Equivalence of Deterministic Nested Word to Word Transducers

< pers > < name > < adr >. < /book >. Grégoire Laurence ( INRIA Lille, Mostrare, University of Lille ). Equivalence of dn2ws. Mostrare, 06 ...
598KB taille 2 téléchargements 246 vues
Equivalence of Deterministic Nested Word to Word Transducers Gregoire Laurence (Joint work with Slawek Staworko, Aurelien Lemay, Joachim Niehren) INRIA Lille, Mostrare University of Lille

Mostrare, 06 May 2009

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

1/1

Motivation



-> ->



->



-> ->



->



Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

2/1

Overview

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

3/1

Outline

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

4/1

Nested Word Automata book

pers

name

pers

adr

name

adr

Visibly Pushdown Automata [Alur et al’04] Streaming Tree Automata [Gauwin et al’08]

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata

book

pers

name

pers

adr

name

adr

< book > < pers > < name > < /name > < adr > < /adr > < /pers > < pers > < name > < /name > < adr > < /adr > < /pers > < /book > Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata op book:γb

book

pers

name

pers

adr

name

adr

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

Mostrare, 06 May 2009

5/1

Nested Word Automata 0 op book:γb

book

pers

name

pers

adr

name

adr

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

Mostrare, 06 May 2009

5/1

Nested Word Automata 0 op book:γb

γb 1 book

pers

name

pers

adr

name

adr

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

< book >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata 0 op book:γb

γb 1 book

2

name

γp pers

pers

adr

name

adr

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

< book > < pers >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata 0 op book:γb

γb 1 book

2

γn 3 name

γp pers

pers

adr

name

adr

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

< book > < pers > < name >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata 0 op book:γb

γb 1 book

2

γp pers

γn 3 name 4

pers

adr

name

adr

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

< book > < pers > < name > < /name >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata 0 op book:γb

γb 1 book 6

2

γp pers

γn 3 name 4

3

1

2

γa adr

5

γp pers

γn 3 name 4

3

1

γa adr

5

0 −−−−−−→ 1 op pers:γp 1 −−−−−−→ 2 op name:γn 2 −−−−−−→ 3 cl name:γn 3 −−−−−−→ 4 op adr :γa 4 −−−−−→ 3 cl adr :γa 3 −−−−−→ 5 cl pers:γp 5 −−−−−−→ 1 cl book:γb 1 −−−−−−→ 6

< book > < pers > < name > < /name > < adr > < /adr > < /pers > < pers > < name > < /name > < adr > < /adr > < /pers > < /book > Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata ↓ 0 op book:6

6 1 book 6

2

1 pers

4 3 name 4

3

1

2

5 adr

5

1 pers

4 3 name 4

3

1

5 adr

5

0 −−−−−−→ 1 op pers:1 1 −−−−−→ 2 op name:4 2 −−−−−−→ 3 cl name:4 3 −−−−−−→ 4 op adr :5 4 −−−−−→ 3 cl adr :5 3 −−−−−→ 5 cl pers:1 5 −−−−−→ 1 cl book:6 1 −−−−−−→ 6

< book > < pers > < name > < /name > < adr > < /adr > < /pers > < pers > < name > < /name > < adr > < /adr > < /pers > < /book > Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

5/1

Nested Word Automata na Definition T = (Σ, states, stack, rules, initial, final) op a:γ

Rules of the form q −−−→ q 0

cl a:γ

q −−−→ q 0 .

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

6/1

Nested Word Automata na Definition T = (Σ, states, stack, rules, initial, final) op a:γ

Rules of the form q −−−→ q 0

cl a:γ

q −−−→ q 0 .

Determinism (dna) op a:γ

In a opening transition q −−−→ q 0 , q and a determines γ and q 0 . cl a:γ

In a closing transition q −−−→ q 0 , q, a and γ determines q 0 .

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

6/1

Nested Word Automata na Definition T = (Σ, states, stack, rules, initial, final) op a:γ

Rules of the form q −−−→ q 0

cl a:γ

q −−−→ q 0 .

Determinism (dna) op a:γ

In a opening transition q −−−→ q 0 , q and a determines γ and q 0 . cl a:γ

In a closing transition q −−−→ q 0 , q, a and γ determines q 0 .

Top Down(na↓ ) stack symbols = states cl a:q 0

all closing rules have the form q −−−−→ q 0

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

6/1

Nested Word Transducers

Nested Word to Word (n2w) Definition T = (Σ,states, stack, rules, initial, final) op a



Rules of the form q −−−−−→ q 0

cl a



q −−−−−→ q 0

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

7/1

Nested Word Transducers

Nested Word to Word (n2w) Definition T = (Σ,∆,states, stack, rules, initial, final) op a/u:γ

Rules of the form q −−−−−→ q 0

cl a/u:γ

q −−−−−→ q 0

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

7/1

Nested Word Transducers

Nested Word to Word (n2w) Definition T = (Σ,∆,states, stack, rules, initial, final) op a/u:γ

Rules of the form q −−−−−→ q 0 JT K : TΣ → ∆∗

cl a/u:γ

q −−−−−→ q 0

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

7/1

Nested Word Transducers

Nested Word to Word (n2w) Definition T = (Σ,∆,states, stack, rules, initial, final) op a/u:γ

Rules of the form q −−−−−→ q 0 JT K : TΣ → ∆∗

cl a/u:γ

q −−−−−→ q 0

Determinism and Top Down Same definition as na.

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

7/1

Nested Word Transducer Example

a

b

b

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

1

a

1

b

1

b

3

2

2

2

2

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

< c >1

a

ε

1

b

ε

1

b

3 < a >< /a >< /c >

2

2 < b >< /b >

2

2

< b >< /b >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

< c >1

a

ε

1

b

ε

1

b

3 < a >< /a >< /c >

2

2 < b >< /b >

2

2

< b >< /b >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

< c >1

a

ε

1

b

ε

1

b

3 < a >< /a >< /c >

c

2

2 < b >< /b >

2

2

< b >< /b >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

< c >1

a

ε

1

b

ε

1

b

3 < a >< /a >< /c >

c

2

2 < b >< /b >

2

2

b

< b >< /b >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

< c >1

a

ε

1

b

ε

1

b

3 < a >< /a >< /c >

c

2

2 < b >< /b >

2

2

b

b

< b >< /b >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Nested Word Transducer Example

0 3

< c >1

a

ε

1

b

ε

1

b

3 < a >< /a >< /c >

c

2

2 < b >< /b >

2

2

b

b

a

< b >< /b >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

8/1

Equivalence Problem

Equivalence of dn2ws Two dn2ws T1 , T2 are equivalent iff they are defined on the same domain and for each tree t in this domain we have JT1 K(t) = JT2 K(t). nondeterministic equivalence is undecidable [Griffiths’68]

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

9/1

Outline

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

10 / 1

Morphism Equivalence on cfg A (word) morphism M : Σ → ∆∗ M(v1 · v2 · · · vn ) = M(v1 ) · M(v2 ) · · · M(vn )

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

11 / 1

Morphism Equivalence on cfg A (word) morphism M : Σ → ∆∗ M(v1 · v2 · · · vn ) = M(v1 ) · M(v2 ) · · · M(vn )

Equivalence on cfg Two morphisms M1 , M2 are equivalent on a cfg G iff M1 (w ) = M2 (w ) for all w ∈ L(G ).

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

11 / 1

Morphism Equivalence on cfg A (word) morphism M : Σ → ∆∗ M(v1 · v2 · · · vn ) = M(v1 ) · M(v2 ) · · · M(vn )

Equivalence on cfg Two morphisms M1 , M2 are equivalent on a cfg G iff M1 (w ) = M2 (w ) for all w ∈ L(G ).

Theorem[Plandowski’94] The morphism equivalence problem for context-free languages can be solved in polynomial time.

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

11 / 1

Outline

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

12 / 1

From Morphisms to dn2w↓

Proposition Morphism equivalence on cfgs can be reduced in quadratic time to dn2w↓ -equivalence.

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

13 / 1

From Morphisms to dn2w↓

Proposition Morphism equivalence on cfgs can be reduced in quadratic time to dn2w↓ -equivalence. Given a cfg G and a morphism M, we construct a dn2w↓ T : input : (extended) parse tree t of w ∈ L(G ) output : JT K(t) = M(w )

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

13 / 1

From Morphisms to dn2w↓ cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

Morphism M M(a) = ab M(b) = b

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

Morphism M

S

R

A

B

a

b

M(a) = ab M(b) = b

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

Morphism M

r2

r3

r4

r5

a

b

M(a) = ab M(b) = b

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

(r2 , 0) r2

r3

Morphism M

r4

r5

a

b

M(a) = ab M(b) = b

r2 :f

o −−−→ (r2 , 0) Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

Morphism M

(r2 , 0) r2

(r3 , 0) r3

(r4 , 0) r4

r5

a

b

M(a) = ab M(b) = b

op r3 :(r2 ,1)

(r2 , 0) −−−−−−→ (r3 , 0)

op r4 :(r3 ,1)

(r3 , 0) −−−−−−→ (r4 , 0)

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

(r2 , 0) r2

(r3 , 0) r3

Morphism M

(r4 , 0) r4

r5

a

b

M(a) = ab M(b) = b d op a:(r4 ,1)

(r4 , 0) −−−−−−→ d Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

(r2 , 0) r2

(r3 , 0) r3

Morphism M

(r4 , 0) r4

r5

M(a) = ab M(b) = b d

a (r4 , 1)

b

cl a:(r4 ,1)

d −−−−−−→ (r4 , 1) Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

Morphism M

(r2 , 0) r2

(r3 , 0) r3 (r2 , 1)

(r4 , 0) r4 (r3 , 1)

(r5 , 0) r5 (r3 , 2)

M(a) = ab M(b) = b a (r4 , 1)

d op r5 :(r3 ,2)

(r3 , 1) −−−−−−→ (r5 , 0)

d

b (r5 , 1)

cl r5 :(r3 ,2)

(r5 , 1) −−−−−−→ (r3 , 2)

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

(r2 , 0) r2

f

(r3 , 0) r3 (r2 , 1)

Morphism M

(r4 , 0) r4 (r3 , 1)

(r5 , 0) r5 (r3 , 2)

M(a) = ab M(b) = b d

a (r4 , 1)

d

b (r5 , 1)

cl r2 :f

(r2 , 1) −−−−−→ f Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓ o

cfg G r 1: r 2: r 3: r 4: r 5:

S → RS S →R R → AB A→a B→b

Morphism M

ε (r2 , 0) r2

f

ε

ε (r3 , 0) r3 (r2 , 1) ε

ε (r4 , 0) r4 (r3 , 1) ε ε (r5 , 0) r5 (r3 , 2) ε

M(a) = ab M(b) = b a (r4 , 1) ε b d

ab d op a/M(a):(r4 ,1)

(r4 , 0) −−−−−−−−−−→ d

b (r5 , 1) ε

op b/M(b):(r5 ,1)

(r5 , 0) −−−−−−−−−−→ d

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

14 / 1

From Morphisms to dn2w↓

Morphism

dn2w extended parse tree trivial

O(|M| + |G |2 )

dn2w↓

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

15 / 1

From dn2w to Morphisms

Proposition dn2w-equivalence can be reduced in polynomial time to morphism equivalence on cfgs.

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

16 / 1

From dn2w to Morphisms

Proposition dn2w-equivalence can be reduced in polynomial time to morphism equivalence on cfgs. For dn2w T1 and T2 , we define : a cfg G which recognizes successfull parallel runs, L(G ) ⊆ (rulesT1 × rulesT2 )∗ . two morphisms M1 and M2 s.t.: For all s ∈ L(G ), M1 (s) = JT1 K(t) and M2 (s) = JT2 K(t).

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

16 / 1

From dn2w to Morphisms T2

T1 (init = {0}, fin = {3})

(init = {00 }, fin = {40 }) op a/:γ 0

op a/:γ1

1 10 r10 : 00 −−−−−−−→

op b/ε:γ2

2 r20 : 10 −−−−−−−−→ 20

r1 : 0 −−−−−−−→ 1 r2 : 1 −−−−−→ 1 cl b/:γ2

r3 : 1 −−−−−−−−−−−→ 2 cl a/:γ1

r4 : 2 −−−−−−−−−−−−−−−→ 3

op b/:γ 0

cl a/:γ 0

1 40 r30 : 30 −−−−−−−−−−−−→

cl b/:γ 0

2 30 r40 : 20 −−−−−−−−−−−→

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

17 / 1

From dn2w to Morphisms T2

T1 (init = {0}, fin = {3})

(init = {00 }, fin = {40 }) op a/:γ 0

op a/:γ1

1 10 r10 : 00 −−−−−−−→

op b/ε:γ2

2 r20 : 10 −−−−−−−−→ 20

r1 : 0 −−−−−−−→ 1 r2 : 1 −−−−−→ 1 cl b/:γ2

r3 : 1 −−−−−−−−−−−→ 2 cl a/
:γ1

r4 : 2 −−−−−−−−−−−−−−−→ 3 (r1 , r10 )

a (r4 , r30 )

(r2 , r20 )

b (r3 , r40 )

op b/:γ 0

cl a/:γ 0

1 40 r30 : 30 −−−−−−−−−−−−→

cl b/:γ 0

2 30 r40 : 20 −−−−−−−−−−−→

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

17 / 1

From dn2w to Morphisms T2

T1 (init = {0}, fin = {3})

(init = {00 }, fin = {40 }) op a/:γ 0

op a/:γ1

1 10 r10 : 00 −−−−−−−→

op b/ε:γ2

2 r20 : 10 −−−−−−−−→ 20

r1 : 0 −−−−−−−→ 1 r2 : 1 −−−−−→ 1 cl b/:γ2

r3 : 1 −−−−−−−−−−−→ 2 cl a/
:γ1

r4 : 2 −−−−−−−−−−−−−−−→ 3 (r1 , r10 )

a (r4 , r30 )

(r2 , r20 )

b (r3 , r40 )

op b/:γ 0

cl a/:γ 0

1 40 r30 : 30 −−−−−−−−−−−−→

cl b/:γ 0

2 30 r40 : 20 −−−−−−−−−−−→

[S] → (r1 , r10 ) · [(1, 2), (10 , 30 )] · (r4 , r30 )

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

17 / 1

From dn2w to Morphisms T2

T1 (init = {0}, fin = {3})

(init = {00 }, fin = {40 }) op a/:γ 0

op a/:γ1

1 10 r10 : 00 −−−−−−−→

op b/ε:γ2

2 r20 : 10 −−−−−−−−→ 20

r1 : 0 −−−−−−−→ 1 r2 : 1 −−−−−→ 1 cl b/:γ2

r3 : 1 −−−−−−−−−−−→ 2 cl a/
:γ1

r4 : 2 −−−−−−−−−−−−−−−→ 3 (r1 , r10 )

a (r4 , r30 )

(r2 , r20 )

b (r3 , r40 )

op b/:γ 0

cl a/:γ 0

1 40 r30 : 30 −−−−−−−−−−−−→

cl b/:γ 0

2 30 r40 : 20 −−−−−−−−−−−→

[S] → (r1 , r10 ) · [(1, 2), (10 , 30 )] · (r4 , r30 ) [(1, 2), (10 , 30 )] → (r2 , r20 ) · [(1, 1), (20 , 20 )] · (r3 , r40 )

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

17 / 1

From dn2w to Morphisms T2

T1

(init = {00 }, fin = {40 })

(init = {0}, fin = {3})

op a/:γ 0

op a/:γ1

1 10 r10 : 00 −−−−−−−→

op b/ε:γ2

2 r20 : 10 −−−−−−−−→ 20

r1 : 0 −−−−−−−→ 1

op b/:γ 0

r2 : 1 −−−−−→ 1

cl a/
:γ 0

cl b/:γ2

1 40 r30 : 30 −−−−−−−−−−−−→

r3 : 1 −−−−−−−−−−−→ 2 cl a/:γ1

cl b/:γ 0

r4 : 2 −−−−−−−−−−−−−−−→ 3 (r1 , r10 )

a (r4 , r30 )

(r2 , r20 )

b (r3 , r40 )

2 30 r40 : 20 −−−−−−−−−−−→

[S] → (r1 , r10 ) · [(1, 2), (10 , 30 )] · (r4 , r30 ) [(1, 2), (10 , 30 )] → (r2 , r20 ) · [(1, 1), (20 , 20 )] · (r3 , r40 ) [(1, 1), (20 , 20 )] → ε

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

17 / 1

From dn2w to Morphisms T2

T1

(init = {00 }, fin = {40 })

(init = {0}, fin = {3})

op a/:γ 0

op a/:γ1

1 10 r10 : 00 −−−−−−−→

op b/ε:γ2

2 r20 : 10 −−−−−−−−→ 20

r1 : 0 −−−−−−−→ 1

op b/:γ 0

r2 : 1 −−−−−→ 1

cl a/
:γ 0

cl b/:γ2

1 40 r30 : 30 −−−−−−−−−−−−→

r3 : 1 −−−−−−−−−−−→ 2 cl a/:γ1

cl b/:γ 0

r4 : 2 −−−−−−−−−−−−−−−→ 3 (r1 , r10 )

a (r4 , r30 )

(r2 , r20 )

b (r3 , r40 )

2 30 r40 : 20 −−−−−−−−−−−→

[S] → (r1 , r10 ) · [(1, 2), (10 , 30 )] · (r4 , r30 ) [(1, 2), (10 , 30 )] → (r2 , r20 ) · [(1, 1), (20 , 20 )] · (r3 , r40 ) [(1, 1), (20 , 20 )] → ε

M1 ((r3 , r40 )) =< b >< /b >

M2 ((r3 , r40 )) =< /b >< a >

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

17 / 1

From dn2w to Morphisms parallel run O(|T1 |2 × |T2 |2 )

Morphism

dn2w extended parse tree trivial

O(|M| + |G |2 )

dn2w↓

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

18 / 1

Other Models

Top Down Ranked Tree to Word (dr2w↓ ) q(a(x1 , . . . , xk )) → u0 · q1 (x1 ) · u1 · . . . · uk−1 · qk (xk ) · uk .

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

19 / 1

Other Models

Top Down Ranked Tree to Word (dr2w↓ ) q(a(x1 , . . . , xk )) → u0 · q1 (x1 ) · u1 · . . . · uk−1 · qk (xk ) · uk .

Deterministic Bottom Up Ranked Tree to Word (dr2w↑ ) a(q1 (v1 ), . . . , qk (vk )) → q(u0 · v1 · u1 · · · vk · uk ).

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

19 / 1

Other Models parallel run O(|T1 |2 × |T2 |2 )

Morphism

dn2w extended parse tree trivial

O(|M| + |G |2 )

dn2w↓

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

20 / 1

Other Models parallel run O(|T1 |2 × |T2 |2 )

Morphism

dn2w extended parse tree trivial

O(|M| + |G |2 )

dn2w↓ first child next sibling O(|Σ|2 ∗ |statesT |2 )

dr2w↓

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

20 / 1

Other Models parallel run O(|T1 |2 × |T2 |2 )

Morphism

dn2w extended parse tree trivial

O(|M| + |G |2 )

dn2w↓ first child next sibling O(|Σ|2 ∗ |statesT |2 )

ranked ⊂ unranked O(|S| ∗ n)

dr2w↓

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

20 / 1

Other Models parallel run O(|T1 |2 × |T2 |2 )

Morphism

dn2w extended parse tree trivial

O(|M| + |G |2 )

dn2w↓ first child next sibling O(|Σ|2 ∗ |statesT |2 )

ranked ⊂ unranked O(|S| ∗ n)

dr2w↓

dr2w↑

parallel run |S1 | ∗ |S2 | Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

20 / 1

Outline

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

21 / 1

Conclusion

Summary new model of deterministic nested word transducers. equivalence problem on various classes. relation to morphisms equivalence on cfg.

Future work other problems on dn2w. grammatical inference.

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

22 / 1

From Morphisms to dn2w↓ r ∈ rulesG

lhs(r ) ∈ initialG

op r /ε:f

o −−−−→ (r , 0)

r ∈ rulesG

(r , 0) −−−−−−−−−→ d

cl r /ε:f

cl a/ε:(r ,1)

(r , |r |) −−−−→ f r , r 0 ∈ rulesG

rhs(r ) = a

op a/M(a):(r ,1)

d −−−−−−−→ (r , 1)

rhs(r ) = q1 · · · qk

1 ≤ j ≤ |r |

lhs(r 0 ) = qj

op r 0 /ε:(r ,j)

(r , j−1) −−−−−−−→ (r 0 , 0) cl r 0 /ε:(r ,j)

(r 0 , |r 0 |) −−−−−−−→ (r , j)

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

Mostrare, 06 May 2009

23 / 1

From dn2w to Morphisms r1 , r10 ∈ rulesT1 r2 , r20 ∈ rulesT2

op a/u1 :γ1

cl a/u 0 :γ1

p1 ∈ initialT1

q10 ∈ finalT1

r2 = p2 −−−−−−→ q2 r20 = p20 −−−−−−→ q20 p2 ∈ initialT2 o → (r1 , r2 ) · ((q1 , p10 ), (q2 , p20 )) · (r10 , r20 )

q20 ∈ finalT2

r1 = p1 −−−−−−→ q1 op a/u2 :γ2

r1 , r10 ∈ rulesT1

1 r10 = p10 −−−−− −→ q10

cl a/u20 :γ2

op a/u1 :γ1

r1 = p1 −−−−−−→ q1

cl a/u 0 :γ1

1 r10 = p10 −−−−− −→ q10 ,

op a/u2 :γ2

cl a/u 0 :γ2

2 r2 , r20 ∈ rulesT2 r2 = p2 −−−−−−→ q2 r20 = p20 −−−−− −→ q20 0 0 0 0 0 0 ((p1 , q1 ), (p2 , q2 )) → (r1 , r2 ) · ((q1 , p1 ), (q2 , p2 )) · (r1 , r2 )

p1 , p10 , q1 ∈ statesT1 p2 , p20 , q2 ∈ statesT2 ((p1 , q1 ), (p2 , q2 )) → ((p1 , p10 ), (p2 , p20 )) · ((p10 , q1 ), (p20 , q2 ))

Gr´ egoire Laurence ( INRIA Lille, Mostrare, University of Equivalence Lille ) of dn2ws

q1 ∈ statesT1 , q2 ∈ statesT2 ((q1 , q1 ), (q2 , q2 )) → ε

Mostrare, 06 May 2009

24 / 1