Environmental impacts of PV electricity generation .fr

Research Institute for Sustainable Development and Innovation. Cd emissions. Comparison between energy supply options. Fthenakis and Kim, 2006. 0.8. 0.9.
2MB taille 13 téléchargements 272 vues
Environmental impacts of PV electricity generation A critical comparison of energy supply options

Erik Alsema (Utrecht University) Mariska de Wild-Scholten (ECN) Vasilis Fthenakis (Brookhaven Nat. Lab.) Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Outline  Crystalline silicon technology  Thin film technologies  Competition of other low-carbon energy options;  Strong and weak points PV  Recommendations for industry and research  Summary Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Important issues for PV technology • • • • •

Energy Pay-Back Time GHG mitigation Toxic emissions Resource supply Health & Safety risks

Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

EPBT silicon present

Energy Pay-Back Time for Silicon PV

Energy Pay-Back Time (yr)

(rooftop system, irrad. 1700 resp. 1000 kWh/m2/yr) 4.0

to be updated !!

3.5 3.0

inverter support+cable frame module ass. cell prod. ingot+wafer Si feedstock

2.5 2.0 1.5 1.0 0.5 0.0 ribbon 11.5% S-Eur.

ribbon 11.5% M-Eur.

multi 13.2% S-Eur.

multi 13.2% M-Eur.

Copernicus Institute Research Institute for Sustainable Development and Innovation

mono 14% S-Eur.

mono 14% S-Eur.

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Silicon technology improvements Energy input for silicon modules (MJ-prim per m2 module area)

-Thinner wafers (285→150 um)

3500 3000 2500

module ass.

2000

cell prod.

1500

ingot+wafer

1000

Si feedstock

500 0 present multi 13.2%

future multi 17%

Copernicus Institute Research Institute for Sustainable Development and Innovation

-Silicon produced by Fluidized Bed Reactor; -Reduced energy input for ingot growing (best techn. 2004) -Efficiency →17%

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

EPBT Silicon future

Energy Pay-Back Time for Future Silicon PV Energy Pay-Back Time (yr)

(rooftop system, S.-Europe) 2.5 2.0 1.5

BOS frame Laminate

1.0 0.5 0.0 present ribbon 11.5%

present multi 13.2%

present mono 14%

Copernicus Institute Research Institute for Sustainable Development and Innovation

future ribbon 15%

future multi 17%

future mono 19%

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Energy Pay-Back Time (yr)

Energy Thin Pay-Backfilm Thin-Film Systems EPBT present (rooftop system, S.-Europe) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

BOS module

a-Si 5.5%

CdTe 10%

CIGS 11.5%

Results generated by SENSE project. Courtesy: M. Shibasaki, Univ. Stuttgart Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

CdTe Energy Pay-Back and GHG emission (USA) Energy Pay-Back Time (Ground-mount system; irradiation 1700 kWh/m2/yr)

GHG emission (ground-mount system, irradiation 1700 kWh//m2/yr)

1.2

30

1

BOS

25

BOS laminate

Laminate CO2-eq (g/kWh)

Y e a rs

0.8 0.6 0.4

20

15

10

0.2

5

0

0

CdTe 9% ground-mount, U.S. production

Copernicus Institute Research Institute for Sustainable Development and Innovation

CdTe 9% ground-mount, U.S. production

Fthenakis and4-9Kim, 2006Dresden 21st Eur. PVSEC, Sept 2006,

Cd emissions Comparison between energy supply options 50

43.3

30

0.9

0.3

mc-Si

mono-Si

CdTe

6.2

4.1 0.2

0.5

0.03

Hydro

0.9

3.1

Nuclear

0.8

ribbon-Si

10

Lignite

20

Hard coal

g/GWh

40

Copernicus Institute Research Institute for Sustainable Development and Innovation

UCTE avg.

Oil

Natural Gas

0

Fthenakis and4-9Kim, 2006Dresden 21st Eur. PVSEC, Sept 2006,

Comparison of BOS options for roof- and ground-based systems 12 10 (g CO2-eq/kWh)

Life Cycle CO 2 emissions

(system with 165 Wp c-Si modules, located in S-Europe)

8

frame

6

cable+connectors

4

mounting structure

2

inverter

0 -2

S-Eur.

S-Eur.

S-Eur.

S-Eur.

S-Eur.

S-Eur.

on-roof

on-roof

in-roof

in-roof

ground

ground

Phonix

Schletter Schletter Schw eizer Phonix Springerville

multi

multi

multi

multi

multi

multi

See Poster 7 DV 5.15

Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

250

200

New gas: 400

Fossil + CO2 capture

g/kWh

200 150

25 biomass CHP

Nuclear USA

nuclear Europe

Coal Gasif.+ CO2

CCGT+ CO2

Copernicus Institute Research Institute for Sustainable Development and Innovation

wind

11

6 0

32

PV future

25

15

15 future CdTe

45

50

PV now

future multi

Renewables

CdTe

Nuclear

multi-Si

120

100

Comb. Cycle Gas Turbine

Life-cycle GHG emissions (g CO2-eq/kWh)

Life-Cycle Greenhouse Gas Emissions

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Strong points PV technology • Large installation potential • GHG emissions reasonably low • Zero or near-zero emissions of toxic substances (direct emissions); • Potential for further improvement in GHG/EPBT Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Issues which need attention • Reduce energy consumption (and GHG emission) in solar cell production; • Reduce dependency on scarce metals (In, Te, Ag); • Close the material cycles (recycling); • Zero-emission production facilities. Copernicus Institute Research Institute for Sustainable Development and Innovation

21st Eur. PVSEC, 4-9 Sept 2006, Dresden

Summary  EPBT • now 1-2 years (S.-Europe); •