Critical section is a piece of code (of a process) that accesses a shared resource (data structure or device) that must not be concurrently accessed by other concurrent/cooperating processes. Mutual exclusion: Two events are mutually exclusive if they cannot occur at the same time. Mutual exclusion algorithms are used to avoid the simultaneous use of a resource by the “critical section” pieces of code.

Synchroniz ation

IPC raises

Considered as

Race conditions defines

Mutual exclusion Critical section

solved by for Resource acquisition

Process synchronization: It refers to the idea that multiple processes are to join up or handshake at a certain point, so as to reach an agreement or commit to a certain sequence of action. Resource acquisition is related to the operation sequence to request, access and release a no sharable resource by a process. This is the synchronization problem for mutual exclusion, between processes (2 or n). 6

Synchroniz ation

IPC raises

Principles of concurrency (2)

Considered as

Race conditions

Race conditions arise when separate processes of execution depend on some shared states. Operations upon shared states could result in harmful collisions between these processes. e.g. spooling with 2 processes A,B and a Daemon D

defines

Mutual exclusion solved by

Critical section

for Resource acquisition

Process A

Spooling

Printer

Process B (1) to (7) are atomic instructions (S)pooling directory

(1)

(3)

(P)rocess

slot

file name

1

∅

2

∅

3

lesson.pptx

4

paperid256.rtf

5

∅

6

∅

7

∅

(2)

out = 3

P (7) Printer (D)aemon

(6)

D (5)

Notations

in = 4

(4)

(1)

P.in=in

(2)

S[P.in] = P.name

(3)

in = P.in+1

(4)

D.out=out

(5)

D.name=S[D.out]

(6)

out = D.out+1

(7)

print

S

the spooling directory

in

current writing index of S

out

current reading index of S

P

a process

D

the printer daemon process

X.a

A data a part of a process X 7

Synchroniz ation

IPC raises

Principles of concurrency (3)

Considered as

Race conditions

Race conditions arise when separate processes of execution depend on some shared states. Operations upon shared states could result in harmful collisions between these processes. e.g. spooling with 2 processes A,B and a Daemon D

defines

Mutual exclusion Critical section

solved by for Resource acquisition

in

A.in

B.in

S[7]

out

D.out

D.name

7

∅

∅

∅

7

6

X.name

initial states

A→1

7

7

∅

∅

7

6

X.name

A reads “in”

B→1,2,3

8

7

7

B.name

7

6

X.name

B reads “in”, writes in “S” and increments “in”

A→2,3

8

7

7

A.name

7

6

X.name

A writes in “S”, and increments “in”, the harmful collision is here

D→4,5,6,7

8

7

7

A.name

8

7

A.name

D prints the file, the B one will be never processed

P→x

process P executes instruction x

Notations

P

D

(1)

P.in=in

(2)

S[P.in] = P.name

S

the spooling directory

(3)

in = P.in+1

in

current writing index of S

(4)

D.out=out

out

current reading index of S

(5)

D.name=S[D.out]

P

a process

(6)

out = D.out+1

D

the printer daemon process

(7)

print

X.a

A data a part of a process X

8

Synchroniz ation

IPC raises

Principles of concurrency (4)

Considered as

Race conditions defines

Critical section is a piece of code (of a process) that accesses a shared resource (data structure or device) that must not be concurrently accessed by other concurrent/cooperating processes. A critical section will usually terminate within a fixed time, a process will have to wait a fixed time to enter it. A enters in the critical section

Mutual exclusion Critical section

solved by for Resource acquisition

A exits from critical section

ProcessA B exits from the critical section Process B

t1 B tries to access to the critical section

t2

t3 B is blocked

t4 B accesses the critical section

9

Synchroniz ation

IPC

Principles of concurrency (5)

raises Race conditions defines

Mutual exclusion: Two events are mutually exclusive if they cannot occur at the same time. Mutual exclusion algorithms are used to avoid the simultaneous use of a resource by the “critical section” pieces of code. Mutual exclusion could be achieved using synchronization.

Considered as Mutual exclusion Critical section

solved by for Resource acquisition

Process synchronization: It refers to the idea that multiple processes are to join up or handshake at a certain point, so as to reach an agreement or commit to a certain sequence of action.

10

Synchroniz ation

IPC raises

Principles of concurrency (6)

Race conditions defines

Resource type

A resource is any physical or virtual component of limited availability within a computer system e.g. CPU time, hard disk, device (USB, CD/DVD, etc.), network, etc. shareable

Can be used in parallel by several processes

e.g. read only memory

no shareable

Can be accessed by a single process at a time

e.g. write only memory, device, CPU time, network access, etc.

Access

The process can operate on the resource.

Release

The process releases the resource.

solved by

Critical section

for

3. release

P1 If the request cannot be granted immediately, then the requesting process must wait until it can acquire the resource.

Mutual exclusion

Resource acquisition

Resource acquisition is related to the operation sequence to request, access and release a no sharable resource by a process. This is the synchronization problem for mutual exclusion, between processes (2 or n). Request

Considered as

1. request

3. release

Access to a resource

P2 1. request

Mutual exclusion synchronization mechanism 2. access

2. access Resource

11

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

12

Synchronization for mutual exclusion

Methods disabling interrupts Swap, TSL, CAS Perterson’s algorithm binary semaphore / mutex

Approach disabling interrupts

Type hardware

busy wait sleep wakeup

Starvation no possible

software

no

13

Synchronization methods for mutual exclusion “Interrupt disabling” Interrupt disabling: within an uniprocessor system, processes cannot have overlapped execution, they can be only interleaved. Therefore, to guarantee mutual exclusion, it is sufficient to prevent a process from being interrupted. This capability can be provided in the form of primitives defined in the OS kernel, for disabling and enabling interrupts when entered in a critical section. e.g. Scheduling of two processes A, B accessing a critical section without interrupt disabling

Process A

B

A

B

A

t

Scheduling of two processes A, B accessing a critical section with interrupt disabling

Process A

B

A

B

Access a critical section disable interrupt Release a critical section enable interrupt

t disable interrupts “can’t be B”

disable interrupts “can’t be A”

The price of this approach is high The scheduling performance could be noticeably degraded (e.g. a C process, not interested with the section, can be blocked while A accesses the section). This approach cannot work in a multi-processor architecture.

Correspond to the areas of critical sections

14

Synchronization for mutual exclusion

Methods disabling interrupts Swap, TSL, CAS Perterson’s algorithm binary semaphore / mutex

Approach disabling interrupts

Type hardware

busy wait sleep wakeup

Starvation no possible

software

no

15

TSL is an alternative instruction to Swap, achieving in one-shot a if and a set instruction, atomically.

Request

Synchronization methods for mutual exclusion “Swap, TSL and CAS” (1) Request the critical section with p (2) do TSL RX, LOCK (3) while RX equals 1 Run in the critical section with p do something ….

TSL RX,LOCK

RX

LOCK

atomic instruction

(2) set to 1 if lock at 0

TSL RX, LOCK

TSL RX, LOCK

RX

LOCK

Na

$0

$0

$1

RX

LOCK

Na

$1

$1

$1

Release

(1) copy

(4) Release the critical section with p (5) set LOCK at 0

e.g. with three processes A, B and C considering the scheduling

“access case - Lock at 0” RX set to 0 LOCK moves to 1

“busy case - Lock at 1” RX set to 1 Nothing happens on LOCK

RXA

RXB

RXC LOCK

by

∅

∅

∅

0

∅

B→1,2

∅

0

∅

1

B

B accesses the section

A→1,2,3,2,3,2

1

0

∅

1

B

A is blocked

B→3,4,5

1

0

∅

0

∅

B releases the section

A→3,2

0

0

∅

1

A

A can access

C→1,2,3,2,3

0

0

1

1

A

C is blocked

A→3,4,5

0

0

1

0

∅

A releases the section

C→2,3

0

0

0

1

C

C can access

C→4,5

0

0

0

0

∅

C releases the section 16

Synchronization for mutual exclusion

Methods disabling interrupts Swap, TSL, CAS Perterson’s algorithm binary semaphore / mutex

Approach disabling interrupts

Type hardware

busy wait sleep wakeup

Starvation no possible

software

no

17

Synchronization methods for mutual exclusion “binary semaphores / mutex” (1) Semaphore is a synchronization primitive composed of a blocking queue/stack and a variable controlled with operations down / up.

semaphore value

A binary semaphore takes only the values 0 and 1. A mutex is a binary semaphore for which a process that locks it must be the one that unlocks it. The down operation decreases the semaphore’s value or sleeps the current process.

… …

running process

pk CPU

lock with pk value dispatcher

is true

short-term scheduler

blocked case

sleep pk push pk in the stack

pk pj

blocked case

ready queue

if false if true

semaphore value … …

“normal” down

if true sleep pk, and push pk in the stack

down

Main memory

pk

“blocked” down

before

after

value

false

true

stack

∅

∅

before

after

value

true

true

stack

∅

P 18

Synchronization methods for mutual exclusion “binary semaphores / mutex” (2) Semaphore is a synchronization primitive composed of a blocking queue/stack and a variable controlled with operations down / up.

semaphore value

A binary semaphore takes only the values 0 and 1. A mutex is a binary semaphore for which a process that locks it must be the one that unlocks it. The up operation increases the semaphore’s value or wakeups the processes in the stack.

… …

running process

pq CPU

up with pk value dispatcher

short-term scheduler

if stack empty else

unblocked case

pop pj from the stack, wakeup pj

pj ...

unblocked case

ready queue

is false

semaphore value … …

“normal” up

“unblocked” up

before

after

value

true

false

stack

∅

∅

before

after

value

true

true

stack

P

∅

up

pj

Main memory

pk

if true, wakeup pj and pop pj from the stack

19

Synchronization methods for mutual exclusion “binary semaphores / mutex” (3) The algorithm for mutual exclusion using a binary semaphore is sem is a semaphore, p is the process, (1) to (5) the instructions

e.g. with three processes A, B and C considering a predefined scheduling result, for short we assume 1 quantum = 1 instruction sem

(1) Before the request do something …. (2) down sem

value stack Schedule

Burst length

Inst

false

∅

∅

A

3

(1),(2),(3)

true

∅

A

A accesses the section, sem becomes true

B

2

(1),(2)

true

B

A

while accessing the semaphore, B blocks

C

2

(1),(2)

true

C,B

A

while accessing the semaphore, C blocks

A

2

(4),(5)

true

C

A-B

A exits and pops up B, B holds the section

B

3

(3),(4),(5)

true

∅

B-C

B exits and pops up C, C holds the section

C

3

(3),(4),(5) false

∅

C-∅

C exits and puts the semaphore to false

(3) Run in the critical section with p do something …. (4) Before the release do something …. (5) up sem

“normal” down

“blocked” down

before

after

value

false

true

stack

∅

∅

Who held

“normal” up

before

after

value

true

true

stack

∅

P

“unblocked” up

before

after

value

true

false

stack

∅

∅

before

after

value

true

true

stack

P

∅

20

Synchronization methods for mutual exclusion “binary semaphores / mutex” (4) The algorithm for mutual exclusion using a binary semaphore is sem is a semaphore, p is the process, (1) to (5) the instructions

e.g. with three processes A, B and C considering a predefined scheduling result, for short we assume 1 quantum = 1 instruction sem

(1) Before the request do something …. (2) down sem

value stack Schedule

Burst length

Inst

false

∅

∅

ready

ready

ready

A

3

(1),(2),(3)

true

∅

A

ready

ready

ready

B

2

(1),(2)

true

B

A

ready

blocked

ready

C

2

(1),(2)

true

C,B

A

ready

blocked blocked

A

2

(4),(5)

true

C

A-B

ready

ready

blocked

B

3

(3),(4),(5)

true

∅

B-C

ready

ready

ready

C

3

(3),(4),(5) false

∅

C-∅

ready

ready

ready

(3) Run in the critical section with p do something …. (4) Before the release do something …. (5) up sem

“normal” down

“blocked” down

before

after

value

false

true

stack

∅

∅

Who A state B state C state held

“normal” up

before

after

value

true

true

stack

∅

P

“unblocked” up

before

after

value

true

false

stack

∅

∅

before

after

value

true

true

stack

P

∅

21

Synchronization methods for mutual exclusion “binary semaphores / mutex” (5) The algorithm for mutual exclusion using a binary semaphore is e.g. with three processes A, B and C considering a predefined scheduling result, for short we assume 1 quantum = 1 instruction R

R A

R

R

R

Resource request

R

Resource release

B R

R C

Process running Pi

R

A

B

R held by Pi

C

22

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

23

Resource allocation and management

Resource type

A resource is any physical or virtual component of limited availability within a computer system e.g. CPU time, hard disk, device (USB, CD/DVD, etc.), network, etc. shareable

Can be used in parallel by several processes

e.g. read only memory

no shareable

Can be accessed by a single process at a time

e.g. write only memory, device, CPU time, network access, etc. 3. release

Resource allocation is related to the operation sequence to request, access and release a no sharable resource by a process. This is the synchronization problem for mutual exclusion. P1 Request

If the request cannot be granted immediately, then the requesting process must wait until it can acquire the resource.

Access

The process can operate on the resource.

Release

The process releases the resource.

1. request

3. release

Access to a resource

P2 1. request

Mutual exclusion synchronization mechanism 2. access

Global resource allocation extends the allocation of no shareable resources to the overall processes / resources in the operating system.

2. access Resource

Resource management deals with the global allocation of the no shareable resources of a computer to tasks/processes being performed on that computer, for performance or safety issses 24

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

25

Resource allocation graph and sequence (1) A resource allocation graph is a tool that helps in characterizing allocation of resources. A resource allocation graph is a directed graph that describes a state of the system of resources as well as processes. Every resource and process type is represented by a node, and their relations (e.g. request, resource holding) by edges.

About edges

About nodes

Notation

Ri Pi

Resource acquisition Resource of type Ri with 4 instances (resource node)

Single access

Ri Pi Ri

Pi is waiting for one instance of Ri (“request” edge) Pi holds one instance of Ri (“hold” edge)

P1

R1

R1

Pi

P1

P1

Process Pi (process node)

request

R1 use

P1

release

P1 P3

P3

R1 P2 P3 holds R1, P1 and P2 cannot access

R1 P2 When P3 releases R1, P1 or P2 (not the both due to mutual exclusion) can access

Resource allocation graph and sequence (2) A resource allocation graph is a tool that helps in characterizing allocation of resources. A resource allocation graph is a directed graph that describes a state of the system of resources as well as processes. Every resource and process type is represented by a node, and their relations (e.g. request, resource holding) by edges.

About edges

About nodes

Notation

Ri Pi

Resource acquisition Resource of type Ri with 4 instances (resource node) Process Pi (process node)

Pi Ri Pi Ri

Pi is waiting for one instance of Ri (“request” edge) Pi holds one instance of Ri (“hold” edge)

Multiple access - disjointed use (1) P1 requests, uses and releases R1 (2) P1 requests, uses and releases R2

(1)

P1

P1

P1

R1

R1

R1

R2

R2

R2

(2)

P1

P1

P1

R1

R1

R1

R2

R2

R2

27

Resource allocation graph and sequence (3) A resource allocation graph is a tool that helps in characterizing allocation of resources. A resource allocation graph is a directed graph that describes a state of the system of resources as well as processes. Every resource and process type is represented by a node, and their relations (e.g. request, resource holding) by edges.

About edges

About nodes

Notation

Ri Pi

Resource acquisition Resource of type Ri with 4 instances (resource node) Process Pi (process node)

Pi Ri Pi Ri

Pi is waiting for one instance of Ri (“request” edge) Pi holds one instance of Ri (“hold” edge)

Multiple access - jointed use (1) P1 requests R1 and R2 in any order (2) P1 uses R1 and R2 and releases them in any order

(1)

P1

P1

P1

R1

R1

R1

R2

R2

R2

(2)

P1

P1

P1

R1

R1

R1

R2

R2

R2

28

Resource allocation graph and sequence (4) A resource allocation sequence is the order by which resources are utilized (request, use and release) by processes. e.g. a resource acquisition sequence involving 4 processes (P1, P2, P3 and P4), 3 resources of two types (R1, R2); we have R1, R2 accessed in a disjoint (P1) and joint (P2, P3) ways, R1 accessed in a single way (P4). (1)-(2) P1 requests R1, R2 P2 requests R2 P3 requests R2

The resource-allocation graph at t0 P1

R1

(1)

P2

P1 P4

R2

R1

P3

(2)

(6)

P2

P1 P4 R2

R1

P3

(3) (4)

(5) P1

R1

(2)-(3) P4 releases R2 P3 accesses R2

P2

P1 P4 R2

R1

P3

P2

P4 R2

R1

P4 R2

P3

(3)-(4) P3 releases R1,R2 P1 accesses R1 P2 accesses R2

P1

P2

P4 R2

P3

P3 (5)-(6) P1 releases R2

P2

(4)-(5) P2 releases R1,R2 P1 releases R1 and accesses R2

29

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

30

Resource allocation, primitive and scheduling (1) The resource allocation depends of necessary conditions, the needs of resources, the used synchronization primitive and scheduling. e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering the necessary conditions, a preemptive scheduling with mutex Case 1. the needs in resources will result in chaining blocking without deadlocking C

R0 Q0(t)

U0

R1 R0 (t) Q1(t)

U1

s

Q1(t)

R1(t)

P0

15

s+9

6

s+15

s+4

7

s+11

P1

12

s+5

5

s+10

Na

Na

Na

P2

9

Na

Na

Na

s+3

4

s+7

- C is the capacity of a process - s is the start date of a process - Q(t) is the query / request time (i.e. down on the mutex) - U is the needed time to use the resource, with Q(t)+U ≤ s+C - R(t) is the release time (i.e. up on the mutex) with R(t) = Q(t)+U U = R(t)–Q(t)

U1=7 Q0(t)

R1(t) U0=6

P0 0

4

R0(t),e

9

11

15

R1 R0 s

Q0(t)

0

5

U0=5

R0(t)

e

10

12

P1

s

Q1(t)

0

3

U1=4

R0 R1(t) e

P2 7 R1

9

31

Resource allocation, primitive and scheduling (2) The resource allocation depends of necessary conditions, the needs of resources, the used synchronization primitive and scheduling. e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering the necessary conditions, a preemptive scheduling with mutex Case 1. the needs in resources will result in chaining blocking without deadlocking s

Q1(t)

U1=7 Q0(t)

R1(t)

R0(t),e U0=6

P0

CPU execution

5

6

3

4

3

3

4

6

2

Process

P1

P0

P2

P1

P0

P1

P0

P2

P0

a

b

c

d

e

f

g

h

Event

0

4

9

11

15 (a)

R1 R0 s

Q0(t)

U0=5

R0(t)

P0

R0

5

10

12 P0

s

Q1(t)

0

3

U1=4

R0 R1(t) e

P2 7

9

R0

P0

P0

R1

(e)

P1 R0

P1

P0

R0

P0

R1

here is chaining blocking P2→ P0 → P1 (g) (h) P

P1 R0

R0

P2 R1

P1

1

P0

R0

P2 R1

(f)

P2

R1

R1

R0 P2

R1

P2

P0

P1

P2

R1

(d)

(c)

P1

P2

e

P1 0

(b)

P1

P2 R1

32

Resource allocation, primitive and scheduling (3) The resource allocation depends of necessary conditions, the needs of resources, the used synchronization primitive and scheduling. e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering the necessary conditions, a preemptive scheduling with mutex Case 2. the needs in resources will result in chaining blocking and deadlocking C

R0 Q0(t)

U0

R1 R0 (t) Q1(t)

U1

s

Q1(t)

R1(t)

P0

15

s+9

6

s+15

s+4

7

s+11

P1

12

s+5

5

s+10

s+9

3

s+12

P2

9

Na

Na

Na

s+3

4

s+7

- C is the capacity of a process - s is the start date of a process - Q(t) is the query / request time (i.e. down on the mutex) - U is the needed time to use the resource, with Q(t)+U ≤ s+C - R(t) is the release time (i.e. up on the mutex) with R(t) = Q(t)+U U = R(t)–Q(t)

U1=7 Q0(t)

R1(t) U0=6

P0 0

4

9

R0(t),e

11

15

R1 R0 s

Q0(t)

0

5

U0=5

Q1(t) R0(t) R1(t), e U1=3

P1 9

10

12

R0 R1 s

Q1(t)

0

3

P2

U1=4

R1

R1(t)

e

7

9 33

Resource allocation, primitive and scheduling (4) The resource allocation depends of necessary conditions, the needs of resources, the used synchronization primitive and scheduling. e.g. 3 processes (P0,P1 and P2), 2 resources (R0 and R1) considering the necessary conditions, a preemptive scheduling with mutex Case 2. the needs in resources will result in chaining blocking and deadlocking s

Q1(t)

U1=7 Q0(t)

R1(t)

R0(t),e U0=6

P0

CPU execution

5

6

3

4

3

Process

P1

P0

P2

P1

P0

a

b

c

d

e

Event

0

4

9

11

15 (a)

R1 R0 s

Q0(t)

P0

R0

9

5

10

12 P0

0

3

U1=4

R0

R0

R1(t)

e

7

9

R1

(c) P0

P1 R0

P2

(e) P0

P2 R1

P1 R0

P2

R1 Q1(t)

P1

R1 P1

R0

s

P0

R1

(d) 0

(b)

P2

Q1(t) R0(t) R1(t), e U0=5 U1=3

P1

P1

P2 R1

here is deadlock

P2 34

R1

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

35

Deadlock and necessary conditions (1) Deadlock refers to a specific condition when two or more processes are each waiting for each other to release a no shareable resource, or more than two processes are waiting for resources in a circular chain.

The necessary conditions are such that if they hold simultaneously in a system, deadlocks could arise.

1. Mutual exclusion P1

R1

P1

R2 P2

R1

(1) (2) (3)

R2 P2

P2 is waiting for one instance of R1, held by P1.

2. Hold and A process must hold at least one resource wait and wait to acquire additional resources that are currently being held by other processes. 3. No preemption

Resources cannot be preempted; that is, a resource can be released only voluntarily by the process holding.

4. Circular wait

A set {P0, P1, … Pn) of waiting process must exit such that -P0 is waiting for a resource held by P1 -P1 is waiting by a resource held by P2 -…. -Pn-1 is waiting by a resource held by Pn -Pn is waiting by a resource held by P0

P1

P1 is waiting for one instance of R2, held by P2.

R1

R2 P2

At least one resource must be held in a non sharable mode, that is only one process at a time can use this resource.

36

Deadlock and necessary conditions (2) Hold and wait of resources: The resource allocation is done with an “hold and wait” condition of resources, without hold and wait, resource utilization could be low, starvation probability higher and programming task harder.

protocol 1 “with holding”

We can consider two protocols to manage this, with and without holding.

printer disk

e.g. consider a process that 1. copy data from DVD to disk files 2. sort the files 3. print the files on a printer

1. The process P has no resource, it can make a request.

P

2. The process P gets all the resources in one shot. 3. The process P copies, sorts and prints.

DVD

Without hold and wait, whenever a process requests resources, it does not hold any other resources.

P

P

4. The process P releases its resources.

37

Deadlock and necessary conditions (3) Hold and wait of resources: The resource allocation is done with an “hold and wait” condition of resources, without hold and wait, resource utilization could be low, starvation probability higher and programming task harder.

DVD

Without hold and wait, whenever a process requests resources, it does not hold any other resources.

P

We can consider two protocols to manage this, with and without holding.

disk

2. The process P gets part of the resources (DVD, disk). 3. The process P copies an sorts. 4. The process P releases its resources.

P

5. P has no resource, it can make a request. It gets part of the resources (disk, printer). 6. The process P prints.

P

7. The process P releases its resources.

printer

protocol 2 “without holding”

disk

P

e.g. consider a process that 1. copy data from DVD to disk files 2. sort the files 3. print the files on a printer

1. The process P has no resource, it can make a request.

38

Deadlock and necessary conditions (4) Preemption of resources: the resource allocation is done with a “no preemption” condition on resources. (1) P1

without preemption, the request sequence is 1. we check whether resources are available 2. if yes, we allocate them 3. if no, we wait

R1

P2

P4 R2

without preemption, P3 waits for P1 or P2

P3

with preemption, the request sequence is 1. we check whether resources are available 2. if yes, we allocate them 3. if no, we check whether resources are allocated to other processes waiting for additional resources 4. if so, we preempt the desired resources 5. if no, we wait

(1)

R1

(2)

P1 P4

P2 R2 P3

R1

P1 P4

P2 R2 P3

with preemption, P3 can preempt R1 to P1 or P2

Some resources can be preempted in a system, when their states can be easily saved and restored later (CPU registers, memory, etc.)., but some others are intrinsically no preemptible (e.g. printer, tape drives, etc.).

39

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

40

Resource management protocols “Introduction” (1) A resource management protocol is the mechanism (code convention, algorithms, system, etc.) in charge of the resource management. Main goals of such protocols are to avoid/prevent deadlocks, to deal with resource starvation and to optimize resources allocation. Three main approaches exist based on prevention, avoidance and detection with the no-protocol solution.

-Ostrich-like, do nothing -Prevention ensures that at least one of the necessary conditions cannot hold, to prevent the occurrence of deadlocks. -Avoidance authorizes deadlocks, but makes judicious choices to assure that the deadlock point is never reached. With avoidance, a decision is made dynamically whether the current resource allocation request will, if granted, potentially lead into a deadlock.

Approach

Deadlocks Deadlocks could exist could appear

Ostrich-like

yes

Prevention

no

Avoidance Detection & recovery

yes

no yes

-Detection and recovery do not employ prevention and avoidance, then deadlocks could occur in the system. They aim to detect deadlocks that occur, and to recover safe states.

41

Resource management protocols “The ostrich-like protocol” The ostrich-like protocol: i.e. to ignore the problem

Cons

Pros -Regarding the systems, the frequency of deadlocks could be low. -Finite capacity of systems could raise in deadlocks (e.g. job queue size, file table), deadlocks are part of OS.

Without management we can have resource starvation and deadlocks could appear.

-OS design is a complex task, resource management protocols could result in bugs and hard implementation. -Without resource management protocols, systems will gain a lot in performance. -Resource management protocols involve constraints for users and impact ergonomics of systems. -etc.

42

Resource management protocols “Prevention protocol” (1) The prevention protocol ensures that at least one of the necessary conditions cannot hold, to prevent the occurrence of deadlocks.

Necessary conditions

Statute about prevention

Constraint

1. Mutual exclusion

Resources in a computer are intrinsically no shareable (printer, write-only memory, etc), prevention protocols can’t be defined from this condition.

Not applicable.

2. Hold and wait

Without hold and wait, resource utilization could be low, starvation probability higher Applicable with severe and programming task harder. performance lost.

3. No preemption Some resources can be preempted in a system, when their states can be easily saved and restored later (CPU registers, memory, etc.). Some other resources are intrinsically no preemptible (e.g. printer, tape drives, etc.), prevention protocols cannot be then defined from this condition. 4. Circular wait

Not applicable.

One way to ensure that deadlocks never hold is to impose total ordering of all Applicable with programming resource types, and to require that each process requests resources in an increasing order of enumeration. This involves to coerce programming of processes to this order constraints. access.

43

Resource management protocols “Prevention protocol” (2) Order resource numerically: one way to ensure that the circular wait condition never holds is to impose total ordering of all resource types, and to require that each process requests resources in an increasing order of enumeration. This involves to coerce programming of processes to this order access. With an increasing order of enumeration, P0 cannot access R0 as it holds R7

e.g. we make the condition of a circular wait P = {P1 , P2 ,..., Pn } Pi +1 (H)olds Ri R = {R1 , R2 ,..., Rn } Pi +1 (R)equests Ri +1

R7 R0

R6 P0 P1

P7

P6

R5

R1

P2

P5

P3 P4

R4

R2 R3

44

Resource management protocols “The avoidance protocol” The resource allocation denial protocol is based on avoidance, it requires additional information about how resources will be requested. Based on the on-line requests, the system considers the resource currently available and allocated to evaluate the future requests. Total, available, allocated and claim resources state about the resource allocation in the system.

ready queue Scheduler

CPU Pass control to process

reply

…

Syncronization q(Pi, Ri) request

A resource-allocation component maintains the on-line the resource-allocation state of the system and the available resource instances.

Resource allocation

Resources

Allocated resources

Available resources

Total amount of resources Claim resources 45

Resource management protocols “The detection & recovery protocol” The detection and recovery protocol does not employ prevention and avoidance, then deadlocks could occur. It aims to detect deadlocks that occur, and to recover safe states. If a deadlock is detected two approaches can be employed, based on rollback and process killing.

Deadlock detection: based on different detection methods, the algorithm searches for deadlock(s). If negative, the algorithm saves the current state, otherwise it goes to recovery.

…

Sheduler

CPU

Synchronization

Resources

q(Pi, Ri) request

Resource allocation: the algorithm collects the allocation states processes / resources and maintains the current allocation state.

ready queue

Detection and recovery with rollback

update allocation state

Recovery: if a deadlock is detected, the algorithm uses the safe-states to restore the system. Currentallocation state

Resource allocation

Deadlock detection

no, save state Safe states

yes Recovery

load state

restore with a safe state

46

Foundation in synchronization and resource management 1. Synchronization for mutual exclusion 1.1. Introduction to synchronization 1.2. Principles of concurrency 1.3. Synchronization methods for mutual exclusion 2. Resource management 2.1. Resource allocation and management 2.2. Resources-allocation graph and sequence 2.3. Resource allocation, primitive and scheduling 2.4. Deadlocks and necessary conditions 2.5. Resource management protocols 2.6. Safe and unsafe states

47

Safe and unsafe states (1) safe states

deadlock states

unsafe states

Goal of the safety based protocols is to maintain the system in a safe state -A safe state can be defined as follow, considering 1. a given set of processes S = {P0, …, Pn}. 2. we have a resource allocation state Rs corresponding to the available resources and the resources held by {P0, …, Pn}. 3. we have a safe state if a sequence of requests that could satisfy all the processes exists, considering the available resources and the ones than can be released by processes. -An unsafe state is not a safe state. -A deadlock state is unsafe, but not all the unsafe states are deadlocks.

48

Safe and unsafe states (2) Joint progress diagram, illustrates the concept of safety in a graphic and easy-to-understand way, by showing the progress of two processes competing for resources, with each of the process needing exclusive use of resources for a certain period of time. e.g. “deadlock” with two processes P,Q and resources A,B Progress of Q

P and Q finish

release B

-When a path is next to an instruction line, its request is granted, otherwise it is blocked.

deadlock

get A B required

-All the paths must be vertical or horizontal, neither diagonal. Motion is always to the north or east, neither to the south or west (because processes cannot backward in time, off course).

P and Q want A

unsafe region

P and Q want B

-Gray zones are forbidden regions due to mutual exclusion.

(1)

A required B required

release B

release A

∅

get A

-The light-gray area (bottom-left to mutual exclusion Progress zones) is referred as the unsafe region. get B

A required

release A

get B

-Every point of a path line in the diagram represents a joint state of the two processes.

of P

-The top-right corners bounded in the unsafe regions are deadlocks. 49

Safe and unsafe states (3) Joint progress diagram, illustrates the concept of safety in a graphic and easy-to-understand way, by showing the progress of two processes competing for resources, with each of the process needing exclusive use of resources for a certain period of time. e.g. “deadlock” with two processes P,Q and resources A,B Progress of Q

P and Q finish

(3) (4) P and Q want A

release B

(3,4) are inverted paths of (1,2). (6)

(5) Q acquires B and then P acquires A. Deadlock is inevitable, Q will block on A and P will block on B.

P and Q want B

(1)

(6) P acquires A and Q acquires B. P blocked when accessing B, same for Q with A. Deadlock is here.

A required B required

release B

(2)

release A

∅

(5)

unsafe region

get A

B required

get A get B

(2) P acquires A and then B then releases A and B. When Q resumes execution, it will be able to acquire the both resources.

get B

A required

release A

(1) P acquires A and then B, Q executes and blocks on a request for B. P releases A and B. When Q resumes execution, it will be able to acquire the both resources.

Progress of P

50

Safe and unsafe states (4) Joint progress diagram, illustrates the concept of safety in a graphic and easy-to-understand way, by showing the progress of two processes competing for resources, with each of the process needing exclusive use of resources for a certain period of time. e.g. “no deadlock” with two processes P,Q and resources A,B Progress of Q

release B

(3) (4)

(5)

(6)

(3,4) are inverted paths of (1,2). P and Q want B

(5) Q acquires B and then P acquires and releases A. Q acquires A then releases B and A. When P resumes execution, it will be able to acquire B.

(1)

get B

(2)

A required

release B

release A

Progress of P get A

∅

(2) P acquires then releases A and B. When Q resumes execution, it will be able to acquire the both resources.

P and Q want A

get A B required

P and Q finish

get B

A required

release A

(1) P acquires A then releases A. P acquires B, Q executes and blocks on a request for B. P releases B. When Q resumes execution, it will be able to acquire the both resources.

B required

(6) Q acquires B and then P acquires and releases A. Q acquires A then releases B. P acquires then releases B. When Q resumes execution, it will be able to release A. When deadlocks cannot appear, unsafe states cannot exist. 51

des documents recommandant

[image: alt]

Grid Resource Management: Toward Virtual and Services

computing and storage resources to function as a single, virtual computer. In addition to national Journal of Software Practice and Experience, 32(2):135â€“164,. 2002. ... vonLaszewski--grid-middleware.pdf (Accessed August 31st, 2007).

[image: alt]

Human Resource Management

Page 1. 1. Human Resource Management. General Introduction. establish performance appraisal policies and procedures, the actual evaluating and.

[image: alt]

Time Stamp and Synchronization in Video System

JPEG-2000 video stream is another approach that TTC implemented. IRIG time stamps be used later to convert the time stamp from PTS format to GPS time.

[image: alt]

Compass Resource Management 2007

[image: alt]

Cockpit Resource Management

Mar 22, 2006 - These cockpit resource management issues show up in the cockpit in a variety of ways array of computer-based training programs for avionics. ... kingschools) and Sporty's Pilot Shop (www.sportys.com) that cover flying ...

[image: alt]

Personnel and Human Resource Management Choices andfr

Personnel and Human Resource Management Choices and Organizational Strategy. Schuler, Randall S. HR. Human Resource Planning; Mar 1987; 10, 1; ...

[image: alt]

Operating Systems â€œResource managementâ€� - Mathieu Delalandre's

Introduction to resource management. 2. Without hold and wait, resource utilization could be low, starvation probability higher and programming task harder.

[image: alt]

Synchronization in Spiking Neural Networks

Feb 22, 2006 - C. 3. H. 8. O. 1-propanol. 2-propanol. â€œcognitive isomersâ€� made of the same atomic features. Questions of representation. A molecular metaphor ...

[image: alt]

Knowledge, management, and knowledge management in

vision, science, technology, management theory, as well as the information knowledge management is an advanced level for discussing technology, R&D, or.

[image: alt]

common property resource management in india dbid cjn

[image: alt]

optimization of the resource management in a satellite ... - CiteSeerX

algorithm. This approach allowed us to resolve some cases but was limited. ... If a solution exists, the Petri net modeling allows finding it but doesn't allow ... The objective of the optimization of the constellation resource management is ... Manu

[image: alt]

Renewable resource management, user heterogeneity, and the scope

difficult to achieve the less homogenous the agents involved. ... Johnson and Libecap (1982), heterogeneity may therefore lead to (possibly prohibitively) ... In each country there are two industries, agriculture and a resource The last three as

[image: alt]

ospf database exchange and reliable synchronization in mobile ad

Baccelli, T. Clausen. OSPFv2 Wireless Interface Type. draft-spagnolo-manet-ospf-wireless-interface-00.txt,. Internet Engineering Task Force, November 2003.

[image: alt]

Adding Synchronization and Rolling Shutter in Multi-Camera Bundle

In [11], a camera-inertial multi-sensor is self-calibrated (synchronization, spatial registration, intrinsic parameters) by a sliding window visual odometry. Thanks to ...

[image: alt]

Adding Synchronization and Rolling Shutter in Multi-Camera Bundle

Pascal, IFMA. AubiÃ¨re, FR. 1 Proof for Eq. 3 in the Paper. Lemma 1.1. Let vectors x,y,z âˆˆ Rk+3, strictly positive reals a, b, and function. D(x,y,z,a,b) = bz a(a+b). âˆ’.

[image: alt]

Human Resource Management - Edinburgh Business School

www.ebsglobal.net, and should have been notified to you either by Edinburgh ... He has also acted as consultant to a number of international organisations in.

[image: alt]

CDO II - "Chapert Eleven" - Human resource management

Many employees did not have appropriate skills for performing their jobs effectively. ... human resource management process and consider its strategic importance. We based on race, color, religion, sex, or national origin). It continued as ...

[image: alt]

Tektronix: Applications > Timing and Synchronization in afr

Synchronization is one of the most fundamental and critical procedures in a video facility. Every device in a sys- tem must be synchronized in order to ...

[image: alt]

Human Resource Management - Edinburgh Business School

www.ebsglobal.net, and should have been notified to you either by Edinburgh ... He has also acted as consultant to a number of international organisations in.

[image: alt]

columbia management retirement resource guide dbid 69w

[image: alt]

Synchronization in Music Group Playing - RenÃ© Doursat

3 Institut de Recherche et Coordination Acoustique/Musique (IRCAM),. CNRS (UMR9912) ... In this model, we use real music data in the form of duration datasets (without pitch) ... every note duration in the dataset, we approach it using a timer, which

[image: alt]

Foundation of operating systems - Mathieu Delalandre's Home Page

Introduction. â€œA brief historyâ€� (4). 3rd generation e.g. IBM system/360. âœ“ a game of compatible computer 360/(A-L). âœ“ implement multi-programming and spooling.

[image: alt]

Synchronization in Spiking Neural Networks - RenÃ© Doursat

Apr 28, 2005 - von der Malsburg, C. (1981) The correlation theory of brain function. Internal. Report 81-2 Crystallization from seed neurons. â€“ Dynamic ...

[image: alt]

Stability in Lebanon - Mathieu Baudier

Feb 25, 2007 - ... attend a mass on a French navy ship evacuating them (July 2006) be found on http://electronicintifada.net/lebanon/ a portal of western.

×
Report Foundation in synchronization and resource management - Mathieu

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

