

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Foundation of operating systems - Mathieu Delalandre's Home Page

Introduction. â€œA brief historyâ€� (4). 3rd generation e.g. IBM system/360. âœ“ a game of compatible computer 360/(A-L). âœ“ implement multi-programming and spooling.

 Télécharger le PDF

 3MB taille
 15 téléchargements
 344 vues

 commentaire

 Report

Real-time systems “Foundation of operating systems” Mathieu Delalandre François-Rabelais University, Tours city, France

1

Foundation of operating systems 1. 2. 3.

Introduction Process description and control Short-term scheduling 3.1. About short-term scheduling 3.2. Context switch, quantum and ready queue 3.3. Process and diagram models 3.4. Scheduling algorithms 3.5. Modeling multiprogramming 3.6. Evaluation of algorithms

2

Middle view: the general definition

User

User

Layers

Applications

User

Introduction “Definition of OS” Users: could share a same computer (through session / terminal).

Application: designed to help the user to perform a singular or multiple related specific tasks (e.g. office, programming toolkit, web browser, ….).

Operating System (OS)

Operating system: interface between hardware and user, which is responsible for the management and coordination of activities and the sharing of the resources of a computer, that acts as a host for computing applications run on the machine.

Hardware

Hardware: physical electronic components and mechanical parts that make up a piece of computer equipment (keyboard, disk drive, CPU, motherboard, …).

Rq. This layer separation is quite subjective Application / OS e.g. tactile pattern recognition, voice command device Hardware / OS e.g. virtual sensor vs. hardware synchronization 3

1955-1965

2sd √

1965-1980

3rd

1980-today

4th

in the queue

√

√

Ubiquitous computing

Quantum computer

Visualization

Multimodality

Mobile systems

Network

IHM

Microcomputer

Parallelism

Multi-prog

Compatibility

Batch

Generation 1945-1955

1st

√

1st generation e.g. ENIAC Task definition

Programming on panel Human operators

√ √

Introduction “A brief history” (1)

√ √

√

√

√

Execute

Printing

ENIAC

ENIAC

√

4

2sd √

1965-1980

3rd

1980-today

4th

√

√

Ubiquitous computing

Quantum computer

Visualization

Multimodality

Mobile systems

√

Network

√

IHM

√

Microcomputer

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√ √

in the queue

√

√

√

Introduction “A brief history” (2) 2sd generation e.g. IBM 1401 & 7090 Task definition

Edit punched card

Card(s) to tape drive(s)

Execute from tape drive(s)

Human programmer

1401

7090

√

Print 1401

Punched card

1401

7090

5

1980-today

4th

in the queue

√ √

√

√

√

Ubiquitous computing

√

Quantum computer

√

Visualization

√

Multimodality

√

Mobile systems

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

Introduction “A brief history” (3) 3rd generation e.g. IBM system/360 a game of compatible computer 360/(A-L) implement multi-programming and spooling

Multiprogramming is the allocation of a computer system and its resources to more than one concurrent application / job

Job 3

Job3

Job 2 Job 1

Memory partitioning

OS

Private memory aera

CPU schedule

Job2

Job1

If a job is blocked, go to next one

6

1980-today

4th

in the queue

√ √

√

√

√

Ubiquitous computing

√

Quantum computer

√

Visualization

√

Multimodality

√

Mobile systems

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

Tape

Introduction “A brief history” (4) 3rd generation e.g. IBM system/360 a game of compatible computer 360/(A-L) implement multi-programming and spooling

Spooling (Simultaneous peripheral operation on-line) refers to a process of transferring data by placing it in a temporary working area where another program may access it for processing at a later point in time.

Read

Execute

Print

Without spooling

Execute

With spooling

Job

Tape

Read Buffer

Printer

Print Job Spooler

7

First IBM PC to laptop

√

Ubiquitous computing

√

Quantum computer

in the queue

√

Visualization

√

Multimodality

4th

√

Mobile systems

1980-today

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

√

√

√

√

Introduction “A brief history” (5) 4th generation e.g. Personal Computer LSI (Large Scale Integration) made possible PC Doug Engelbart proposed IHM in the early 60s, implemented in first Apple computer in 1984 Since end of 80s, Internet become part of computer world

First keyboard and mouse

Internet host computers

8

1980-today

4th

√ √

in the queue Mobile systems

√

√

√

Ubiquitous computing

√

Quantum computer

√

Visualization

√

Multimodality

√

Mobile systems

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

Introduction “A brief history” (6) In the queue …. Mobile systems Multimodality Visualization Quantum computer Ubiquitous computing

√

Multimodality “Gesture based interaction”

Multimodality “ Voice recognition”

9

1980-today

4th

√ √

in the queue

√

√

√

Ubiquitous computing

√

Quantum computer

√

Visualization

√

Multimodality

√

Mobile systems

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

Introduction “A brief history” (7) In the queue …. Mobile systems Multimodality Visualization Quantum computer Ubiquitous computing Multimodality “Brain computer interface”

Multimodality “Eye tracker”

10

Visualization “Electronic paper”

√

Ubiquitous computing

√

Quantum computer

in the queue

√

Visualization

√

Multimodality

4th

√

Mobile systems

1980-today

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

√

√

√

√

Introduction “A brief history” (8) In the queue …. Mobile systems Multimodality Visualization Quantum computer Ubiquitous computing

Visualization “3D screen”

Visualization “real virtuality”

11

√

Ubiquitous computing

√

Quantum computer

√

Visualization

in the queue

√

Multimodality

4th

√

Mobile systems

1980-today

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

√

√

√

√

Visualization “Augmented reality and tagging real world”

Introduction “A brief history” (9) In the queue …. Mobile systems Multimodality Visualization Quantum computer Ubiquitous computing

Quantum computer

12

√

Ubiquitous computing

√

Quantum computer

√

Visualization

in the queue

√

Multimodality

4th

√

Mobile systems

1980-today

√

Network

3rd

IHM

1965-1980

Microcomputer

2sd √

Parallelism

1955-1965

Multi-prog

1st

Compatibility

Batch

Generation 1945-1955

√

√

√

√

√

Introduction “A brief history” (10) In the queue …. Mobile systems Multimodality Visualization Quantum computer Ubiquitous computing

Ubiquitous computing is a post-desktop model of human-computer interaction in which information processing has been thoroughly integrated into everyday objects and activities. More formally, ubiquitous computing is defined as "machines” that fit the human environment instead of forcing humans to enter theirs.

13

•

•

•

•

Mainframes Servers Multicomputers PC RTS Embedded systems Mobile systems

√

Optimization

•

Robustness

•

Mainframes are powerful computers used mainly by large organizations for critical applications, typically bulk data processing such as census, industry and consumer statistics, etc. Server computers link other computers or electronic devices together. They often provide essential services across a network, either to private users inside a large organization or to public users via the internet. Multicomputers offer a major-league computer power by connecting multiple CPUs together (e.g. GPU workstation), They need special OS support for communication, connectivity and consistency. Personal Computers (PC) are any general-purpose computers whose sizes, capabilities, and original sales price make them useful for individuals, and which is intended to be operated directly by an end user with no intervening computer operator. Real Time Systems (RTS) implement hardware and software components that are subject to a “real-time constraint” i.e. operational deadlines from event to system response. Embedded systems are designed to perform one or a few dedicated functions often with real-time computing constraints. They are embedded as part of a complete device often including hardware and mechanical parts. Mobile systems include personal digital assistants (PDA) or cellular telephones, many of which use special purpose embedded systems.

Communication

•

Ergonomics

OS depends of computer application

Introduction “Taxonomy of OS”

√ √ √

√

√ √

√ √

√

√

√

√ √

√ a major feature of concerned OS

14

Foundation of operating systems 1. 2. 3.

Introduction Process description and control Short-term scheduling 3.1. About short-term scheduling 3.2. Context switch, quantum and ready queue 3.3. Process and diagram models 3.4. Scheduling algorithms 3.5. Modeling multiprogramming 3.6. Evaluation of algorithms

15

Process description and control (1)

Data Process A Program

Working space

Processus Table is an area of memory protected from normal user access, to manage the processes’ PCB, as they contain critical information for the process.

Process table

Refer to

PCB “Process Control Block” (i.e. Task Controlling Block or Task Structure) is a data structure in the operating system kernel containing the information needed to manage a particular process.

PCB-A PCB-B

Refer to

A process(us) is an instance of a computer program that is being executed. It contains the program code and its current activity (i.e. data). Each process in an OS is managed from a PCB descriptor.

Kernel space

Main memory

Data Process B Program

16

Process description and control (2) List of frequent data appearing in a PCB

Refer to

related to process management

Refer to

Process table

Data Process A Program

Working space

Memory management information includes page and segment tables on the executable code, call stack (to keep track of active subroutines and/or other events), etc. Operating system descriptors of resources that are allocated to the process, such as file descriptors and other data sources (e.g. devices) Etc.

related to data management

Process identifier (pid) to refer the process at OS level Group data, hierarchy information (e.g. parent and child(s) of process), type of process and group membership(s) CPU-scheduling information (e.g. process priority, pointers to scheduling queue, etc.) Process state (e.g. ready, running, waiting, terminated, etc.) Program counter (PC) to refer current execution state of the process CPU registers correspond to current states of CPU’s registers Security attributes, such as the process’s owner and the processes' set of permissions (allowable operations). Accounting information (start time, end time, amount of CPU used, real time used, etc.) Etc.

PCB-A PCB-B

Kernel space

Main memory

Data Process B Program

17

Process description and control (3) In some OS, when a process is created by another process, both are linked by some special relation (access to memory space, to special procedures, etc.). We’re talking about process hierarchy and inheritance, like in Object-Oriented Programming (OOP). We distinguish:

A

A child process is a process created by another process (i.e. the parent process), this child process inherits most of parent’s attributes (such as open files). A parent process is a process that has created one or more child processes. In some operating systems (e.g. Unix) every process (except the boot/root process) is created when another process executes a given system call. The process responsible of the call is the parent process and the newly-created process is the child process. Every process has one parent process, but can have many child processes.

B

D

E

C

F

Processus Inheritance

18

Process description and control (4) Multitasking (i.e. multiprogramming) is a method by which multiple tasks i.e. processes share common processing resources such as a CPU. In the case of a computer with a single CPU, only one task can run at any time. Multitasking solves the problem by scheduling the tasks i.e. which task must run on the CPU, and which task must wait.

CPU allocation

P1 t

P2

t P3 0

t

scheduling diagram of processes

The process Pi is running

19

Process description and control (5) Scheduling refers to the way processes are assigned to run on the available CPUs. The aim of scheduling is to assign processes to be executed by the processor(s) over time, in a way that meets system objectives, such as response time, throughput and processor efficiency.

CPU

In many systems, this scheduling activity is broken into three separate functions: long-, medium- and short-term scheduling.

4. short-term scheduler

5. dispatcher

Scheduling affects the performance of the system because it determines which processes will wait and which will progress. Scheduling is a matter of managing queues to minimize queuing delay and to optimize performance in a queuing environment.

2. long-term scheduler … 1. job queue

…

…

…

…

3. ready queue

6. blocked queue

Main memory

7. mid-term … scheduler 8. suspend queue(s)

20

Process description and control (6) 1. Job queue stores processes to enter in the system, they are put into the job queue. The job queue contains then the list of processes to create (e.g. name of class in OO programming). CPU

2. Long term scheduler (admission scheduler) decides which processes are to be admitted to the ready queue, they are then created and loaded in the main memory (e.g. object in OO programming).

4. short-term scheduler

5. dispatcher

3. Ready queue is a data structure to keep (i.e. manage) in the main memory the “ready state” processes for the CPU. 4. Short-term scheduler (i.e. CPU scheduler) decides which of the ready, in-memory processes, are to be executed (allocated a CPU) next following a clock interrupt, an I/O interrupt, an operating system call or another form of signal.

2. long-term scheduler … 1. job queue

…

…

…

…

3. ready queue

6. blocked queue

Main memory

7. mid-term … scheduler 8. suspend queue(s)

5. Dispatcher gives the control of the CPU to the process selected by the short-term scheduler.

21

Process description and control (7) 6. Waiting/Blocked queue is a data structure to keep (i.e. manage) in the main memory the “blocked state” processes for the CPU. 7. Mid-term scheduler removes processes from main memory (if full) and places them on secondary memory (such as a disk drive) and vice versa.

CPU

4. short-term scheduler

5. dispatcher

8. Blocked suspend queue(s) contains list of processes move to disk (i.e. swapping). Two queues are usually managed, related to the suspend process states “suspended-blocked” and “suspended-ready”. 2. long-term scheduler … 1. job queue

…

…

…

…

3. ready queue

6. blocked queue

Main memory

7. mid-term … scheduler 8. suspend queue(s)

22

Long-term

Process description and control (8)

Short-term

Long-term

New

Mid-term

Admitted

Suspended ready

Terminated Admitted

Activate

I/O or event completion Suspend

Suspended blocked

Exit Running

Ready

Suspend I/O or event completion

Interrupt

Scheduler dispatch

I/O or event wait

Waiting

Activate

Disk memory

Main memory

As a process executes, it changes state. The state of a process is defined in part by the current activity of the process. New: process created, in this state, the process awaits admission to the “ready” state. This admission will be approved or delayed by a long-term, or admission, scheduler. Ready: a ready process has been loaded into main memory into the ready queue and is awaiting execution on a CPU (to be context switched into the CPU by the dispatcher following decision or the short-term scheduler). Running: process is being executed by CPU. Terminated: a process may be terminated, either from the “running” state by completing its execution or by explicitly being killed. The process moves then to the “terminated” state. If a process is not removed from memory after entering this state, this state may also be called zombie. 23

Long-term

Process description and control (9)

Long-term

Short-term

New

Mid-term

Admitted

Suspended ready

Terminated Admitted

Activate

I/O or event completion Suspend

Suspended blocked

Running

Ready

Suspend I/O or event completion

Exit

Interrupt

Scheduler dispatch

I/O or event wait

Waiting

Activate

Disk memory

Main memory

As a process executes, it changes state. The state of a process is defined in part by the current activity of the process. Waiting/Blocked: a process that cannot execute until some events occurs, such as the completion of an I/O operation or a signal. Every blocked process is moved to the blocked queue. Suspended blocked: a process is put in disk memory by the mid-term scheduler (i.e. swapping out). Suspended ready: a process is ready to be load from disk to main memory (i.e. swapping in).

24

Process description and control (10) Queuing diagram for scheduling shows the queues involved in the state transitions of processes. Rq. For simplicity, this diagram shows new processes going directly to the ready state without the option of either the ready state or either the ready/suspend state.

long-term scheduling

short-term scheduling

CPU job queue

ready queue medium-term scheduling

ready-suspend queue

I/O or event completion

Exit

blocked-suspend queue

medium-term scheduling

medium-term scheduling

I/O or event wait

medium-term scheduling

blocked queue 25

Process description and control (11) New → Ready: the OS will move a process from the new state to the ready state (i.e. from the job queue to the ready queue) when it is prepared to take an additional process. Most of the systems set some limits based on the number of existing processes in memory, they assure that there are not so many active processes as to degrade the performance. Ready → Running: when it is time to select a process to run, the OS chooses one of the processes in the ready state. This is the job of the scheduler. Running → Exit: the currently running process is terminated by the OS if the process indicates that it has completed, or if it aborts. Running → Ready: the most common reasons for this transition are (1) in the case of preemptive scheduling, the OS assigns different levels of priority to different processes; thus a process A can preempt a process B and B will go to the Ready state and shifts to the ready queue. (2) the running process has reached the maximum allowable time for uninterrupted execution (all multiprogramming OS impose this type of time discipline) (3) a process may voluntarily release control of the processor (e.g. background process that performs some accounting or maintenance function periodically)

26

Process description and control (12) Running → Blocked: a process is put in the Blocked state (and moves to the blocked queue) if (1) it requests something (i.e. a resource) for which it must wait such as a file, a shared section, etc. that is not immediately available (e.g. a down operation on a Mutex) (2) it requests a service to the OS that is not prepared to perform immediately. A request to the OS is usually in the form of a system service call; that is; a call from the running program to a procedure that is part of the OS. Blocked → Running: a process in the blocked state is moved to the ready state (and moves to the ready queue) when the event for which it has been waiting occurs (e.g. up operation on a Mutex, system call return). Ready → Exit: this transition is not shown on the state and queuing diagrams, in some systems, a parent may terminate a child process at any time. Also, if a parent terminates, all child processes associated wit that parent may terminate. Exit → Ready: the comments under the preceding item apply.

27

Foundation of operating systems 1. 2. 3.

Introduction Process description and control Short-term scheduling 3.1. About short-term scheduling 3.2. Context switch, quantum and ready queue 3.3. Process and diagram models 3.4. Scheduling algorithms 3.5. Modeling multiprogramming 3.6. Evaluation of algorithms

28

About short-term scheduling (1)

Response time: Predictability:

Waiting time: Throughput: CPU utilization: Fairness : Enforcing priorities:

total time between submission of a request and its completion to predict execution time of processes and avoid wide variations in response time

amount of time a process has been waiting in the ready queue number of processes that complete their execution per time unit to keep the CPU as busy as possible a process should not suffer of starvation i.e. never loaded to CPU when processes are assigned with priorities, the scheduling policy should favor the high priority processes Balancing resources: the scheduling policy should keep the resources of the system busy Etc.

Performance criteria Performance criteria related to the system related to the user

(Short-term) scheduler is a system process running an algorithm to decide which of the ready, in-memory processes, are to be executed (allocated a CPU). The short-term scheduler is concerned mainly with:

29

About short-term scheduling (2) Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded systems, etc.) schedulers could be designed in different ways:

on-line preemptive algorithm’s relative deadline features static priority optimal Scheduling problems

independants Processus without resource model aperiodic

Type of system

off-line

on-line

no preemptive

both

strict deadline

relative deadline

dynamic priority

both

not optimal

both

dependants

both

with resource

both

periodic

aperiodic

mono-core

multi-core

mono-core

centralized

distributed

centralized

Classic problems of scheduling in timesharing systems

30

About short-term scheduling (3) Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded systems, etc.) schedulers could be designed in different ways: On-line/off-line: off-line scheduling builds complete planning sequence with all the process set parameters. The schedule is known before the process execution and can be implemented efficiently. Preemptive/non-preemptive: in preemptive scheduling, an elected process may be preempted and the processor allocated to a more urgent process or one with higher priority. Relative/strict deadline: a process is said with no (or relative) deadline if its response time doesn’t affect the performance of the system and jeopardize the correct behavior. Dynamic/static priority: static algorithms are those in which scheduling decisions are based on fixed parameters, assigned to processes before their activation. Dynamic scheduling employs parameters that may change during system evolution. Optimal: an algorithm is said to be optimal if it minimizes given cost functions defined over the process set.

31

About short-term scheduling (4) Depending of the considered systems (mainframes, server computers, personal computers, real-time systems, embedded systems, etc.) schedulers could be designed in different ways: Dependent /independent process: a process is dependent (or cooperating) if it can affect (or be affected by) the other processes. Clearly, any process than share data and uses IPC is a cooperating process. Resource sharing: from a process point of view, a resource is any software structure that can be used by the process to advance its execution. Periodic/aperiodic process: a process is said periodic if, each time it is ready, it releases a periodic request. Mono-core / Multi-core: when a computer system contains a set of processors that share a common main memory, we’re talking about multiprocessor /multi-core scheduling. Centralized/distributed: scheduling is centralized when it is implemented on a centralized architecture. Scheduling is distributed when each site defines a local scheduling, and after cooperations between sites leading to a global scheduling strategy.

32

About short-term scheduling (5) The general algorithm of a short-term scheduler is While 1. A timer interrupt causes the scheduler to run once every time slice 2. Data acquisition (i.e. to list processes in the ready queue and update their parameters) 3. Selection of the process to run based on the scheduling criterion(a) of the algorithm 4. If the process to run is different of the current process, to order to the dispatcher to switch context 5. System execution will go on … The real problem with scheduling is the definition of the scheduling criterion(a), algorithm is little discussed.

33

Foundation of operating systems 1. 2. 3.

Introduction Process description and control Short-term scheduling 3.1. About short-term scheduling 3.2. Context switch, quantum and ready queue 3.3. Process and diagram models 3.4. Scheduling algorithms 3.5. Modeling multiprogramming 3.6. Evaluation of algorithms

34

Context switch, quantum and ready queue (1) Dispatcher is in charge of passing the control of the CPU to the process selected by the short-term scheduler. Context switch is the operation of storing and restoring state (context) of a CPU so that execution can be resumed from the same point at a later time. It is based on two distinct sub-operations, state safe and state restore. Switching from one process to another requires a certain amount of time (saving and loading the registers, the memory maps, etc.). Quantum (or time slice) is the period of time for which a process is allowed to run in a preemptive multitasking system. The scheduler is run once every time slice to choose the next process to run. Process P0

Operating system

Process P1

interrupt or system call P0 running, P1 waiting save state into PCB0 Context switch P0 / P1 waiting

reload state from PCB1

P0 waiting, P1 running

save state into PCB1 Context switch P0 / P1 waiting

P0 running, P1 waiting

interrupt or system call

quantum (time slice)

exit

reload state from PCB0

exit 35

Context switch, quantum and ready queue (2) e.g. We consider the case of i.

ii. iii.

Three processes A, B, C and a dispatcher which traces (i.e. instructions listing), given in the next table. Process A

Process B

Process C

Dispatcher

5000 5001 …. 5011

8000 8001 8002 8003

12000 12001 … 12011

100 101 … 105

Processes are scheduled in a predefined order (A, B then C) The OS here only allows a process to continue for maximum of six instruction cycles (the quantum), after which it is interrupted.

Cycle

Instructions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

5000 5001 5002 5003 5004 5005 100 101 102 103 104 105 8000 8001 8002 8003 100 101 102 103 104 105 12000 12001 12002 12003 12004 12005

A starts Process A A interrupted Dispatcher B starts Process B B ends Dispatcher C starts Process C C interrupted 36

Context switch, quantum and ready queue (3) e.g. We consider the case of i.

ii. iii.

Three processes A, B, C and a dispatcher which traces (i.e. instructions listing), given in the next table. Process A

Process B

Process C

Dispatcher

5000 5001 …. 5011

8000 8001 8002 8003

12000 12001 … 12011

100 101 … 105

Processes are scheduled in a predefined order (A, B then C) The OS here only allows a process to continue for maximum of six instruction cycles (the quantum), after which it is interrupted.

Cycle

Instructions

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

100 101 102 103 104 105 5006 5007 5008 5009 5010 5011 100 101 102 103 104 105 12006 12007 12008 12009 12010 1211

Dispatcher A continues Process A A ends Dispatcher C continues Process C C ends

37

Context switch, quantum and ready queue (4) e.g. We consider the case of i.

ii. iii.

Three processes A, B, C and a dispatcher which traces (i.e. instructions listing), given in the next table. Process A

Process B

Process C

Dispatcher

5000 5001 …. 5011

8000 8001 8002 8003

12000 12001 … 12011

100 101 … 105

Processes are scheduled in a predefined order (A, B then C) The OS here only allows a process to continue for maximum of six instruction cycles (the quantum), after which it is interrupted.

Quantum

des documents recommandant

[image: alt]

Operating Systems â€œLecture outlineâ€� - Mathieu Delalandre's Home Page

Parts A: Lectures and practical works downloadable from http://mathieu.delalandre.free.fr/teachings/operating2.html. â€¢. Calendar Part A. 7th of March. Part B.

[image: alt]

Operating Systems â€œLecture outlineâ€� - Mathieu Delalandre's Home Page

Parts B: Lectures and practical works downloadable from http://mathieu.delalandre.free.fr/teachings/operating1.html. â€¢. Calendar Part A. 1st week of september.

[image: alt]

Distributed Systems - Mathieu Delalandre's Home Page

Socket: is a communication end point to which an application can write/read data over the underlying network. It constitutes a standard transport interface for ...

[image: alt]

Operating Systems â€œVirtual Memoryâ€� - Mathieu Delalandre's Home

page 1 page 2 â€¦ virtual memory main memory a virtual memory space ... In the simplest form, this field contains 1 bit, page p1 plus displacement p2) Optimal page replacement (OPT) selects for replacement a page for which the time to ...

[image: alt]

Operating Systems â€œUniprocessor schedulingâ€� - Mathieu Delalandre's

âœ“Optimal: an algorithm is said to be optimal if it minimizes given cost functions defined over the process set. ... Dispatcher is in charge of passing the control of the CPU to the process selected by the short-term scheduler. is the weight

[image: alt]

Operating Systems â€œMemory Managementâ€� - Mathieu Delalandre's

valid, only the addresses from 12288 to 16383 are not valid. Because the program extends to the address. 10468 only, any reference beyond that address is.

[image: alt]

Operating Systems â€œIntroductionâ€� - Mathieu Delalandre's

Operating system: interface between hardware and user, which is responsible for Multiprogramming is the allocation of a computer system and its resources ...

[image: alt]

Operating Systems â€œResource managementâ€� - Mathieu Delalandre's

Introduction to resource management. 2. Without hold and wait, resource utilization could be low, starvation probability higher and programming task harder.

[image: alt]

Distributed Systems â€œLecture outlineâ€� - Mathieu Delalandre's Home Page

Part A: Lectures and practical works downloadable from http://mathieu.delalandre.free.fr/teachings/dsystems.html. â€¢. Calendar. CM TP. CC. A. M. Delalandre. 4.

[image: alt]

Real-time systems â€œLecture outlineâ€� - Mathieu Delalandre's Home Page

B. Real-time systems: use-case with RTLinux. â€¢. Parts A: Lectures and practical works downloadable from http://mathieu.delalandre.free.fr/teachings/realtime.

[image: alt]

Introduction to real-time systems - Mathieu Delalandre's Home Page

Actions programming automata application-specific circuit (e.g. ASIC) uni or multi processor distributed systems etc. production line home (i.e. domotic system).

[image: alt]

Principles of Operating Systems

Sep 15, 2005 - higher (but the total time to complete a process is also longer). With multitasking ... the same illusion of parallelism is achieved at a finer grain process 1 prg 1 illusion of full-time interactivity toward the user while perfor

[image: alt]

Principles of Operating Systems

the disk can be divided up into several partitions that each hold 4/27/2006. CS 446/646 - Principles of Operating Systems - 6. File System. 49. 6.d File System ...

[image: alt]

Principles of Operating Systems

Jan 31, 2006 - Note: The historical evolution of computers have left us with a great variety of O/S types, not all of which widely known. In this section, we briefly ...

[image: alt]

Principles of Operating Systems

ex: Java VM ex: MS-DOS ... G. (2003). Operating Systems Concepts with Java (6th Edition). Client RPC using a single thread vs. multiple threads. 2/7-14/ ...

[image: alt]

Principles of Operating Systems

Feb 28, 2006 - Modern Operating Systems (2nd Edition). 2/28/2006. CS 446/646 ... A's mutex; so Q resumes and releases B and A; P can now go. Process Q.

[image: alt]

Principles of Operating Systems

Apr 20, 2006 - 5.d Disk Management. Physical disk ... Stallings, W. (2006) Computer Organization & ... boot sector, free storage map, file allocation table, etc.

[image: alt]

Principles of Operating Systems

Windows NT 4.0. Windows 2000 (NT ... a single control unit issues 1 instruction at a time; multiple ... systems controlling scientific experiments, medical imaging.

[image: alt]

Principles of Operating Systems

Feb 16, 2006 - CS 446/646 - Principles of Operating Systems - 2. Processes. 88 ... the principles of concurrency are basically the same in all of Page 12 ...

[image: alt]

Principles of Operating Systems

Feb 16, 2006 - CS 446/646 - Principles of Operating Systems - 2. Processes. 119. 2.c Concurrency. Mutual exclusion by busy waiting set lock, push mask, and ...

[image: alt]

Principles of Operating Systems

Jan 26, 2006 - Introduction. 30. 1.b Operating System History and Features. Serial processing. âž¢ Human operator-programmer-user. âœ“ the machine was run ...

[image: alt]

Principles of Operating Systems

Apr 18, 2006 - typical code organization of a device driver: a. check validity of input parameters coming from above b. if valid, translate to concrete commands, ...

[image: alt]

Principles of Operating Systems

Aug 9, 2005 - system calls offer back-end, low-level services ... service of the same name by (a) placing the arguments Operating Systems Concepts with Java (6th Edition). the microkernel offers a uniform message-passing interface.

[image: alt]

Distributed computing - Mathieu Delalandre's Home Page

Efficient implementation of vector clocks. 3. Global states and snapshot recording algorithms. 3.1. Global states. 3.2. The snapshot algorithm for FIFO channel. 2 ...

×
Report Foundation of operating systems - Mathieu Delalandre's Home Page

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

