

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Eclipse Development - IBM Redbooks

Note: You should send your questions to the newsgroup rather than to the additional list of answers for frequently asked questions and additional examples By default, the anGEF GraphicalViewer does not answer key strokes. support accessibility clients that use sound, speech synthesis, or screen Page 240 ...

 Télécharger le PDF

 4MB taille
 0 téléchargements
 335 vues

 commentaire

 Report

Front cover

Eclipse Development nt using the Graphical Editing Framework and the Eclipse Modeling Framework Understanding the GEF and EMF frameworks Developing with GEF and EMF

Code examples

Bill Moore David Dean Anna Gerber Gunnar Wagenknecht Philippe Vanderheyden

ibm.com/redbooks

International Technical Support Organization Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework February 2004

SG24-6302-00

Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

First Edition (February 2004) This edition applies to Version: 2.1.1 of the Eclipse Platform, Version 1.1.0 of the Eclipse Modeling Framework (EMF), and Version 2.1.1 of the Graphical Editing Framework (GEF) on Microsoft Windows.

© Copyright International Business Machines Corporation 2004. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . xii Comments welcome. xii Part 1. EMF and GEF introduced . 1 Chapter 1. Introduction to EMF . 3 1.1 What is the Eclipse Modeling Framework? . 4 1.1.1 Positioning of the framework. 4 1.1.2 Objectives . 4 1.1.3 Where to find documents and resources . 5 1.2 Framework basics . 5 1.2.1 Prerequisites . 5 1.2.2 Product installation . 6 1.2.3 Getting help in Eclipse . 6 1.3 Building a simple model . 9 1.3.1 Different ways of making the model . 10 1.3.2 The EclipseUML plug-in . 10 1.3.3 Initial project setup . 10 1.3.4 Modeling using the EclipseUML plug-in . 12 1.3.5 Modeling using Java interface annotation. 22 1.3.6 EMF features. 24 1.3.7 EMF model creation . 25 1.3.8 Code generation facility. 27 1.3.9 Compiling the code . 27 1.3.10 Conclusion . 28 Chapter 2. EMF examples . 29 2.1 EMF modeling techniques . 30 2.1.1 Creating new models . 30 2.1.2 Migrating existing models . 40 2.2 EMF.Edit-based editors and code generation . 45 2.2.1 The generated plug-ins . 45 2.2.2 Customizing code generation through GenModel properties 47 2.2.3 Modifying the generated code. 61

© Copyright IBM Corp. 2004. All rights reserved.

iii

2.3 Model instances and serialization . 64 2.3.1 Creating model instances . 64 2.3.2 Default serialization of model instances . 66 2.3.3 Using the XSD plug-in to customize serialization 70 2.3.4 Customizing XMI serialization using an XMLMap 74 2.3.5 Providing a custom resource implementation 75 2.4 Using JET to customize code generation . 79 2.4.1 .JET-related GenModel properties . 79 2.4.2 Writing JET templates . 80 Chapter 3. Introduction to GEF . 87 3.1 What is the Graphical Editing Framework? . 88 3.1.1 Additional documents and resources . 88 3.1.2 Applications suitable for GEF . 89 3.2 Introduction to Draw2D . 93 3.2.1 What is a lightweight system?. 94 3.2.2 Architectural overview . 94 3.2.3 Figures . 95 3.2.4 Mechanism . 96 3.2.5 Major features . 97 3.3 The GEF framework . 103 3.3.1 Prerequisites . 103 3.3.2 EditParts . 103 3.3.3 Requests . 106 3.3.4 EditPolicies . 107 3.3.5 Commands . 109 3.3.6 GraphicalViewers . 109 3.3.7 RootEditParts . 110 3.4 Building an editor. 112 3.4.1 The editor class. 112 3.4.2 EditDomain . 113 3.4.3 CommandStack. 114 3.4.4 Attaching the viewer . 117 3.4.5 Being adaptable . 119 3.4.6 Introducing the palette. 120 3.4.7 Actions . 123 3.4.8 Adapting to the properties view. 129 3.4.9 Providing an outline view . 130 3.4.10 Controlling your editor with the keyboard 134 3.5 Managing your model . 135 3.5.1 Reflecting a model . 135 3.5.2 Communication . 136 3.5.3 Creating EditParts . 137

iv

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 4. GEF examples . 139 4.1 Additional concepts . 140 4.1.1 RootEditParts . 140 4.1.2 Coordinate systems . 141 4.1.3 Layers . 142 4.2 Techniques . 143 4.2.1 Drag and drop . 143 4.2.2 Palette: Implementing a sticky tool preference 144 4.2.3 Printing . 144 4.2.4 Zooming . 145 4.2.5 Decorating connections. 148 4.2.6 Resource management. 149 4.2.7 Feedback techniques . 150 4.2.8 Palette-less applications . 153 4.2.9 Using direct edit . 158 4.2.10 Accessibility. 161 Chapter 5. Using GEF with EMF. 165 5.1 Overview . 166 5.2 Using an EMF model within a GEF-based application 167 5.2.1 Mapping from the model to the graphical representation 167 5.2.2 Displaying properties. 174 5.2.3 Support for editing the model . 174 5.2.4 Reflecting model changes. 175 5.2.5 Loading and saving model instances . 178 5.2.6 Putting it all together . 179 5.3 Using JET in GEF-based editor development . 180 Part 2. Sample application . 185 Chapter 6. Sample requirements and design . 187 6.1 Sample application requirements . 188 6.1.1 The application . 188 6.2 Sample application design . 191 6.2.1 Design decisions . 191 6.2.2 The workflow model . 192 6.3 Sample application demo . 200 Chapter 7. Implementing the sample. 203 7.1 Overview . 204 7.2 Architecture . 204 7.2.1 Mapping the EMF model to GEF EditParts 204 7.2.2 Tracking model events in the editor . 207 7.2.3 Refreshing. 208

Contents

v

7.2.4 Factories . 211 7.2.5 Policies and commands . 212 7.3 The model . 214 7.3.1 Modifying the WorkflowModel . 214 7.3.2 Modifying the code generated from the model 216 7.3.3 Respecting model constraints in the editor 216 7.4 Implementing the multi-page editor . 220 7.4.1 Getting started. 221 7.4.2 Sharing an EditDomain . 221 7.4.3 The editor’s dirty state. 222 7.4.4 Actions . 222 7.4.5 Support for the properties view . 222 7.4.6 The outline view . 223 7.4.7 The palette . 223 Appendix A. Additional material . 225 Locating the Web material . 225 Using the Web material . 225 System requirements for downloading the Web material 226 How to use the Web material . 226 Abbreviations and acronyms . 229 Related publications . 231 Other publications . 231 Online resources . 231 How to get IBM Redbooks . 232 Help from IBM . 232 Index . 233

vi

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Notices This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to: IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A. The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you. This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. COPYRIGHT LICENSE: This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved.

vii

Trademarks The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both: DPI® ^™ IBM®

ibm.com® Rational Rose® Rational®

Redbooks™ Redbooks (logo)

™

The following terms are trademarks of other companies: Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other countries. Other company, product, and service names may be trademarks or service marks of others.

viii

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Preface This redbook is written for developers who use the Eclipse SDK to develop plug-in code. It is intended for a technical readership and for developers who already have good knowledge and experience in Eclipse plug-in development. We expect that you understand the concepts of Eclipse views and editors, and have some familiarity with Draw2D. In this redbook, we examine two frameworks that are developed by the Eclipse Tools Project for use with the Eclipse Platform: The Graphical Editing Framework (GEF) The Eclipse Modeling Framework (EMF) Important: This redbook covers both the Graphical Editing Framework and the Eclipse Modeling Framework, but readers should remember that these frameworks can be used separately and there is no dependency between the two frameworks. We do write about using GEF and EMF together, but please remember that this is not required, and many applications you develop will not require both GEF and EMF. We provide a high level introduction to these frameworks so that Eclipse plug-in developers can consider whether the frameworks will be useful for the requirements of their particular development; then we provide helpful tips and techniques for writing code that uses GEF and EMF. Finally, we implement a more detailed example to illustrate a GEF editor that uses an EMF model.

The team that wrote this redbook This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Raleigh Center. William Moore (Bill) is a WebSphere specialist at the International Technical Support Organization, Raleigh Center. He writes extensively and teaches IBM® classes on WebSphere and related topics. Before joining the ITSO, Bill was a Senior AIM Consultant at the IBM Transarc lab in Sydney, Australia. He has 18 years of application development experience on a wide range of computing platforms and using many different coding languages. He holds a Master of Arts degree in English from the University of Waikato, in Hamilton, New Zealand. His current areas of expertise include application development tools, object-oriented programming and design, and e-business application development.

© Copyright IBM Corp. 2004. All rights reserved.

ix

David Dean is a Technical Lead at Chordiant in Cupertino, California. For the last two years he has been focused on Eclipse plug-in development and in building a GEF-based workflow editor. His twenty years of software development experience include medical imaging, process control, telephony, finance, and Web applications. David's interests include user interfaces, graphics, and software development tools. He holds a BA degree in Biology from the State University of New York at Albany, and did post-graduate studies in Historic Preservation Planning at Cornell University. Anna Gerber is currently a Research Scientist at the Distributed Systems Technology Centre (DSTC) in Brisbane, Australia. Anna’s research interests include Enterprise Modelling; in particular, model-driven development techniques and generation of tools such as domain-specific graphical editors from models. Gunnar Wagenknecht is a software developer at Intershop AG in Jena, Germany.He has professional experience in developing Java™ Enterprise applications using the J2EE framework, and he developed a visual editor for modelling business processes during the last year. He just finished his thesis and is going to get a Bachelor's degree in Practical Computer Science from the Business Academy Thuringia in Gera, Germany after finishing the residency. His areas of expertise include object-oriented software architectures and Web application development. He has written extensively on GEF topics. Philippe Vanderheyden is an IT Architect who has been working with object-oriented (OO) technologies for many years. Philippe has been working on a variety of projects, ranging from document publishing systems to financial application development and monitoring. His areas of interest include OO modelling, distributed enterprise systems, and Web-based application design and real-time transactional systems. Philippe has a good knowledge of the Java programming language, and Java-related technologies (JDBC, servlets, XML, JSP, etc.). His recent work has included building enterprise applications using the Enterprise Java Beans component model and the J2EE framework in WebSphere 5.0 cluster environment. Philippe is comfortable working with a diverse range of technologies and platforms. He has extensive experience of the UNIX® OS and has also worked for many years with Object Oriented languages (Java, Smalltalk, and C++).

x

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Authors: Gunnar Wagenknecht, Anna Gerber, Philippe Vanderheyden

Author: David Dean

Thanks to the following people for their contributions to this project: Randy Hudson Pat McCarthy IBM Raleigh Jim D’Anjou IBM San Jose Yvonne Lyon, editor International Technical Support Organization, San Jose Center

Preface

xi

Become a published author Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You'll team with IBM technical professionals, Business Partners and/or customers. Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you'll develop a network of contacts in IBM development labs, and increase your productivity and marketability. Find out more about the residency program, browse the residency index, and apply online at: ibm.com/redbooks/residencies.html

Comments welcome Your comments are important to us! We want our Redbooks™ to be as helpful as possible. Send us your comments about this or other Redbooks in one of the following ways: Use the online Contact us review redbook form found at: ibm.com/redbooks

 Send your comments in an Internet note to:

 Mail your comments to: IBM Corporation, International Technical Support Organization Dept. HZ8 Building 662 P.O. Box 12195 Research Triangle Park, NC 27709-2195

xii

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Part 1

Part

1

EMF and GEF introduced In this part of the book, we describe the basics of the Graphical Editing Framework(GEF) and Eclipse Modeling Framework(EMF).

© Copyright IBM Corp. 2004. All rights reserved.

1

2

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1

Chapter 1.

Introduction to EMF In this chapter, we introduce the Eclipse Modeling Framework (EMF). We mention most of the sources of information that are available on the subject, and we build a simple model as a practical demonstration of the use of EMF.

© Copyright IBM Corp. 2004. All rights reserved.

3

1.1 What is the Eclipse Modeling Framework? Application development generally starts with consideration of the design model, then moves to more user interface oriented tasks. The Eclipse Modeling Framework is designed to ease the design and implementation of a structured model. The Java framework provides a code generation facility in order to keep the focus on the model itself and not on its implementation details. The key concepts underlying the framework are: meta-data, code generation, and default serialization.

1.1.1 Positioning of the framework EMF was started as a Meta Object Facility (MOF) of the Object Management Group (OMG) implementation and has evolved to what it is now. EMF is an enhancement of MOF2.0. EMF is open source code that enhances the MOF 2.0 Ecore model and restructures its design in a way that is easy for the user. The Eclipse Modeling Framework is part of the Model Driven Architecture (MDA). It is the current implementation of a portion of the MDA in the Eclipse family tools. The idea behind MDA it is to be able to develop and manage the whole application life cycle by putting the focus to the model. The model itself is described in a meta-model. Then, by using mappings, the model is used to generate software artefacts, which will implement the real system. Two types of mappings are defined: Metadata Interchange, where documents like XML, DTD, and XSD are generated; and Metadata Interfaces, which target Java or any other language and generate IDL code. MDA is currently under the standardization process at the OMG.

1.1.2 Objectives In this section we explain the main purpose of EMF and what it can currently be used for.

The problems EMF solves EMF can be used to describe and build a model. Based on that definition, Java code can be generated and enhanced by the addition of higher level Java code. This implemented model can be used as the basis for any Java application development.

4

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

When not to use EMF At the moment, EMF implements a subset of the MDA approach. As such, it does not contain all the mappings we would need to make and deploy an application at a company wide level, where XML, EAI, EJBs, Web services, and other technologies have to be combined.

1.1.3 Where to find documents and resources EMF is still under development, but several sources of information are available These include: The EMF project page: EMF is one project of the Eclipse Tools Project, which is part of the global Eclipse Project, (http://www.eclipse.org). EMF is directly accessible at the URL: http://www.eclipse.org/emf

Available services range from code access and documents publishing, to community support, online code access using CVS, packaged code download, articles, user guides, tutorials, mailing list, newsgroup, and more. Newsgroup: The newsgroup server is news.eclipse.org. The newsgroup name for EMF is eclipse.tools.emf. It shows EMF relationship within the Eclipse Tools project. �� Mailing list: The mailing list for the EMF project is . Note: You should send your questions to the newsgroup rather than to the mailing list.

1.2 Framework basics This section provides some basic information about the Eclipse Modeling Framework to help you get it up and running.

1.2.1 Prerequisites When we wrote this redbook, the current version of EMF was v1.1.0. A valid Eclipse product installation is a prerequisite to use EMF. As of EMF v1.0.2, Eclipse v2.1 is required. For the purpose of writing the redbook, Eclipse v2.1 and EMF v1.1.0 have been used.

Chapter 1. Introduction to EMF

5

1.2.2 Product installation Eclipse product installation is straightforward. You extract the content of the downloaded archive, which is platform dependent, to a folder of your choice. Depending on the operating system, double-click the Eclipse icon, or run the corresponding shell command to complete the installation process and launch the Eclipse Platform. EMF is packaged in three parts: the first one is the runtime, the second contains the documentation, and the third contains the source code.

EMF framework installation Download the EMF Runtime archive (for example, emf_1.1.0_20030620_1105VL.zip) and extract the content to the Eclipse folder.

EMF documentation installation Download the EMF Documentation archive (for example, emf.doc_1.1.0_20030620_1105VL.zip) and extract the content to the Eclipse folder. Note: If Eclipse was running, while doing EMF and document installation, Eclipse will need to be restarted for changes to take effect.

1.2.3 Getting help in Eclipse EMF help can be found in the Eclipse help system.

The welcome page 1. The welcome page is the main entry point to the EMF documentation. In Eclipse, click Help -> Welcome... to list available welcome pages as shown in Figure 1-1.

6

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-1 Welcome page window

2. Select the Eclipse Modeling Framework welcome page from the list and click OK. Figure 1-2 shows the EMF welcome page that will be displayed.

Figure 1-2 EMF welcome page

Chapter 1. Introduction to EMF

7

Note: The EMF documentation package must be installed before the links in EMF welcome pages are clickable.

The help perspective EMF help is also accessible directly from Help -> Help contents. Figure 1-3 shows the help available in the EMF Programmers Guide, which includes an EMF overview, a user guide, and an EMF.Edit section.

Figure 1-3 EMF help

8

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1.3 Building a simple model In this section, we build a simple but realistic model. The purpose is to demonstrate the main steps of the process. Later in our redbook, we use the Graphical Editing Framework (GEF), to build a workflow application on top of this model. The workflow editor will help us to create and visualize the content of the model. For more information, the application requirements and design can be found in “Sample application requirements” on page 188.

The model Before starting to describe the modelling process using Eclipse and EMF, we need to understand the complete underlying UML model that we will build. This is shown in Figure 1-4 and discussed in more detail in “The workflow model” on page 192.

WorkflowElement id [1..1]: EString name: EString comment: EString x: EInt y: EInt width: EInt height: EInt

Comment

1

Comments

1

Edges 0..* Target 1 InputPort

Nodes 0..*

WorkflowNode isFinish [1..1]: EBoolean isStart [1..1]: EBoolean

Node 1

Subworkflow

0..* Edges Edge

Workflow

Workflow

Workflow 0..* 1 Workflow

Transformation

Task

Edges 0..*

Node 1

Choice

transformationExpression: EString

Port 1..*

1

1..* Inputs Source

Outputs OutputPort

ConditionalOutputPort

CompoundTask

LoopTask FaultPort

conditionalOutput [1..1]: EString

whileCondition [1..1]: EString

Figure 1-4 The complete UML model

Chapter 1. Introduction to EMF

9

1.3.1 Different ways of making the model In EMF, the model can be created in three different ways: Write the XMI file directly. Export the XMI file, from tools like Rational® Rose® and the Omondo EclipseUML plug-in and load it into our project. Annotate Java interfaces with model properties. To illustrate how to create a model, we demonstrate the use of the Omondo EclipseUML plug-in to generate the XMI and also show the use of the Java interface annotation mechanism.

1.3.2 The EclipseUML plug-in The main advantage of UML is that it allows us to work at a very high level. In an EMF class diagram, we create classes and interfaces, we give them attributes and methods, and we set up their relationships.

plug-in installation Omondo’s EclipseUML plug-in can be downloaded from the site: http://www.eclipseuml.com

The current version is 1.2.1. The installation is an executable jar file. On Microsoft® Windows®, double-click its icon. On other operating systems, run the following command: java -jar eclipseuml-installer_1.1.4.jar

Install the product in the same folder you installed the Eclipse product. Note: In our case, we did not install the versions of GEF and EMF that are provided with the EclipseUML plug-in, because we wanted to use the latest versions of GEF and EMF.

1.3.3 Initial project setup Before doing the modeling itself, we need to create an Eclipse project environment to contain all the items that we are going to produce. The steps to take are as follows: 1. Create a new project: a. Click File -> New -> Other..., select Plug-in Development -> Plug-in Project, and click Next.

10

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

b. Enter a project name, for example, WorkflowModel, and click Next. c. Select Create a Java project, and click Next. d. Select Create a blank plug-in project, and click Finish. 2. Create a Java Package: a. Click File -> New -> Other..., select Java -> Package, and click Next. b. Click Browse... to select the src folder in the WorkflowModel project. c. Enter a package name, for example, com.ibm.itso.sal330r.workflow, and click Finish. Figure 1-5 shows a view of the Eclipse workbench after we have completed our initial setup tasks.

Figure 1-5 Initial project setup

Note: Our project must be a plug-in project, but it also needs to be a Java project, in order to allow package creation. If we had selected Create a simple project, package creation would not have been possible. Creating an EMF Project directly is another way to achieve the same result.

Chapter 1. Introduction to EMF

11

1.3.4 Modeling using the EclipseUML plug-in During our simple model creation, we iterate several times to achieve what we think is a good design. The graphical facilities of the EclipseUML plug-in are a great help during this process, and each intermediate diagram was used as a good start to support the next iteration of our modelling.

EMF class diagram creation The whole model is contained in one EMF class diagram. Here are the steps to create this diagram: 1. Click File -> New -> Other..., select EMF Diagrams -> EMF Class Diagram, click Next: a. Choose the parent folder, for example, WorkflowModel project. b. Enter an EMF model file name, file extension is ecd, for example, Workflow.ecd c. Enter a package name, for example, com.ibm.itso.sal330r.workflow d. Check the association box, click Finish. See Figure 1-6. Two files have been created: Workflow.ecd, which contains the class diagram; and workflow.ecore, which contains the core model definition.

Figure 1-6 EMF class diagram window

12

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Notes: 1. In the Eclipse,new EMF class diagram dialog, the package name in the advanced section corresponds to the EMF EPackage. 2. With the EclipseUML plug-in, two types of diagram can be created: UML and EMF models. The file for UML extension is .u?? (ex: Workflow.ucd) while the extension for EMF is .e?? (ex: Workflow.ecd). Available modeling operations and data types are adapted to the type of file you are working in. Remember that if you work with an EMF model, only .e?? files and the associated editors give you access to EMF functionality.

Class diagram modeling From the modeling point of view, the class diagram is complete, once we have defined a set of classes (EMF interfaces), and the relationships between them.

Interface design We first create the root interface, which is called WorkflowElement, then we implement the WorkflowNode hierarchy, the Port hierarchy, and finally Workflow, Edge, and Comment. To do the WorkflowElement interface creation: 1. Open the EMF class diagram editor: a. Select Workflow.ecd in the WorkflowModel project in the navigator view of Eclipse. b. Right-click Open with -> EMF Class Diagram Editor — or simply double-clicking the file tree item should work fine also. 2. Create a class in the editor: a. Click the icon for the class creation tool on the editor tool palette, click in the working area of the editor, and a new a window opens. b. Enter a name, for example, WorkflowElement, and choose the boxes, Is an interface and Is abstract, then click Finish.

Chapter 1. Introduction to EMF

13

Attribute creation Now we add an id attribute to the WorkflowElement interface: 1. Select the WorkflowElement, by clicking close to the border of the visual in the editor. A rectangle should appear; right-click and choose New -> Attribute. a. Enter the name of the attribute, for example, id. b. Select the type of the attribute, for example, EString. Most of the EMF types, which are equivalent to the Java basic types, are available. c. Choose the features you want to give to the attribute. See Figure 1-7 for an example and refer to 1.3.6, “EMF features” on page 24 for more information on the features themselves. d. Choose the cardinality associated to the attribute, and click OK.

Figure 1-7 The new attribute window

At any point, if you realize that something is wrong or that you have forgotten something, do not worry; most of the time, you do not have to delete your model and start again. Simple corrections can be made in the property view, and more complex corrections can be made using either the Sample Ecore Model editor or the default text editor. These give you different ways of accessing the underlying model, and allow you to correct, enhance, or even totally redefine the model.

Available editors To open the Sample Ecore Model or the text editor: Select the Workflow.ecore file, right-click and either choose Open With -> Sample Ecore Model Editor or Open With -> Text Editor. See Figure 1-8 for an example of using the Ecore Model Editor.

14

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-8 EMF Class Diagram and Sample Ecore Model Editor together

Note: The Workflow.ecd file cannot be open in the EMF Class Diagram editor and the text editor at the same time. To chose the editor to open the file in, select the file, right-click Open With -> EMF Class Diagram Editor, or Open With -> Text Editor.

The property view Some properties are not directly supported by the EclipseUML plug-in, but they can still be changed using the property view. To show the property view in Eclipse: 1. Click Window -> Show View -> Other... 2. Select Basic -> Properties, and click OK.

Chapter 1. Introduction to EMF

15

We use the property view to complete the id attribute. We have to mention that the id is an ID, which will be used for serialization later. We set the ID property of the id attribute to true as shown in Figure 1-9.

Figure 1-9 The property view with the ID attribute set to true

We complete the WorkflowElement interface by adding all the other attributes. Each WorkflowElement in a workflow has a name, is located at position x and y on the canvas, and has a height and a width. Table 1-1 shows the properties of all the WorkflowElement attributes.

16

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Table 1-1 WorkflowElement attribute properties Name

Type

Features and properties

id

EString

volatile="true" lowerBound="1" iD="true"

name

EString

comment

EString

x

EInt

defaultValueLiteral="0"

y

EInt

defaultValueLiteral="0"

width

EInt

defaultValueLiteral="-1"

height

EInt

defaultValueLiteral="-1"

We repeat the same process to create the other classes of the Workflow model. See Table 1-2 for a summary of their attributes, features, and properties. For the classes which are not in the table, but are in the model, depicted in Figure 1-4 on page 9, simply create them with no attribute. Do not forget that WorkflowElement and WorkflowNode are two abstract classes. Note: The Default Value Literal can only be set in the property editor. Table 1-2 Interface attributes properties Interface Name/attribute

Type

Features and properties

isStart

EBoolean

defaultValueLiteral="false" lowerBound="1"

isFinish

EBoolean

defaultValueLiteral="false" lowerBound="1"

WorkflowNode (abstract)

Transformation transformExpression

EString

LoopTask whileCondition

EString

lowerBound="1"

EString

lowerBound="1"

ConditionalOutputPort condition

Chapter 1. Introduction to EMF

17

Figure 1-10 shows what the model should like after these steps.

WorkflowElement id [1..1]: EString name: EString comment: EString x: EInt y: EInt width: EInt height: EInt

WorkflowNode

Comment

Workflow

Edge

isFinish [1..1]: EBoolean isStart [1..1]: EBoolean

Transformation

Task

Choice

transformationExpression: EString Port

InputPort

OutputPort

ConditionalOutputPort

CompoundTask

LoopTask FaultPort

conditionalOutput [1..1]: EString

whileCondition [1..1]: EString

Figure 1-10 The workflow model classes, before relationship definition

Generalization definition Generalization or inheritance links are made using the generalization tool. Select the tool by clicking its icon, which is an arrow with a big triangle at the end. Click the specialized interface, hold the mouse button down, then move to the generalized interface or connect to a generalization link going to the superclass. Figure 1-11 shows our model with the generalization relationships added.

18

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

WorkflowElement id [1..1]: EString name: EString comment: EString x: EInt y: EInt width: EInt height: EInt

WorkflowNode

Comment

Workflow

Edge

isFinish [1..1]: EBoolean isStart [1..1]: EBoolean

Transformation

Task

Choice

transformationExpression: EString Port

InputPort

OutputPort

ConditionalOutputPort

FaultPort

conditionalOutput [1..1]: EString

CompoundTask

LoopTask whileCondition [1..1]: EString

Figure 1-11 Generalization relationships

Association definition Using the association tool, we set up the associations between the classes. We show how to set up the association between Workflow and Edge, then we provide a summary of all the other associations with their features; see Table 1-3. Here are the steps to set up the Workflow to Edge association: 1. Click the source interface, which is Workflow. 2. Click the target interface, which is Edge. 3. Give the association properties, see Figure 1-12. Add ‘s’ to the association name, click Containment, select -1 as the upper bound cardinality, and click OK. See Figure 1-12.

Chapter 1. Introduction to EMF

19

Figure 1-12 Association property window

Each association has two endpoints. So far, we have defined the characteristics of the Workflow to Edge association, now we complete the opposite association end, which is called Workflow. We complete the second association endpoint, by: 1. Clicking the 2nd Association End tab. 2. Changing the lower bound cardinality to be 1, then clicking OK. We do the same for all the associations in the model. Any mistake can be corrected later, by simple double-clicking the link itself in the editor. Table 1-3 shows the associations that you should create. Table 1-3 Association properties Origin

End

Association end

Attributes

Workflow

Edge

edges

upperBound="-1" containment="true"

workflow

lowerBound="1"

nodes

upperBound="-1" containment="true"

workflow

lowerBound="1"

comments

upperBound="-1" containment="true"

WorkflowNode

Comment

20

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Origin

WorkflowNode

End

InputPort

OutputPort

OutputPort

InputPort

Compound task

Edge

Edge

Workflow

Association end

Attributes

workflow

lowerBound="1"

inputs

lowerBound="1" upperBound="-1" containment="true"

node

lowerBound="1"

outputs

lowerBound="1" upperBound="-1" containment="true"

node

lowerBound="1"

edges

upperBound="-1"

source

lowerBound="1"

edges

upperBound="-1"

target

lowerBound="1"

subworkflow

lowerBound="1" containment="true"

Note: Take care, that: 1. The link between CompoundTask and Worklow is only a one-way link, navigable from CompoundTask to Workflow. Open the 2nd association end of the link and unset Navigable. 2. The Edge to OutputPort association name is called source and the one from Edge to InputPort is named target, because an Edge connects an OutputPort to the next InputPort.

Chapter 1. Introduction to EMF

21

The model will now be like that shown in Figure 1-13. WorkflowElement id [1..1]: EString name: EString comment: EString x: EInt y: EInt width: EInt height: EInt

Comment

Comments 0..*

1

Workflow 1 Workflow

1

Edges 0..* Target 1 InputPort

Nodes 0..*

WorkflowNode isFinish [1..1]: EBoolean isStart [1..1]: EBoolean

Node 1

Subworkflow

0..* Edges Edge

Workflow

Workflow

Transformation

Task

Edges 0..*

Node 1

Choice

transformationExpression: EString

Port 1..*

1

1..* Inputs Source

Outputs OutputPort

ConditionalOutputPort

CompoundTask

LoopTask FaultPort

conditionalOutput [1..1]: EString

whileCondition [1..1]: EString

Figure 1-13 Workflow complete model

1.3.5 Modeling using Java interface annotation To define a model by means of Java interface annotations, we need to provide the same set of information we gave during the graphical modeling. We need to create a set of interfaces, one for each of the model elements. Each interface contains methods. The annotation mechanism enhances the code by adding some @model tags in the comment of any code element.

Interface definition The abstract=”true” attribute is used for WorkflowElement and WorkflowNode. Example 1-1 shows the @model tag for the WorkflowNode. All the other interfaces use the standard @model tag to enhance the model.

22

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Example 1-1 The WorkflowNode interface@model tag package com.ibm.itso.sal330r.workflow; import org.eclipse.emf.ecore.EObject; /** * @author Vanderheyden * * @model abstract="true" */ public interface WorkflowElement extends EObject{ }

Adding attributes An attribute is not added directly to the interface, instead, we have to define an accessor for it. Code generation completes the interface by defining the setter and provides the implementation of both the setter and the getter. Example 1-2 shows the x attribute @model tag. Example 1-2 The x attribute @model tag /** * @model default="0" */ int getX();

Adding associations For each reference, we have to define: The type of object it gives access to. If it is a containment reference. The name of the second association endpoint. If it is required or not. See Example 1-3 Example 1-3 The WorkflowNode to OutputPort reference @model tag package com.ibm.itso.sal330r.workflow; import org.eclipse.emf.common.util.EList; /** * @model abstract="true"

Chapter 1. Introduction to EMF

23

*/ public interface WorkflowNode extends WorkflowElement{ /** * @model type="com.ibm.itso.sal330r.workflow.OutputPort" opposite="node" containment="true" required="true" */ EList getOutputs(); }

Note: The complete rebuild of the model using the Java annotation mechanism is a very long process, and there is no real added value in providing complete instructions in the context of our redbook. Here is a short summary of what has to be done, for those who want to do it: 1. Create an EMF project. 2. Create a Java package. 3. Create a Java interface for all the model objects. 4. Add a getter method for each attribute. 5. Add a method for each association which is navigable. Two methods are added for navigation navigable from both ends. 6. Create an EMF model inside the EMF project, by using the Java annotation mechanism.

Java annotation and the code generation process Each @model tag annotates the Java code to provide model related information. Those directive are used by the code generator in order to generate the corresponding implementation code. The code generation process is a non-destructive process. No @model annotations are lost during code generation. Generated code will contain the @generated tag to indicate that it has been generated and can be replaced again.

1.3.6 EMF features EMF features are associated with attributes and associations. The code generator uses them to generate the implementation code.

EMF features for an attribute Table 1-4 provides a short description of the EMF features that can be associated with an attribute.

24

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Table 1-4 EMF features for an attribute EMF feature

Description

Transient

Transient is the opposite to persistent. The attribute value is not supposed to be saved, persisted.

Volatile

A cache behavior is implemented for attribute value. Volatile is a way to prevent caching.

Unique

If the attribute is multi valued (upperBound=”-1”), each value must be unique in that case

Changeable

Indicates if an attribute can be modified.

Unsettable

Indicates if an attribute can be set in a state that mean it has no value.

EMF features for an association Table 1-5 provides a short description of the EMF features that can be associated with an association. Table 1-5 EMF features for an association EMF feature

Description

Transient

The object referenced through this association will not get persisted.

Volatile

Prevents the object caching.

Unique

All referenced objects are unique.

Changeable

If true, the value of the attribute is not hard coded, fixed.

Resolve Proxies

Indicates whether proxy reference should be resolved automatically.

Containment

If true, it means that any object, called the containment, which is referenced by this one, called the container, are considered as being part of it.

1.3.7 EMF model creation Once the model has been completed, by means of EMF modeling or Java interface definition, we can generate the corresponding code to implement it. We need to create a new generator model resource, which is based on our Ecore file, or our Java interfaces.

Chapter 1. Introduction to EMF

25

These are the steps to create an EMF model from an EMF class diagram: 1. Create the model: Click File -> New -> Other..., select Eclipse Modeling Framework -> EMF Models, click Next. 2. Choose the parent folder, for example, WorkflowModel project, define the EMF model file name with a genmodel extension, for example, Workflow.genmodel, and click Next. 3. Select Load from an EMF core model, and click Next. 4. Choose the .ecore file for which you want to create a model. Click Browse Workspace..., navigate to the WorkflowModel project, select Workflow.ecore file, and click Next. See Figure 1-14.

Figure 1-14 Ecore file selection window

26

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

5. Choose Workflow package selection, and click Finish. These are the steps to create an EMF model from Java interface annotations: 1. Create an EMF Model: Click File -> New -> Other..., choose Eclipse Modeling Framework and EMF Models and click Next. 2. Choose the project and the package you want to contain the generator model resource. Define a file name for the model, for example, Workflow.genmodel, and click Next. 3. Select load from annotated Java and click Next. 4. Choose the package selection, and click Finish. The workflow.ecore and Workflow.genmodel files have been created.

1.3.8 Code generation facility Once the Workflow.genmodel has been created and opened in an EMF Generator editor by Eclipse, the code generation can take place: 1. Open the EMF Generator Editor: Select the Workflow.genmodel file, right-click Open With -> EMF Generator. 2. Generate the code: In the editor, click Generator -> Generate Model Code or select the root element in the tree and right-click Generate Model Code.

1.3.9 Compiling the code Before compiling, the Java build path has to be updated, in order to resolve the EMF classes. To update the Java Build Path: 1. Open project properties: a. Select the WorkflowModel project, right-click Properties, select Java Build Path. 2. Open the Libraries tab: a. Click Add Variable. b. Select ECLIPSE_HOME - C:\Program Files\eclipse. c. Click Extend..., select ecore.jar, common.jar and common.resource.jar, and click OK. See Figure 1-15.

Chapter 1. Introduction to EMF

27

Figure 1-15 EMF jar files

3. Click the Order and Export tab a. Select the three jars, click Up to move them to the correct position in the path, click OK. 4. Compile the code, select Project -> Rebuild All.

1.3.10 Conclusion We have demonstrated how to create an EMF model, which can be used directly as the model for our application. For more information on the Object, View, and Interaction Diagram (OVID) vocabulary used, see: http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589

Accordingly, our model contains all the model objects that we need and all the object relationships and navigation paths to easily move from one object to the next. The model needs to be enhanced with some convenience methods, for example, the connectTo() method in the Workflow object, that will even encapsulate more of the model specifics and give a higher level model entry point.

28

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

2

Chapter 2.

EMF examples In this chapter we discuss Eclipse Modeling Framework (EMF) modeling techniques and provide examples of creating models with EMF. We also cover the EMF.Edit framework and provide tips and techniques for generating and customizing EMF-based editors. Finally, we outline how to use Java Emitter Templates (JET) to customize code generation from EMF models. Note: The sample code we describe in this chapter is available as part of the redbook additional material. See Appendix A, “Additional material” on page 225 for details on how to obtain and work with the additional material. The sample code for this chapter is provided as Eclipse projects that can be imported into your Eclipse workbench. Each major section of this chapter has a matching Eclipse project in the additional material. The projects are cumulative and they also depend on your having completed the modelling and code generation described in Chapter 1, “Introduction to EMF” on page 3. You will need to make sure that you have created the Java build path variables described in 1.3.9, “Compiling the code” on page 27, otherwise you may get classpath errors when importing the sample projects.

© Copyright IBM Corp. 2004. All rights reserved.

29

2.1 EMF modeling techniques In this section, we focus on techniques for modeling with EMF. We begin by exploring examples to illustrate how to define new models using EMF. Then, we discuss the mapping between EMF and XML Schema and describe how a model expressed in XML Schema is migrated to EMF.

2.1.1 Creating new models In this section we illustrate how to use EMF’s Ecore model concepts to create new models. We begin by creating a naive model of Workflow, and then refactor that model based on modeling tips that we provide. We discuss the motivation for each change to the model and describe how to generalize the refactorization to other models. Note: For a handy overview of the Ecore model concepts, consult the JavaDoc for the org.eclipse.emf.ecore package. Aside from the APIs for each model object, you will also find a class diagram of the Ecore model as well as a list of the EMF Datatypes and their corresponding Java types.

Creating a simple Workflow model The model that we create in this section is a simplified version of the WorkflowModel used in the sample application and described in Chapter 6, “Sample requirements and design” on page 187. For our example, we only concern ourselves with modeling basic tasks and dataflow between those tasks. Figure 2-1 shows a model that we might create to describe this domain.

30

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Task 1 Task

Task 1

Port Outputs

1..*

1..* OutputPort

Source

1

Inputs

InputPort 1

Target

0..* Edge Edges

0..* Edges

Figure 2-1 Native model of Workflow

In our model, Tasks represent units of work, and Edges represent the connections (flows of control and data) between them. Each Edge flows from an OutputPort on a Task to an InputPort on another Task, indicating that data resulting from the completion of the source’s Task becomes the input of the target’s Task. We have used the multiplicity of the references from Task to InputPort and OutputPort, to express the constraint that each Task must have at least one InputPort and at least one OutputPort. We construct our model as described in Chapter 1, “Introduction to EMF” on page 3. We use the Sample Ecore Model Editor, but you may choose to edit the XMI directly, or use the Omondo EclipseUML plug-in. We create an EPackage named workflow, and within it, create EClasses to represent Task, Edge, Port, OutputPort, and InputPort. Tip: If you are using the model to drive code generation, we suggest that you follow Java conventions for naming model elements: Heed Java case conventions: – Use lower case for package names. – Use lower case for the initial letter of feature and operation names. – Begin class names with an upper case letter. Use the plural form for names of multi-valued features and the singular form for single-valued features.

Chapter 2. EMF examples

31

Example 2-1 shows the XML Metadata Interchange (XMI) that represents the workflow EPackage. Each EClass is represented as an eClassifiers element nested within the workflow EPackage element. Example 2-1 XMI for model of Workflow

Although we have shown associations in the Class Diagram in Figure 2-1, the Ecore model does not represent associations explicitly. Instead, we use an EReference to represent each navigable end of an association. An association that is navigable in both directions is represented by two EReferences, one on each associated class, with eOpposites that refer to each other. For example, the association between Edge and InputPort is navigable from both ends, and so we see the edges EReference in InputPort and the target EReference in Edge. It is important to make sure that the eOpposites of a pair of corresponding EReferences match, and that both EReferences have their eOpposite set.

32

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

An association that is navigable in one direction only is represented as a single EReference, with no eOpposite. The multiplicity of the association ends is represented by the upperBound and lowerBound attributes on the eReferences elements representing each EReference. As we can see from our example, associations that represent containment, such as the associations between Task and Ports, are represented by an EReference where containment is true, on the containing class. The containment of the InputPorts and OutputPorts within Tasks is represented by the inputs and outputs eReferences inside the Task eClassifiers element. The inheritance of ports is represented by the eSuperTypes attribute on the InputPort and OutputPort elements. The EClass Port is an abstract class, which is indicated by the value of the abstract attribute on the eClassifiers element representing Port. When we generate an EMF.Edit-based editor from our model, as described in the EMF documentation, and use it to create Tasks and Edges, we can immediately see a problem with this model. Using the generated editor, we can only create Tasks and Edges separately; we are missing a class that we could instantiate to contain all of the tasks and edges in our workflow. The solution is to add an additional class, Workflow, that contains both Tasks and Edges. Tip: It is often useful to design models around a containment-based hierarchy rooted at a single class. This approach can make it easier to work with instances, as you have a single entry point from which you can access all of the other objects in the instance (directly or indirectly), and it means that all of the objects will be serialized into a single XMI document by default. We discuss this in more detail in 2.3.2, “Default serialization of model instances” on page 66. If you wish to have the flexibility of choosing whether or not to contain instance objects in the top-level container, make sure that any references back to the container have a lowerBound of zero. Figure 2-2 shows the model with the additional Workflow class.

Chapter 2. EMF examples

33

0..* Tasks

Workflow Workflow

1

Task

1 Task

1 Workflow

Task 1

Port Outputs

1..*

OutputPort

Source

1..* Inputs InputPort

1

1 Target

Edges 0..* 0..* Edge

Edges

0..* Edges

Figure 2-2 Model of Workflow with additional Workflow class

Example 2-2 shows the XMI fragment that represents the Workflow class. The eClassifiers element is added to the contents of the workflow EPackage. References to the Workflow are also added to Task and Edge as eReferences elements within the eClassifiers representing each class, for example: Example 2-2 XMI fragment for Workflow class

When we start adding detail to the classes that we use to model workflow, we notice that many of the elements share common features, such as name. This is often the case when modelling, and it is usual to create a common supertype that represents an abstraction of all objects in the model, and which provides these common features. When you are using such a model, you have the benefit of knowing that all objects in the model are of that type, which can be useful when

34

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

you are working with the objects reflectively. For EMF models, this is less of an issue, as all model elements already have a common supertype, EObject, and a rich reflective API is provided to allow you to work with your model objects in this way. Figure 2-3 shows the model with the added WorkflowElement class.

WorkflowElement name: EString

1 Workflow

Workflow

Tasks 0..* Task

Workflow 1

1

Task 1 Task

Port Outputs 1..* OutputPort Source 1

Edges 0..*

Inputs 1..* InputPort Target 1

Edges 0..* Edge

Edges 0..*

Figure 2-3 Model of Workflow with additional common supertype

Working with packages EPackages are used to collect EClasses and EDataTypes together in much the same way that packages are used in Java. In this section, we discuss models that span multiple packages. Typically packages are used to group related concepts into reusable modules. When creating an editor for a model, it is often necessary to store additional information about model objects, such as layout information or display properties. For the sample application described in Chapter 7, “Implementing the sample” on page 203, we add this information directly to the WorkflowModel; however, another approach is to use a separate package to represent the information about each diagram.

Chapter 2. EMF examples

35

We create an EPackage Diagram, and within it, classes to represent connected and contained nodes within that diagram, as Figure 2-4 shows. Display properties such as the x and y co-ordinates, width and height, are represented by EAttributes belonging to DiagramNode.

targetNode 0..1

SourceNode

DiagramNode x: EInt y: EInt width: EInt height: EInt

Children 0..*

1 targetConnections 0..* DiagramConnection

0..* sourceConnections ContainerDiagramNode

0..1 Container

Figure 2-4 DiagramModel

The following examples illustrate two ways of using our DiagramModel and WorkflowModel together: We construct a new package WorkflowDiagram, which merges concepts from the two packages using inheritance. We store the diagram information separately from the workflows, using references between DiagramNode and DiagramConnection and the appropriate classes from the WorkflowModel to maintain the relationship between the two models. For the first approach, we create a new package WorkflowDiagramPackage, which contains classes that combine concepts from the WorkflowModel and the DiagramModel. For example, a Task in a Diagram is represented by a WorkflowDiagramTask, which inherits from both Task and DiagramNode. Notice that we identify types defined in another package by the Ecore file that contains the type, followed by the usual reference to the type itself. Also notice that the multiple inheritance is represented by a space separated list within the eSuperTypes attribute. We choose to specify the corresponding classes from the WorkflowModel as the primary supertypes of the classes in the WorkflowDiagram model, and so they appear in the eSuperTypes list first. Example 2-3 Importing the DiagramModel and WorkflowModel

In the second approach, the diagram and the workflow are more loosely coupled. We add references to the classes in the DiagramModel to represent the linkage between the two models, as shown in Example 2-4. Example 2-4 DiagramModel with references to WorkflowModel objects

Chapter 2. EMF examples

37

Notice that because we are referencing classes from another package, we have to be explicit about the type. For example, we refer to the Task class as follows:

Notice also that the references are one-way references, as we do not wish to pollute the WorkflowModel with references to the DiagramModel. The Ecore model also allows us to define nested packages, which are represented in the XMI as eSubpackages elements. For example, we could package the DiagramModel and the WorkflowModel together as sub-packages of a new package NestedWorkflowDiagram. Example 2-5 shows the XMI for our NestedWorkflowDiagram package, with some details omitted for brevity. Notice that reference strings also now include the subpackage, such as: Example 2-5 Using nested packages ... contents of workflow package DiagramNode class ...

38

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Tip: When using nested sub-packages, be sure that each package has a unique nsURI.

Declaring datatypes EMF provides datatypes such as EString and EInt, which represent the basic Java types that you can use for simple attributes. If you need to use a different Java type, you need to create an EDataType to represent it. For example, we use EString to represent attributes such as condition of ConditionalOutputPort and whileCondition for LoopTask from the WorkflowModel for the sample application. If we wanted to represent these conditions with a specific existing Java type instead, we would declare an EDataType corresponding to that type, as follows:

Adding operations We can augment the classes in our model by adding operations to them. Aside from the convenience of having the signatures and skeletons generated into the code, there is little difference between adding the operations directly to the code as methods and adding the operations to the model. In both cases you will need to implement the methods in the generated code. A good approach is to define the signatures of the methods that you want to be public in your model, then complete the generated skeletons to implement them.

Annotating the model The Ecore model includes an EAnnotation object that can be added to any model element. EAnnotations represent additional information that is associated with a model object, and they take the form of key and value pairs. You may choose to use EAnnotations to provide hints or additional information about how to use or represent model objects in an application, to represent additional constraints that are evaluated using another tool, or you may choose simply to use these annotations to document your model. An example of using EAnnotations to provide additional information about a model is described in 2.3.3, “Using the XSD plug-in to customize serialization” on page 70. The XSD plug-in uses EAnnotations to map model objects to XML.

Chapter 2. EMF examples

39

2.1.2 Migrating existing models The EMF documentation describes how to import from models expressed using annotated Java interfaces, models created using Rational Rose®, and models represented by an XML Schema. In this section, we discuss migrating existing models, focusing on migrating an XML Schema to EMF as an example. We provide examples to illustrate the correspondences between concepts from XML Schema and concepts provided by EMF Ecore. For information about migrating models expressed using other frameworks, please refer to the following documents, which are linked from the documents section of the EMF project site at: http://www.eclipse.org/emf/:

UML: Tutorial: Generating an EMF model Specifying Package Information in Rose Annotated Java interfaces: Tutorial: Generating an EMF model Using EMF (Catherine Griffin’s Eclipse Corner article) Migrating from XML Schema to EMF is described in the Tutorial: Generating an EMF Model using XML Schema. The first page of the tutorial briefly outlines the mapping used to create EMF models from an XML Schema. In this section, we provide examples that illustrate this mapping. We use the purchase order XML Schema shown in Example 2-6 as the source for our new EMF model. Notice that this schema is taken from the XML Schema Part 0: Primer W3C Recommendation, 2 May 2001.1 The examples for this section can be found in the MigrateFromXMLSchema project, in the examples provided with this book. Example 2-6 Example XML Schema Purchase order schema for Example.com. Copyright 2000 Example.com. All rights reserved. 1 Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. http://www.w3.org/Consortium/Legal/

40

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 2. EMF examples

41

When we import our model, as the tutorial describes, each namespace declared as a targetNamespace of an XML Schema is represented in EMF as an EPackage. In our case, we only have one targetNamespace, so a single EPackage is created, as shown in Figure 2-5.

Figure 2-5 EMF model from XML Schema

If the schema that you are importing from has a targetNamespace, then the nsURI of the generated EPackage is set to that URI, and the name and nsPrefix are derived from that URI. For example, if the targetNamespace is http://www.example.com, then the nsPrefix is com.example, and the name is example. If the targetNamespace is http://www.example.com/foo, then the name is foo and the nsPrefix is com.example.foo. Example 2-7 shows how the features of the EPackage created from po.xsd are populated by the mapping. The purchase order schema did not have a targetNamespace, so the URI to the schema file is used as the nsURI instead, and the name of the file is used for the nsPrefix and name.

42

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Example 2-7 EPackage from XML Schema ...

You may notice that the XSD plug-in generates EAnnotations for each of the objects in the model. These annotations describe how the model maps to the schema, and is used to serialize model instances so that they conform to the XML Schema from which the EMF model was generated. We discuss how to modify these annotations to control serialization in 2.3.3, “Using the XSD plug-in to customize serialization” on page 70. Types from the XML Schema become EClassifiers: complex types, which represent types that contain elements or attributes, are represented by EClasses in EMF. Example 2-8 shows the EClass mapped from the USAddress complex type. Notice that the representation of this EClass is type, because it has been generated from a type. Example 2-8 EClass for the USAddress type ...

Elements of this type are mapped to EReferences within the EClass representing the containing type. For example, the USAddress type is the type of the shipTo element, contained within the PurchaseOrderType. Hence, as shown in Example 2-9, shipTo is represented as an EReference within the EClass created for PurchaseOrderType. Notice that the representation is element, because the EReference was mapped from an element declaration in the XML Schema. Example 2-9 EReference for element of complex type

Chapter 2. EMF examples

43

EDataTypes are used to represent simple types that represent atomic values. For example, SKU is represented by EString in the model. For XML elements that are of a simple type, such as Comment from the purchase order schema, an EClass representing the element is created, and an EAttribute is used to represent the content. Example 2-10 shows the Comment EClass. Notice that the representation of the value attribute is simple-content, that is, it provides the actual content of the comment element. Example 2-10 EClass from simple-typed element

Every simple-typed attribute in the XML Schema maps to an EAttribute belonging to the EClass mapped from the containing XML element. When the type of the XML Schema attribute has been mapped to an EClass (which is true for types such as anyURI), then the attribute is mapped to an EReference instead. We see an example in Example 2-11. The representation is attribute to indicate that it was mapped from an XML attribute. Example 2-11 EAttribute from XML attributes

44

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

2.2 EMF.Edit-based editors and code generation The Tutorial: Generating an EMF Model describes how to use the GenModel wizard to create a GenModel for the WorkflowModel, and how to generate plug-ins that can be used to create and edit WorkflowModel instances. In this section, we describe the correspondences between generated plug-ins and the model from which they are generated, by examining the code produced for the model, edit, and editor plug-ins generated from the WorkflowModel. We then discuss how to customize these generated plug-ins using code generation properties.

2.2.1 The generated plug-ins In this section we describe the model, edit, and editor plug-ins generated for the WorkflowModel, and discuss the correspondences between the model and the generated code. The generated plug-ins are provided in the sample code provided with this book. Note: The JET framework is used to generate model, edit, and editor plug-ins from EMF models. The templates that are used to generate these plug-ins are located in: /plugins/org.eclipse.emf.codegen.ecore_ /templates Where is the location where you installed Eclipse, and is the version of the EMF plug-in that you have installed. We discuss the JET framework and how to customize code generation using templates in 2.4, “Using JET to customize code generation” on page 79.

The model plug-in In this section, we describe the code in the model plug-in generated from the WorkflowModel.

Packages For each EPackage, two or three Java packages are generated. For the WorkflowModel, these packages are workflow, workflow.impl, and workflow.util. Notice that there may be a prefix used to generate package names, as discussed in “Package-level GenModel properties” on page 54; however, for the purposes of describing the generated plug-ins in this section, we will ignore it. The util package is optional: Its presence will depend on the code generation properties. The util package is generated when the code generation properties are set to their defaults.

Chapter 2. EMF examples

45

Classes For each EClass in the EPackage, an interface is generated in the base package, and a Java class that implements it is generated in the impl package. If the EClass inherits from another EClass, then the generated interface and implementation extend the interface and implementation generated for the supertype. If a class has multiple supertypes, then the first supertype in the eSuperTypes list is considered to be the primary supertype. The generated implementation for a subclass extends the corresponding implementation class of the primary supertype, and implements methods defined in the interfaces generated for any other supertypes. For example, for the WorkflowDiagram model from “Working with packages” on page 35, WorkflowDiagramTask extends TaskImpl (the primary supertype), and implements the methods from DiagramNode.

Features For each feature, getter and setter methods are generated in the class and interface generated from their containing class. A field to cache the value of the feature is also generated if the feature is not volatile. If a feature is not changeable, then only getter methods are generated. For multi-valued attributes and references, an EList is used to represent the feature, while single valued attributes are represented by the type of that attribute, for example EString, or the instanceClass of a user-defined EDataType. The type of the EList used to represent features will depend on the constraints in the model, for example, a non-containment reference is represented by an EObjectWithInverseResolvingEList while a containment reference is represented by an EObjectContainmentWithInverseEList. The reflective methods such as eSet() are generated from all features for the containing class.

Operations For each EOperation, a public method signature is generated in the interface of the containing class, and a skeleton implementation is generated in the corresponding implementation.

DataTypes For each EEnum, an implementation is generated that extends org.eclipse.common.util.AbstractEnumerator. For other EDataTypes, there are no interfaces or implementations generated; instead, their instanceClass is used directly for EAttributes of that type.

46

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The edit plug-in ItemProviders are generated for each class in the edit plug-in in the provider package. In addition, an EMFPluginClass is generated for the entire plug-in. The ItemProviders extend org.eclipse.emf.edit.provider.ItemProviderAdaptor and adapt the corresponding EObject from the model. For example, WorkflowElementItemProvider adapts a WorkflowElement. The ItemProvider forwards some notifications received when the model object changes via fireNotifyChanged(), and filters the rest. You can control which notifications are filtered when you generate the plug-in, as described in 2.2.2, “Customizing code generation through GenModel properties” on page 47. ItemProviders also manage property descriptors for all features of the class, as well as an icon and description for the class, returned by the getImage() and getText() methods. An ItemProviderAdaptorFactory is also generated for all of the generated ItemProviders. For the WorkflowModel, it is WorkflowItemProviderAdaptorFactory. Refer to The EMF.Edit framework and code generator overview for more information about these factories.

The editor plug-in For each model, three classes are generated in the editor plug-in, in the presentation package. There is a multi-page editor, which creates several different JFace viewers for the model, including a TreeViewer which use the ItemProviders from the edit plug-in as their content and label providers. The editor also creates an outline view and property sheet page that displays the properties for the selected object from the viewers. An ActionBarContributor is also generated, that is used to create the context menu to add children or siblings to selected items from the viewers in the editor. The final class generated in the editor plug-in is a wizard, which allows you to create a new resource containing an instance of one of your model objects.

2.2.2 Customizing code generation through GenModel properties The EMF Users’ Guide describes the properties defined for each of the Ecore objects in a model. Some of these properties affect the way in which code is generated from the model and are duplicated in the GenModel for that model. In 2.2.1, “The generated plug-ins” on page 45, we examine the code generated for the WorkflowModel’s model, edit, and editor plug-ins. For any Ecore model, the generation of the model, edit, and editor plug-ins is driven by the properties represented in the GenModel created for that model. In this section, we examine those properties, and discuss the effect that changing them has on code generation.

Chapter 2. EMF examples

47

If we examine the GenModel for the WorkflowModel using a text editor, we can see that it is described using XMI. This is because the GenModel is itself an EMF model, so its instances are serialized by default according to the XMI 2.0 production rules2, as described in 2.3.2, “Default serialization of model instances” on page 66. Example 2-12 shows the top-level XMI element from the GenModel for the WorkflowModel. As we can see, the GenModel has properties (represented in the XMI as attributes) that identify the model from which the edit, and editor plug-ins are generated, and that specify the name and package of the generated plug-ins. We provide details of the effect that these properties have on code generation in “Top-level GenModel properties” on page 52. Example 2-12 Top-level element for WorkflowModel GenModel ...

Nested within the top level element of the WorkflowModel’s GenModel XMI, we find elements corresponding to each object from the WorkflowModel, with attributes representing the properties specific to each object. The nesting of the contents of a GenModel XMI matches the nesting within the source Ecore model, with elements corresponding to classes, data types, and sub-packages nested within the element corresponding to their containing package; and elements corresponding to references, attributes, and operations nested within the element corresponding to their containing class. In Example 2-13, we see a fragment of the GenModel for the WorkflowModel that corresponds to the Workflow class.The genClasses element corresponding to the Workflow class contains genFeatures elements that correspond to the name attribute, and to the task and edge references of the Workflow class. The effect on code generation of the properties represented for each class is discussed in “Class-level GenModel properties” on page 55. 2 For more information, refer to the XML Metadata Interchange (XMI) Specification, Version 2.0, which can be found at: http://www.omg.org/technology/documents/formal/xmi.htm

48

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Aside: If you have installed the org.eclipse.emf.source plug-in, you can take a look at the file GenModel.ecore, which describes the GenModel. The zip file containing the file is usually installed at the following location: /plugins/org.eclipse.emf.source_/src/org. eclipse.emf.codegen.ecore_/runtime/codegen.ecoresrc.zip Where is the location where you installed Eclipse, and is the version of the EMF plug-in that you have installed. Example 2-13 GenModel fragment for EClass Workflow

While you can control the generation of plug-ins by editing the GenModel XMI directly, you can also edit the GenModel properties with the editor provided by the GenModel plug-in. Figure 2-6 shows the GenModel editor displaying the top-level properties from the GenModel for the WorkflowModel. As the figure shows, the tree view provided by the GenModel editor mirrors the containment hierarchy from the GenModel XMI and the source model, and displays the properties for the selected item in the Properties view. If you do not see the properties, select Window -> Show View -> Other and then select Properties from the Basic item in the tree.

Chapter 2. EMF examples

49

Figure 2-6 Top-level GenModel properties for WorkflowModel

An advantage of using the GenModel editor over editing the XMI directly is that the properties are organized by category, as we see in Figure 2-6, where the properties for the WorkflowModel GenModel are categorized according to whether they relate to the generation of the model, edit, or editor plug-ins. There is also a Templates & Merge category that is not shown in the figure, which we discuss in 2.4, “Using JET to customize code generation” on page 79.

50

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

You can toggle between the categorized view and a flat view of the properties by clicking the button identified by the tree icon, as shown in Figure 2-7, with the tool tip Show Categories. Here we see the properties for the name attribute of the class Workflow. The property view allows us to view and edit all of the properties associated with each object in the model. The editor provides a brief description of each of the properties, which is displayed in the status bar whenever a property is selected, as shown for the Property Type property. For properties that have a fixed set of values, such as Property Type here, the editor provides a pull-down list from which you may select an alternate value. Notice that the XMI file representing the model may not explicitly persist a property that is unchanged from its default value, as shown in Example 2-13 on page 49, where none of the properties in the Edit category for the name attribute are present in the XMI.

Figure 2-7 Using the GenModel editor to edit properties

In addition to specifying code generation properties using the GenModel editor, you may provide values for some of these properties when you initially create or import your model from XMI or annotated Java interfaces. When you use the GenModel wizard to create a GenModel from your model, the values that you supply in your model are used to populate the GenModel, and for any properties for which you do not supply a value, a default value is used instead.

Chapter 2. EMF examples

51

In the following sections, we detail the GenModel properties, organizing them according to the GenModel hierarchy. At each level, we provide a table that outlines the name of the property as it appears in the GenModel editor, the category to which the property belongs in the GenModel editor, the attribute used to represent the property in the GenModel XMI and the default value provided by the GenModel wizard for that property. We also discuss the effect that changing each property from its default has on the generation of the model, edit, and editor plug-ins.

Top-level GenModel properties The properties represented at the top level for each GenModel are described in Table 2-1. Table 2-1 Top-level GenModel properties Property

Category

XMI attribute

Default Value

Copyright Text

All

copyrightText

Creation Commands

Edit

creationCommands

true

Edit Directory

Edit

editDirectory

.edit/src

Editor Directory

Editor

editorDirectory

.editor/src

Editor Plug-in Class

Editor

editorPluginClass

EditorPlugin

Edit Plug-in Class

Edit

editPluginClass

EditPlugin

Generate Schema

Model

generateSchema

false

Model Directory

Model

modelDirectory

/src

Model Name

All

modelName

GenModel base filename

Model Plug-in Class

Model

modelPluginClass

Model Plug-in ID

All

modelPluginID

Non-NLS Markers

All

nonNLSMarkers

false

The copyrightText property provides the value for the final static field copyright in every generated Java class in the model and edit plug-ins. By default, the copyright field is set to be the empty string. Notice that this field is not generated in the classes for the editor plug-in.

52

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The creationCommands property controls whether or not the generated edit plug-in includes support for creating new objects. If creationCommands is false, the generated editor only allows properties of existing objects to be modified, and the menu options for creating new child or sibling objects are not present. If creationCommands is true, in the edit plug-in, each ItemProvider generated from each class in the model contains a method collectNewChildDescriptors, which constructs a list of the types of children objects that can be created. These lists are used by the editor plug-in to construct actions that can be used to create children and sibling objects. The modelName property is used to construct the default names of the edit, and editor plug-ins. The values of the modelDirectory, editDirectory and editorDirectory properties determine the projects, and path within those projects, into which the plug-ins are generated, while the modelPluginClass, editPluginClass and editorPluginClass properties determine the Java package of each generated plug-in. The modelPluginID property is used as the plug-in ID of the model plug-in and is referenced from the edit plug-in, which depends on the model plug-in. If you change the value of this property, you need to delete the plugin.xml files from the model and edit plug-ins before regenerating the code, to ensure that they are updated. Setting the generateSchema property to true means that the XML Schema for the model is generated whenever the model plug-in is generated. When you generate the schemas, you will notice new schema files appear in the project; XMI.xsd and XMI.xsd, where is the name of the top-level package from your model. For example, the XML Schema files generated from the WorkflowModel are XMI.xsd and WorkflowXMI.xsd. XMI.xsd declares XMI elements and attributes that are common to all models, while WorkflowXMI.xsd contains the only element and attribute declarations specific to serializing WorkflowModel instances. Tip: For the XML Schema generation to succeed, you must have installed the XSD plug-in available from http://www.eclipse.org/xsd/. Setting nonNLSMarkers controls whether National Language Support (NLS) comment markers, marking particular strings as non-translatable, are generated in the source of the plug-ins. Example 2-14 shows a code fragment from the toString method from the class PortImpl, generated as part of the model plug-in from the WorkflowModel. We see that the strings name and condition are marked as NON-NLS, that is, that they are not translatable.

Chapter 2. EMF examples

53

When nonNLSMarkers is true, strings that are used as keys to lookup resource bundles and strings based on the names of model objects (such as name and condition in this example), are marked as NON-NLS. However, some strings, such as those that represent default values for EString-typed attributes, remain unmarked when this property is true. For more information about internationalizing Eclipse plug-ins, see: http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html Example 2-14 Generated NON-NLS markers public String toString() { ... result.append(" (name: "); //$NON-NLS-1$ result.append(name); result.append(", condition: "); //$NON-NLS-1$ result.append(condition); ... }

Package-level GenModel properties For each EPackage in the model, there is a corresponding genPackages element in the GenModel XMI, which is represented in the GenModel editor as an item in the tree view. The properties represented for each package are presented in Table 2-2. Table 2-2 Package-level GenModel properties Property

Category

XMI attribute

Default Value

Adaptor Factory

Model

adapterFactory

true

Base Package

All

basePackage

Package

Ecore

ecorePackage

EPackage name

Prefix

All

prefix

EPackage name (capitalized)

Resource Type

Model

resource

None

The ecorePackage property identifies the corresponding EPackage from the source model. The prefix property is used to generate the names for the AdapterFactory, Package, Factory and Switch classes generated for the EPackage. The prefix should begin with an upper-case character so that the generated classes have upper-case names.

54

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

If a value is specified for basePackage, that value is used as the package prefix for the generated plug-ins. For example, to generate the model interfaces for our WorkflowModel plug-in into the package com.ibm.itso.workflow, we set basePackage for the Workflow package to com.ibm.itso and check that the name of the Workflow package in the WorkflowModel is lower case to ensure that we follow java package naming convention. If you generate the GenModel from a model where the top-level package has a fully qualified Java name, the wizard fills in the basePackage property with the prefix from that package. Note, if your model contains sub-packages, these are represented in the GenModel as nestedGenPackages elements. The default basePrefix for each nestedGenPackages element is the package name constructed from the basePrefix and ecorePackage properties of the containing genPackages element. If you change the basePrefix for a sub-package, the code generated for the objects directly contained by that sub-package is generated into the package specified by the sub-package’s basePrefix and the sub-package name. The value of adaptorFactory indicates whether an AdapterFactory and Switch is generated for the EPackage, in the corresponding util package. The resource property indicates whether to generate a Resource and ResourceFactory implementation for the model, and the type of Resource to subclass when doing so. When this property is set to None, as it is by default, the generated editor uses an XMIResource to serialize model instances, as described in 2.3.2, “Default serialization of model instances” on page 66. If resource is set to Basic, a subclass of ResourceImpl is generated in the util package, which can then be modified to customize serialization to any format. Similarly, setting resource to XML or XMI means that the generated ResourceImpl is a subclass of XMLResourceImpl or XMIResourceImpl, respectively, and you can customize these serializations as described in 2.3.5, “Providing a custom resource implementation” on page 75.

Class-level GenModel properties Classes are represented in the GenModel as genClasses elements. The properties for each class are shown in Table 2-3. Table 2-3 Class-level GenModel properties Property

Category

XMI attribute

Default Value

Class

Ecore

ecoreClass

EClass name

Image

Edit

image

true

Label Feature

Edit

labelFeature

Provider Type

Edit

provider

Singleton

Chapter 2. EMF examples

55

The ecoreClass property identifies the corresponding EClass from the source model. The provider property indicates which item provider pattern is used to generate the ItemProvider for this class in the editor plug-in; Singleton, Stateful, or None. Refer to the Item provider implementation classes section, from The EMF.Edit framework and code generator overview, in the Documents section of the EMF project site at: http://www.eclipse.org/emf/ for details of the Singleton and Stateful pattern. If the property is set to None, no Item Provider is generated for the class. The image property indicates whether an icon is generated for the class in the corresponding ItemProvider, which is returned by the getImage() method. The labelFeature property identifies the attribute that is used to provide the default label for objects of this type, which is returned by the getText() method in the generated ItemProvider. If this property is not set, then the code generation will look for an attribute called name (or with name as a substring in its name) to use instead, and if that does not exist, it will use the first simple attribute (that is, an attribute that is of a simple type such as EString) from the class.

Feature-level GenModel properties The GenModel represents each attribute and reference as a genFeatures element in the XMI. The properties for each feature are listed in Table 2-4. Table 2-4 Feature-level GenModel properties Property

Category

XMI attribute

Default Value

Children

Edit

children

true for containment references, otherwise false

Feature

Ecore

ecoreFeature

The name of the EAttribute or EReference

Notify

Edit

notify

true for attributes and containment references

Property Type

Edit

property

None for containment/container references, Editable for normal references and attributes, Readonly for features where changeable is false

The corresponding feature (EAttribute or EReference) from the source model is identified by the ecoreFeature property.

56

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The children property indicates whether this feature is considered to be a child of the containing class, for the purposes of constructing the tree view in the editor, and whether the context menu for the parent provides an option to create this feature as a child. Most features are represented as properties, and so children is usually false, however for containment references, children is true by default. The notify property indicates whether the ItemProvider forwards notifications indicating that the feature has changed. By default, the code generated in the model code notifies whenever any feature changes, however the generated ItemProviders filter these notifications. By default, notifications of changes to attributes and containment references are forwarded, while non-containment reference changes are not. The property indicates whether this feature is represented as a property on the property sheet, and whether its value can be edited via the property sheet. Features represented as children are usually not included in the property sheet, so it is usual to see containment references with None as the value for property, and attributes and non-containment references with this value set to Editable. Features that have changeable set to false in the Ecore model will be Readonly by default.

GenModel properties for DataTypes EDataTypes are represented in the GenModel as genDataTypes elements. The ecoreDataType property identifies the associated EDataType from the model. As EDataTypes already reference their implementation class, the GenModel does not represent any other code generation properties for them. Similarly, EEnums are represented in the GenModel by genEnums elements, with an ecoreEnum property referring to the EEnum from the model. The literals are represented by genEnumLiterals elements nested within the corresponding genEnums element, again with a single property, ecoreEnumLiteral, that refers to the EEnumLiteral from the model.

GenModel properties for operations and parameters Operations are represented as genOperations elements, which contain genParameters elements for each parameter. Apart from the ecoreOperation property of genOperations, and the ecoreParameter property of genParameters identifying the associated model objects, there are no other GenModel properties associated with operations or parameters. If you want to add methods to the generated code, it makes little difference whether you add them to the model first and generate skeletons, or simply add them directly to the generated code. If you do generate them from the model, make sure that you remove the @generated tag when you implement them so that your implementation is not overwritten if you regenerate the code.

Chapter 2. EMF examples

57

Customization example We can see that the properties at the top-level of the GenModel generally affect the names, packages, and locations of the generated model, edit, and editor plug-ins, while the GenModel properties at the package, class, and feature level affect only the types generated from those model elements. The default values generate three separate plug-ins, such as the plug-ins that we examined in “The generated plug-ins” on page 45. In the following example, we change some of the top-level GenModel properties in order to customize the generated plug-ins. Our example customizes the code generation so that the model, edit, and editor are generated into a single plug-in, to make it easier to package for distribution. These are the steps that we take to generate a single plug-in called com.ibm.itso.sal330r.workflow, for our WorkflowModel editor: 1. In our existing WorkflowModel project, we generate the GenModel for the WorkflowModel and open it using the GenModel editor. 2. We change the modelPluginID to com.ibm.itso.sal330r.workflow, as shown in Figure 2-8. This is the identifier that is used for the plug-in containing the model, edit, and editor code. 3. We edit modelDirectory, editDirectory, and editorDirectory properties so that they are all set to /com.ibm.itso.sal330r.workflow/src. When we generate the plug-ins, the com.ibm.itso.sal330r.workflow project is created if it does not already exist. The code for all three plug-ins is generated to the src directory of this project, and a single plugin.xml is generated to describe the plug-in containing the model, edit, and editor code. 4. Edit the editPluginClass and editorPluginClass properties, as shown in Figure 2-8, so that they have the same package prefix.

58

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 2-8 Changing the top-level GenModel properties to generate a single plug-in

5. In order to generate the model code into the com.ibm.itso.sal330r.workflow package, we also edit the basePackage property on the workflow package, setting it to com.ibm.itso.sal330r, as shown in Figure 2-9. Notice that the basePackage does not include the package name workflow. When the model code is generated, the name of the EPackage from the model is used to construct the last part of the Java package name.

Chapter 2. EMF examples

59

Figure 2-9 Changing the basePackage property

6. Select Generate All from the context menu of the top-level GenModel element to generate the model, edit, and editor code into the com.ibm.itso.sal330r.workflow plug-in. It is important to select Generate All the first time you generate the code, rather than choosing the model, edit, or editor options individually, so that plugin.xml contains all of the required entries for the combined plug-in. The resulting plug-in is located in the com.ibm.itso.sal330r.workflow project. Tip: Be sure to generate from the context menu of the top-level element in the GenModel. Generating from any item lower down in the tree will only generate code associated with that item and its children.

60

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

2.2.3 Modifying the generated code Once you have generated the code for the model, edit, and editor plug-ins, there may still be some customizations that you need to make before you can use it. Common additions that you may make to the model code include implementing methods generated from EOperations, implementing getter and setter methods for volatile features, or adding methods that were not represented in the model. Important: Whenever you modify part of the generated code, be sure to remove the @generated tag, or change it to read @generated NOT in the comment that describes the method, type, or field that you are modifying. If you fail to do this, your changes will be discarded next time you regenerate the code from the model.

Modifying the model plug-in In the following example, we modify the model code generated from the WorkflowModel to implement the getter and setter methods generated for our volatile attribute id, in WorkflowElementImpl. The id attribute is volatile because we want to generate its value to ensure that it is unique. When we generate the model code, skeletons are generated for the getId() and setId() methods, as shown in Example 2-15. Example 2-15 Methods generated for volatile feature /** * * * @generated */ public String getId() { // TODO: implement this method to return the 'Id' attribute // Ensure that you remove @generated or mark it @generated NOT throw new UnsupportedOperationException(); } /** * * * @generated */ public void setId(String newId) { // TODO: implement this method to set the 'Id' attribute // Ensure that you remove @generated or mark it @generated NOT throw new UnsupportedOperationException(); }

Chapter 2. EMF examples

61

We modify WorkflowElementImpl to add a method to generate the id, add a field to cache the generated id, and use the method to set the value from within the getId() and setId() method, as shown in Example 2-16. We generate the id in both methods so that the id is never null when it is used. Example 2-16 Modifying the getID() method public abstract class WorkflowElementImpl extends EObjectImpl implements WorkflowElement { /** * Prefix used for generated ids */ protected static final String idPrefix = "w"; /** * The cached value of the '{@link #getId() id}' attribute. * * * @see #getId() * */ protected String id; protected static int counter = 0; ... /** * Generate (and cache) an id as needed */ public String getId() { if (id == null){ id = generateId(); } return id; } /** * Generate a random id based on the current time * @return the generated id */ public synchronized String generateId(){ long current= System.currentTimeMillis(); return idPrefix + current + counter++; } /** * Set or generate an Id */ public void setId(String newId) { if (newId == null && id == null){ id = generateId(); } else {

62

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

id = newId; }

} }

We remove the @generated tag from the comments to ensure our methods are not overwritten. Notice that volatile attributes are quite commonly not changeable, and are usually also transient. This means that usually you would not need to cache the value of the attribute or provide a setter implementation. In our case, although the ids are generated, and we don’t care what the value of the ids are while the objects are in memory, we use them in the serialization to make the XMI references more readable, which means that the id attribute has to be non-transient and changeable.

Modifying the edit plug-in A common modification that you might want to make to an ItemProvider generated from a model object is to customize the getText() method. By default, this method returns the type of the object, followed by the value of the label feature for that type, and is used by the generated editor to label each item in the tree view displaying a model. For our WorkflowModel example, although Edges have a name and id, it is more useful to label them by the names of their source and target nodes. We modify the getText() method of EdgeItemProvider as shown in Example 2-17 to provide this functionality. Example 2-17 The getText() method of EdgeItemProvider /** * This returns the label text for the adapted class. * * * @generated NOT */ public String getText(Object object) { Edge e = (Edge)object; String label = getString("_UI_Edge_type"); String fromNode = e.getSource().getNode().getName(); String toNode = e.getTarget().getNode().getName(); if (!(fromNode == null || fromNode.length() == 0)) label += " from " + fromNode; if (!(toNode == null || toNode.length() == 0)) label += " to " + toNode; return label; }

Chapter 2. EMF examples

63

In this case, we must take care, because the features that we are using to label the Edge are non-containment references. Remember from 2.2.2, “Customizing code generation through GenModel properties” on page 47, that notifications of changes to non-containment references are filtered by the ItemProvider and not passed to the editor by default. This means that the label will not be updated to reflect new values for the source or target if they change. We can override this behavior by setting the notify property for the source and target references of Edge in the GenModel to true, and then regenerating the edit code. You can see the result of the changes in the default WorkflowModel editor in Figure 2-10.

Figure 2-10 Editor using modified EdgeItemProvider

2.3 Model instances and serialization In this section we examine how to create and serialize model instances. We provide examples that illustrate how to customize serialization and discuss the effect that different modeling techniques can have on the way in which instances are serialized.

2.3.1 Creating model instances We can use the code generated for the model plug-in from our model to create instances of that model.

64

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Example 2-18 shows how we create a Workflow instance and a Task instance using the WorkflowFactory. The example also demonstrates how we use the methods from the generated code to set properties such as the name on the Task, and maintain references, in this case adding the Task to the nodes of the Workflow, and adding an InputPort and OutputPort to the Task. Example 2-18 Creating instances Map registry = EPackage.Registry.INSTANCE; String workflowURI = WorkflowPackage.eNS_URI; WorkflowPackage wfPackage = (WorkflowPackage) registry.get(workflowURI); WorkflowFactory wfFactory = wfPackage.getWorkflowFactory(); Workflow workflow = wfFactory.createWorkflow(); // add a Task to the workflow Task t1 = wfFactory.createTask(); workflow.getNodes().add(t1); t1.setName(“Task 1”); // add an input port and an output port to the Task t1.getInputs().add(wfFactory.createInputPort()); t1.getOutputs().add(wfFactory.createOutputPort()); ...

If we were using the reflective API to manipulate our instance objects, we would replace methods such as setName() and getNodes() that are specific to the WorkflowModel with generic eSet() and eGet() methods, for example: t1.eSet(WorkflowPackage.eINSTANCE.getTask_Name(), "Task 2")

to set the name of the Task. An interesting application of using the reflective APIs is to work with dynamic models, that is, to work with Ecore models as in-memory objects rather than generating code from the model and using the generated classes. Example 2-19 shows an sample of how we can create instances of the Ecore model to represent a very basic model of Workflow. Example 2-19 Creating a dynamic model // Create the Workflow Package EPackage workflowPackage = EcoreFactory.eINSTANCE.createEPackage(); // create the Port class EClass portClass = EcoreFactory.eINSTANCE.createEClass(); portClass.setName("Port"); EClass inputPortClass = EcoreFactory.eINSTANCE.createEClass(); inputPortClass.setName("InputPort"); // set up inheritance inputPortClass.getESuperTypes().add(portClass); // create the Task class EClass taskClass = EcoreFactory.eINSTANCE.createEClass(); taskClass.setName("Task");

Chapter 2. EMF examples

65

// add name attribute to Task EAttribute taskNameAttr = EcoreFactory.eINSTANCE.createEAttribute(); taskNameAttr.setName("name"); taskNameAttr.setEType(EcorePackage.eINSTANCE.getEString()); taskClass.getEAttributes().add(taskNameAttr); // set up the reference between Task and InputPort EReference taskToInputPortRef = EcoreFactory.eINSTANCE.createEReference(); taskToInputPortRef.setUpperBound(-1); taskToInputPortRef.setLowerBound(1); taskToInputPortRef.setEType(inputPortClass); taskClass.getEReferences().add(taskToInputPortRef); ... // add the classes to the package workflowPackage.getEClassifiers().add(taskClass); workflowPackage.getEClassifiers().add(portClass); workflowPackage.getEClassifiers().add(inputPortClass); ...

We can create instances of this model using the reflective API, as Example 2-20 demonstrates. Example 2-20 Using the reflective API to create dynamic model instances EFactory wfFactory = workflowPackage.getEFactoryInstance(); EObject task1 = wfFactory.create(taskClass); task1.eSet(taskNameAttr, "Task 1");

Obviously, this dynamic approach only works for some applications — if you are using a model where you would normally customize the code generated from the model, for example, to implement EOperations, then this approach is not suitable.

2.3.2 Default serialization of model instances When you create and serialize instances of an Ecore model, they are serialized by default as XMI 2.0. This section provides examples illustrating how EMF objects are represented in the XMI. For a more complete description of XMI 2.0, please refer to the XML Metadata Interchange (XMI) Specification, Version 2.0, found at: http://www.omg.org/technology/documents/formal/xmi.htm

66

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Note: We have already seen several examples of XMI representing model instances. The Ecore model is itself an EMF model, so the Ecore documents describing the models that we created in 2.1, “EMF modeling techniques” on page 30, were all examples of the default serialization of Ecore model instances to XMI. All of the example serializations discussed in this section can be found in the Serializations directory in the examples provided for this section. Example 2-21 shows XMI representing a Workflow instance, representing a Workflow containing a Comment and two Tasks, each with an input, output, and fault port, and an Edge connecting them. You can load this example from the file SimpleXMIInstance.workflow. Example 2-21 Default XMI serialization of a Workflow instance

As the example shows, the Workflow object is serialized to an element in the XMI, with attributes representing its EAttributes and non-containment EReferences. Containment EReferences are represented as elements, with the content of the contained object contained inline, as we see for the nodes elements from the example. When the reference can be to objects of different types (that is, to different subtypes of the referenced class), the xsi:type attribute is also serialized to identify the type of the object represented by the element.

Chapter 2. EMF examples

67

Non-containment EReferences, such as the references between each edge and its target and source Ports, are represented as strings, that identify the object being referenced. By default, the strings used to identify other objects are based on the containing resource, type and position of the referenced object. Example 2-22 shows how positional references are used to serialize a Workflow. In Example 2-21, the id attribute is used instead of positional references. This is because the id property for that attribute it set to true in the model. If the id property is true for one of the attributes, references will refer to objects using the value of that attribute, if it is set, or use a positional reference if the id attribute is not set. If you are using an id attribute, it is important to ensure that its values are unique within a resource, so that the ids in the XMI are unique within the document, as required by the standard. Example 2-22 Positional references

You can customize the way that references are represented in the XMI by overriding the eURIFragmentSegment() and eObjectForURIFragmentSegment() methods in your model implementation classes. The default positional references are provided by these methods in EObjectImpl, which is a superclass of all the implementation classes generated from a model. When the references are to objects contained by another resource, then the scheme for finding the file that is the serialization of the resource (for example, http) and the name of the file is also added to the reference. An example of this is when we use cross-package references and serialize the containing Ecore EPackages into separate files, such as the following snippet taken from Example 2-4 on page 37:

68

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Each model instance that is created by the generated editor plug-in is added to a Resource, which can later be used to serialize that instance. Within any EMF-based application, we can use an XMIResource to serialize or deserialize instance objects. In the sample application discussed in Chapter 7, “Implementing the sample” on page 203, we use XMIResources to contain WorkflowModel instances. To create or get each resource, we first create a ResourceSet, as Example 2-23 shows. Example 2-23 Set up the ResourceSet // Initialize the workflow package WorkflowPackageImpl.init(); // Register the XMI resource factory for the .workflow extension Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE; Map m = reg.getExtensionToFactoryMap(); m.put("workflow", new XMIResourceFactoryImpl()); // Obtain a new resource set ResourceSet resSet = new ResourceSetImpl();

ResourceSets are used to group related Resources. A Resource can contain instances of any object from a model, and a ResourceSet is used to group related Resources, that is, Resources that contain objects that reference each other. For the Workflow example, we use Resources to contain Workflow instances. We can use the ResourceSet created in Example 2-23 to create a new Resource as shown in Example 2-24. Example 2-24 Create an XMIResource // Create a resource Resource resource = resSet.createResource(URI.createPlatformResourceURI(path.toString()));

If we want to load from an existing resource, we use the getResource() method instead, as shown in Example 2-25. Example 2-25 Load an XMIResource // Get a resource Resource resource = resSet.getResource(URI.createPlatformResourceURI(path.toString()),true);

Once we have the resource, we can add objects to the contents of the resource. Objects contained by the same resource will be serialized to the same file. Example 2-26 shows how we create and add a Workflow object to a resource.

Chapter 2. EMF examples

69

Example 2-26 Add a model object to a resource Workflow workflow = wfFactory.createWorkflow(); resource.getContents().add(workflow);

Many models are based on an inheritance hierarchy, with a single top-level container. One of the advantages of this approach is that you need only add the top-level object to the resource explicitly. All of the other objects contained in the hierarchy will be serialized as elements within that top-level element. If you are using a model without a top-level container, then any objects that are not contained need to be added to the Resource explicitly.

2.3.3 Using the XSD plug-in to customize serialization In this section, we demonstrate how to use a custom serialization to XML, by annotating our model with information used by the XSD plug-in. Whenever we create an Ecore model from an XML Schema using the XSD plug-in, annotations that describe how each object is serialized to XML are added to the model, so that serialized model instances conform to the source schema. Use of these annotations is not limited to models imported from XML Schema; we show how to use the same annotations on any Ecore model to control how its instances are serialized. Note: Although the XML produced by using techniques described in this section may look very similar to the XMI described in 2.3.2, “Default serialization of model instances” on page 66, it is important to notice that it does not conform to the XMI 2.0 standard. We make the following changes to improve the readability of XML representing WorkflowModel instances: Use an XML element instead of an XML attribute to represent EAttributes that potentially have lengthy values, including: – – – –

comment from WorkflowElement transformExpression from Transformation condition from ConditionalOutputPort whileCondition from LoopTask

 Use the singular form of the name of multi-valued containment EReferences to prevent the plural form being used for an elements that represent single objects. Notice that we do not make this change for non-containment EReferences, as the default serialization is to an XML attribute that represents the entire list of values, and so using the plural form of the name is appropriate.

70

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

 For example, within Workflow: – comments becomes comment – edges becomes edge – nodes becomes node Change the Workflow element to be lower case, to provide consistent capitalization throughout the document. We begin by annotating the workflow EPackage, as shown in Example 2-27, indicating to the XSD plug-in that instances of this package use elements and attributes from the namespace http://www.redbooks.ibm.com/sal330r/workflowXSD. The annotations on the objects contained by the package indicate how each object maps to elements and attributes from this namespace. Example 2-27 XSD annotation on workflow EPackage ... existing content ...

Example 2-28 shows the eAnnotations element we use to annotate the comment EAttribute of WorkflowElement, to indicate that it should be represented as an element, rather than as an attribute. This is achieved by setting the value of the representation key to element. To force serialization as an attribute, we would use the value attribute instead. We add similar eAnnotations to the eAttributes elements representing transformExpression, condition and whileCondition so that they are also represented as XML elements. Example 2-28 XSD annotation on comment EAttribute

Chapter 2. EMF examples

71

We use a similar annotation to change the names of elements used to represent EReferences with pluralized names. For example, to use an element called node instead of nodes to represent each node contained by a Workflow, we add the EAnnotation shown in Example 2-29. We provide the new element name node as the value of the name key. We add similar annotations for all of the other multi-valued containment EReferences in our model. Example 2-29 XSD annotation on nodes EReference

We use the same technique to ensure that a lower-case element name is used for Workflow, however we have to be careful to make sure we specify the targetNamespace correctly, as the workflow element is the top-level element of our XML instance documents, so we cannot rely on XML namespace scoping for this value. Because we have constraints in the WorkflowModel that mean that all other objects are contained either directly or indirectly by a Workflow, we do not have to specify targetNamespace for any other elements, however, if you are using this technique to customize serialization for other models, make sure you specify this value for any elements that could appear as the top-level element in a serialized instance. Example 2-30 shows how we annotate the eClassifiers element representing the Workflow class. The targetNamspace that we specify in this annotation should match the nsURI of the containing package exactly. Example 2-30 XSD annotation on Workflow EClass ... existing content ...

Having annotated our model, we re-generate the model plug-in as follows:

72

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1. Create or reload the GenModel from the annotated WorkflowModel, as described in “Java annotation and the code generation process” on page 24. To reload, select Reload... from the context menu that appears when you right-click the GenModel file in the Navigator or Package Explorer view, and then open the GenModel file. 2. We modify the GenModel so the regenerated code supports our customizations. Refer to 2.2.2, “Customizing code generation through GenModel properties” on page 47 for more information about setting properties in the GenModel. Select the workflow package from the GenModel tree and set Resource Type to XML. 3. Save the GenModel and then select Generate Model Code from the right-click context menu of the top-level element in the GenModel. You may wish to select Generate All instead if you do not have an up-to-date editor generated from your model. If adding these annotations is the only change that you have made to the model since generating the edit, and editor plug-ins, you do not need to regenerate them. The model plug-in now includes code that supports serializing to our custom XML syntax. When we run our editor and create new model instances as described in Chapter 1, “Introduction to EMF” on page 3, the object instances are represented as elements or attributes according to the annotations that we added to the model. If we take a look at a new instance in a text editor, such as the instance shown in Example 2-31, and compare this to the default serialization shown in Example 2-21, we can see evidence of the changes that we have made to the serialization format. Example 2-31 Custom serialization of a Workflow instance This is a sample Workflow instance

You can find the completed annotated model in the WorkflowXSD folder in the examples for this section. This example demonstrates how to control whether model objects are serialized as XML elements or attributes, and allows us to provide names of our choosing for those elements and attributes. There are other annotations that are used by XSD to control feature-order and map XML Schema types to model objects, as discussed in 2.1.2, “Migrating existing models” on page 40, which you may also use to customize the serialization further.

2.3.4 Customizing XMI serialization using an XMLMap When we customize the serialization using XSD annotations, we are using the XSD plug-in to generate an XMLMap that specifies the mapping between model objects and their serialization. We can perform similar customizations when we serialize without annotating the model. The XMI 2.0 production rules allow features to be serialized either as elements or attributes. We can control whether each feature is serialized as an element or as an attribute by creating an XMLMap and adding appropriate mappings, as the following example illustrates. You can find the code for this example in the XMLMapExample directory in the examples for this section. In this example, we change the serialization of the comment attribute of WorkflowElement, so that an XML element rather than an attribute is used to represent the value. We modify the execute() method within the WorkspaceModifyOperation in the doSave() method of the generated editor as shown in Example 2-32, to customize the serialization. Example 2-32 Using an XMLMap to customize serialization of XMI XMLMapImpl map = new XMLMapImpl(); XMLInfoImpl x = new XMLInfoImpl(); x.setXMLRepresentation(XMLInfoImpl.ELEMENT); map.add(WorkflowPackage.eINSTANCE.getWorkflowElement_Comment(), x); Map options = new HashMap(); options.put(XMLResource.OPTION_XML_MAP, map); Resource savedResource = (Resource)editingDomain.getResourceSet().getResources().get(0); savedResources.add(savedResource); savedResource.save(options);

74

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

We perform the following steps to customize the serialization of a type or feature from the model: 1. Create an XMLMap to store the information about mapping the model to XML. 2. For each model object with a custom serialization: a. Create an XMLInfo and use the setName(), setTargetNamespace() and setXMLRepresentation() method to specify the how the object is represented in the XML. b. Add the XMLInfo to the XMLMap, using the object for which you want to customize serialization as the key. We do this in the example with: map.add(WorkflowPackage.eINSTANCE.getWorkflowElement_Comment(), x);

3. Put the XMLMap as the OPTION_XML_MAP in the options map that you use to save the resource. Use the setName() method on the XMLInfoImpl to customize the name of the element or attribute tag used in the XML, and setTargetNamespace() to set the namespace for that element or attribute. Use setXMLRepresentation() to specify whether the object is represented as an ELEMENT, ATTRIBUTE or CONTENT. Specifying CONTENT results in the value of object being contained directly by its parent. For example, we might use CONTENT to represent the condition attribute of a ConditionalOutputPort so that serialized instances look something like this: This is the condition

instead of looking like this:

2.3.5 Providing a custom resource implementation When we use the XSD plug-in to customize serialization, we are using an XMLResource to contain our model objects rather than an XMIResource. If we set the Resource Type property of a package to Basic, XMI, or XML in the GenModel, when we generate the model plug-in from the model, a ResourceImpl and ResourceFactoryImpl are generated for our model in the util package. By modifying the implementation of the ResourceImpl generated for our model, we can customize the serialization. If we have chosen XMI or XML as the Resource Type, the generated ResourceImpl will be a subclass of XMIResource or XMLResource, respectively. We can override methods in that subclass to customize serialization to XMI or XML. If we have chosen to use a Basic Resource Type, then we can serialize to any format by providing the necessary methods to implement ResourceImpl.

Chapter 2. EMF examples

75

Customizing XMI serialization When customizing XMI serialization, it is important to remember that if you customize the serialization format too much, it will no longer be standard XMI. However, there are some customizations that you can make without breaking conformance to the XMI 2.0 standard. One such customization is to use an element instead of an attribute to represent features, as we demonstrate in 2.3.4, “Customizing XMI serialization using an XMLMap” on page 74. Another change that you can make while still complying with the standard is to modify how ids are generated in the serialization. Instead of using an attribute with the id property set to true in the model, you may wish to generate ids for all elements in the serialization. Although the ids are not accessible from the model, the advantage of generating them is that you can ensure that they remain unique. Be aware, however, that generating ids means that elements can potentially have a different id each time they are serialized. The ids are mapped to objects from the model by the resource, which uses a map to map ids to each EObject. You can assign ids specifically to particular objects before you serialize by using the setID() method on the resource, as shown in Example 2-33. Example 2-33 Set object ids via setID() Resource resource = ... EObject myobject = resource.setId(myobject, “id1”);

If you want ids to be generated automatically for your objects, you can override the getID() in your resource implementation to do this, as Example 2-34 shows. Example 2-34 Override getId() to generate ids public String getId(EObject obj){ String id = super.getID(obj); if (id == null){ id = generateID(); setID(obj,id); } return id; }

76

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Customizing XML serialization The XML that we generated in 2.3.3, “Using the XSD plug-in to customize serialization” on page 70, used the names of references to contained objects for the XML elements representing those objects. A different representation would be to use a name that identifies the type of the reference, particularly in a model where there is usually only a single reference between objects of each type. The mapping of element and attribute names to model objects is taken care of by an XMLHelper. We provide our own custom XMLHelper, to override the default names for references, replacing reference names with the name of the type instead. Example 2-35 shows how we override this method in our XMLHelper implementation. Example 2-35 Customized XMLHelper public class WorkflowXMLHelperImpl extends XMLHelperImpl implements XMLHelper { ... public String getName(ENamedElement obj) { XMLResource.XMLInfo info = null; if (xmlMap != null) { info = xmlMap.getInfo(obj); } if (info != null && info.getName() != null) { return info.getName(); } else { if (obj instanceof EReference && ((EReference) obj).getEType() != null) return ((EReference) obj).getEType().getName(); else return obj.getName(); } } }

Note: When there are multiple references to a type from the same object, we have to be careful, for example in the case of CompoundTask, because it has two references to Workflow, we have to be able to distinguish between the two, so we might need to add additional information to the serialization to do this. Generally you would only want to use a serialization such as this one if the type implied the reference. To use the XMLHelper from our XMLResourceImpl, we simply override the method that creates the helper, to create an instance of our WorkflowXMLHelper instead, as Example 2-36 shows.

Chapter 2. EMF examples

77

Example 2-36 Overriding the createXMLHelper() method protected XMLHelper createXMLHelper() { return new WorkflowXMLHelperImpl(this); }

The file XMLResourceCustomization.workflow contains an example of a Workflow serialized using WorkflowXMLResource. So far we have only dealt with serializing to the custom format, we would also have to override the getFeatureWithoutMap() method to map the types back to features, however we leave this an exercise for the reader. Customizing XMLHelper allows us to use the names of the types of the references for element names, however because XMLHelper is creating names from the model itself, rather than from instances, it cannot create specific type names for subtypes. An example of using more specific type names for the WorkflowModel would be to use element names FaultPort or ConditionalOutputPort instead of just using OutputPort for those types, or to use Task, Comment or Choice instead of WorkflowNode, such as the fragment shown in Example 2-37. Example 2-37 A more readable representation of contained objects ...

The serialization would produce such elements if you added explicit references to each class with specific names for each reference, in the same way that we already have specific references to OutputPort and InputPort rather than a general reference to Port. However, then you would need to maintain all of these references separately or lose the benefits of polymorphism, and your model would be cluttered. However, we could implement such a serialization by providing our own subclasses of XMLSaveImpl and XMLLoadImpl and use them within WorkflowResourceImpl, as these are the classes that actually serialize our instances, and override methods such as saveElement() to provide a more specific name. These examples are provided to give you an idea of the types of things you can customize by providing your own XMLHelper, XMLSave or XMLLoad implementations. You may choose to override the methods from those classes to produce any XML serialization.

78

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Other serializations To serialize to other formats, all you need to do is to implement your own versions of the doSave() and doLoad() methods in your ResourceImpl subclass.

2.4 Using JET to customize code generation In this section we provide examples that illustrate how to use the Java Emitter Templates (JET) framework provided with EMF to customize code generation. We describe how JET is used to generate the model, edit, and editor plug-ins that we examine in “The generated plug-ins” on page 45, as well as how to approach customizing this code generation. For an introduction to JET in general, refer to the two-part JET Tutorial by Remko Popma, available from Eclipse Corner, at: http://eclipse.org/articles/Article-JET/jet_tutorial1.html http://eclipse.org/articles/Article-JET/jet_tutorial2.html

2.4.1 .JET-related GenModel properties In 2.2.1, “The generated plug-ins” on page 45, we described the model, edit, and editor plug-ins that are generated from EMF models. These plug-ins are generated using JET, and we can control this generation by setting the GenModel properties of the model from which we are generating the plug-ins. The JET-related GenModel properties are described in Table 2-5. All of these properties are represented at the top-level of the GenModel, and are grouped by the GenModel editor into the Templates & Merge category. Setting these properties allows us to override the default JET templates used to generate the model, edit, and editor plug-ins. Descriptions of the properties are provided by the GenModel editor in the status bar whenever you select one of the properties.

Chapter 2. EMF examples

79

Table 2-5 Templates and Merge GenModel properties Property

XMI attribute

Default

Dynamic Templates

dynamicTemplates

false

Force Overwrite

forceOverwrite

false

Redirection Pattern

redirection

Runtime Jar

runtimeJar

Template Directory

templateDirectory

Update Classpath

updateClasspath

false

true

The most interesting of these to us are the dynamicTemplates and template Directory properties: The dynamicTemplates property indicates that the precompiled templates provided by org.eclipse.emf.codegen.ecore.genmodel should be ignored, and that the template implementation should be translated and compiled from dynamic templates. The templateDirectory indicates the location to look for new templates. A template placed in this location will override the default template with the same name from org.eclipse.emf.codegen.ecore.genmodel.

2.4.2 Writing JET templates In this section, we customize the generation of the plug-ins described in 2.2.1, “The generated plug-ins” on page 45. By default, these plug-ins are generated from templates located in: /plugins/org.eclipse.emf.codegen.ecore_/ templates Where is the location where you installed Eclipse and is the version of the EMF plug-in that you have installed. The org.eclipse.emf.codegen.ecore templates directory contains sub-directories for the model, edit, and editor plug-ins. The files with the extension javajet are the templates. The file extension follows the JET convention of using the extension of the file that is generated by the template concatenated with jet. In this example, we customize the Java code generated for the model plug-in by providing our own version of some of the model templates.

80

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The header template provides the comment that is located at the head of each generated class file. We begin by creating our own templates directory, and by supplying a new Header.javajet. To do this, perform the following steps: 1. Add a directory called templates to the WorkflowModel project. 2. Create a new text file called Header.javajet in the templates directory. If you prefer, you can copy the existing Header.javajet file as a basis for your template. 3. Edit Header.javajet to contain the comment that is to be included at the top of every generated class file. We edit the file to read as shown in Example 2-38: Example 2-38 Our version of Header.javajet /** * WorkflowModel * * Copyright (c) 2000, 2003 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v10.html * */

4. Generate the GenModel for the WorkflowModel. This step may be skipped if you already have a GenModel for the WorkflowModel. 5. Edit the GenModel properties: a. Set the dynamicTemplates property to true. b. Set the templateDirectory property to the location of your templates directory, for example, /WorkflowModel/templates. By default, the header is only generated the first time the code is generated from your model, so if you already have a version of the model plug-in in your project, you will need to override this behavior. The merging of existing content with new content is handled by EMF’s jmerge. The rules for merging the model, edit, and editor code generated from EMF models are expressed in the file emf-merge.xml. Copy emf-merge.xml into your templates directory from the org.eclipse.emf.ecore.codegen plug-in’s templates directory and modify the file so that it includes an additional rule to set the header each time the code is generated, as shown in Example 2-39.

Chapter 2. EMF examples

81

Example 2-39 Merge rules for code generation from WorkflowModel ... existing content ...

Now when you generate the model plug-in and take a look at the generated code, the contents of Header.javajet should appear in place of the default header. Tip: Whenever you modify a template, you may need to close and then re-open the GenModel file before regenerating code so that the new version of the template is used. JET templates use a simplified Java Server Pages (JSP) syntax. You can get a feel for how JET templates work by examining and modifying the templates used to generate the interface and implementation corresponding to each class in a model. Begin by making a copy of the templates into the WorkflowModel project’s templates directory: 1. Create a model sub-directory within the templates directory in the WorkflowModel project. 2. Copy the files Interface.javajet Class.javajet and from the model directory in the org.eclipse.emf.codegen.ecore plug-in’s templates directory to the directory created in the previous step. We are mirroring the templates directory structure used by the org.eclipse.emf.codegen.ecore plug-in, as we are essentially replacing its templates with our own versions. At the first line in Interface.javajet, we see the tag shown in Example 2-40. Example 2-40 The jet directive

The tags used within JET templates are identified by an opening . Inside the tags, you can use Java code to script what is generated from the template, or you can use special tags to represent JET directives or expressions. The jet tag shown in Example 2-40 is a directive. Expression tags are used to create values based on expressions in the files generated from the templates.

82

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Directives start with Accessories -> Accessibility ->Magnifier

GEF’s accessibility implementation In this section we describe the classes that implement GEF’s accessibility support. We describe the roles they play and what you need to do to include accessibility in your GEF application.

Accessible EditParts Accessible EditParts are able to participate in the accessibility support that is included in SWT and ultimately in the underlying operating system on which that your GEF application is running. Accessibility client applications can listen for selection changes in your GEF application and then obtain accessibility information about the selected EditPart via the EditPartViewer.

Chapter 4. GEF examples

161

The AccessibleEditPart abstract class declares the methods that accessibility clients may use to interrogate your EditPart. These methods mirror the interface in org.eclipse.swt.accessibility.AccessibleAdapter, which defines the equivalent interface for SWT parts. The Javadoc in that class is a good source for documentation of the semantics of each of these methods. These methods allow your EditPart to enhance its accessibility by returning information such as its name, help string, keyboard shortcut, description, its selection and focus state, and by providing access to its child parts. When you create an EditPart, you override the getAccessibleEditPart method in AbstractEditPart in order make your EditPart accessible. AccessibleGraphicalEditPart provides much of the default behavior needed by a custom EditPart. You will typically need to override the methods to return your part’s name, description, and so on.

AccessibleGraphicalEditPart AccessibleGraphicalEditPart is an inner class of AbstractGraphicalEditPart that provides GEF’s implementation for the underlying SWT accessibility API, defined in org.eclipse.swt.accessibility package. This an abstract class, so EditParts supporting accessibility must provide a concrete subclass that is returned when the AbstractEditPart.getAccessibleEditPart() is called.

Accessible handles Making a handle accessible requires that the handle provide a single point, in absolute coordinates, at which it can be selected. Keyboard navigation can then use this coordinate when selecting the handle, effectively simulating a mouse click at that location. Accessible handles are obtained from the EditPolicies that are responsible for handle management, such as subclasses of SelectionEditPolicy. The AccessibleHandleProvider interface is used to collect a list of accessible handles for a Handle or EditPart. The AccessibleGraphicalEditPart implements this interface through its IAdaptable implementation. It collects a merged list of all the accessible handles contributed by its EditPolicy instances which also implement the AccessibleHandleProvider interface. Ultimately each Handle interface’s getAccessibleLocation method returns the coordinate that indicates the location of its accessible handle. The AbstractHandle class provides most handles with a default implementation of this method that returns the center point of the handle. Other handle types can override this as appropriate. The SelectionHandlesEditPolicy is an abstract class that is adaptable to an AccessibleHandleProvider, providing accessibility for subclasses that use GEF’s default handles. If you design your own handles, you will need to provide an implementation of the getAccessibleLocation that returns a point inside your handle.

162

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Accessible anchors Accessible anchors work similarly to accessible handles. An EditPart provides an implementation of the AccessibleAnchorProvider interface by implementing the IAdaptable interface. The AccessibleAnchorProvider interface contains methods to return a list of source and target anchor locations. These points will be used to programmatically simulate a mouse event at that location. The targeting tool will then provide the same targeting behavior and feedback as if a mouse was used. To implement this capability in your own EditParts, you will need to traverse all the ConnectionAnchor-derived children of your EditPart’s parent figure, and return an appropriate point for each one.

AbstractTool The AbstractTool class serves as the base class for contains the state machine which interprets accessible actions such as translating arrow keys into drags, and so on. Pressing the Enter key commits a drag

SelectionTool When an edit part is selected, the SelectionTool’s accessibility support enables the user to traverse the EditPart’s available selection handles, select one, and perform drag operations all by using the keyboard. The keyboard commands supported by this class are summarized in Table 4-2. Table 4-2 Keyboard commands provided by the SelectionTool class Key

Action

Period

Select next handle

‘>’

Select previous handle

Left Arrow

Drag left

Right Arrow

Drag right

Up Arrow

Drag up

Down Arrow

Drag down

Enter

Commit the drag operation

Esc

Abort the drag operation

ConnectionCreationTool The keyboard handling in this class allows the user to indicate the start and end of connections using the Enter key. The user can cycle through the available anchor points of accessible EditParts by using the arrow keys. The tool will snap the connection to the next available anchor.

Chapter 4. GEF examples

163

GraphicalViewerKeyHandler This key handler class provides keyboard-based navigation for the GraphicalViewer. Table 4-3 lists the key bindings provided by the GraphicalViewerKeyHandler class. Note that SHIFT and CTRL keys can be used to modify the navigation keys. Pressing the CTRL key will cause the focus, rather than the selection, to move. Pressing the SHIFT key while using one of the navigation keys will extend the selection. Table 4-3 Navigation key bindings defined in GraphicalViewerKeyHandler Key

Action

SPACE

Selects

LEFT_ARROW

Navigates to EditPart on left

RIGHT_ARROW

Navigates to EditPart on right

UP_ARROW

Navigates to EditPart above

DOWN_ARROW

Navigates to EditPart below

‘/’ or ‘?’

Navigates to EditParts’s next connection

‘\’ or ‘|’

Navigates to EditPart’s previous connection

ALT + DOWN_ARROW

Navigates into a container node

ALT + UP_ARROW

Navigates out of a container node

PaletteViewerKeyHandler This class, the keyhandler for the palette, supports keyboard commands in the palette.It supports moving between palette entries and moving into and out of palette drawers. The commands are summarized in Table 4-4. Table 4-4 Arrow key bindings to palette navigation

164

Key

Action

LEFT_ARROW

If the focus is on an expanded drawer, then collapse it, otherwise sets focus on the drawer.

RIGHT_ARROW

If the focus is on a collapsed drawer, then it expands it. If the focus is on an expanded drawer, then it moves into it.

UP_ARROW

If the focus is inside a drawer, it sets the focus on the drawer.

DOWN_ARROW

It moves to the next container.

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

5

Chapter 5.

Using GEF with EMF In this chapter, we discuss developing graphical editors based on EMF and GEF, and we provide examples of how to use the two frameworks together. We also discuss how to use JET to assist in developing a GEF-based editor from an EMF model. Note: The sample code we describe in this chapter is available as part of the redbook additional material. See Appendix A, “Additional material” on page 225 for details on how to obtain and work with the additional material. The sample code for this chapter is provided as Eclipse projects that can be imported into your Eclipse workbench. Each major section of this chapter has a matching Eclipse project in the additional material. Also, be sure to import the appropriate model project for the editor project you want to work with. For example, to work with the NetworkEditor project, you need to also import the NetworkEditorModel project. Some of the sample projects in this chapter also expect that you have the SAL330RWorkflowModel project in your workspace. You may have created this project by working through the examples described in Chapter 1, “Introduction to EMF” on page 3, or you can import this from our redbook sample material.

© Copyright IBM Corp. 2004. All rights reserved.

165

5.1 Overview As GEF is based on an MVC architecture, every GEF-based application uses a model to represent the state of the diagrams being created and edited. GEF allows you to use any objects as model objects within your application, however, using an EMF model provides some advantages over using arbitrary objects: You can use EMF’s code generation facilities to produce consistent, efficient and easily customizable implementations of your model objects. If your model evolves during development, you can regenerate the code to reflect changes to the model, while preserving your customizations. The MVC architecture used by GEF relies on controllers that listen for model changes and update the view in response. If you use an EMF model, notification of model change is already in place, as all EMF model objects notify change via EMF’s notification framework. The implementations generated for your model objects ensure that the model remains consistent, for example, when a reference is updated, the opposite reference is also updated. EMF provides support for persisting model instances, and the serialization format is easily customizable. Your applications can use the reflective API provided by EMF to work with any EMF model generically. Although we can generate EMF.Edit-based editors from EMF models using the org.eclipse.emf.codegen.ecore plug-in, these editors use JFace viewers, such as the TreeViewer to display model instances, and typically provide a view that has a one-to-one correspondence with the model. Sometimes we may wish to create editors where the view is more loosely coupled with the model. This is often the case when we want to use a graphical notation that may hide some of the detail of the underlying model objects, or may impose additional or a different structure to the model, for visualization purposes. We can think about using GEF and EMF together from two different perspectives; using an EMF model within a GEF application, and augmenting EMF.Edit-based editors using GEF. In this book, we focus on the first perspective only, due to time constraints. The second approach deserves a book of its own, as integrating an EMF.Edit-based editor with GEF provides its own challenges. For an example of an application that uses GEF and EMF.Edit together, take a look at the Jeez report designer, available from: http://jeez.sourceforge.net

166

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

5.2 Using an EMF model within a GEF-based application This section describes how to use model interfaces and implementations generated from an EMF model as the model within a GEF-based application. This is the approach that we have used for our sample application, described in Chapter 7, “Implementing the sample” on page 203. We assume that you have read Chapter 3, “Introduction to GEF” on page 87and that you have a basic understanding of how an arbitrary (not necessarily EMF-based) model is usually integrated into a GEF-based application. Because GEF can use almost any type of model, integrating an EMF model into an editor is much the same as integrating any other sort of model into a GEF-based application. When tying our model into our editor, we can take advantage of mechanisms provided by EMF for notification, reflection and serialization. We use a simple application to illustrate our approach for using GEF and EMF together. The application is an editor that allows us to define networks consisting of nodes that may be linked together. We discuss how to implement an example application based on the model shown in Figure 5-1.

Network 1

Network name: EString

Network 1

0..* Nodes Links

0..*

Link

0..* upstreamLinks

Node Links x: EInt y: EInt

downstreamLinks 0..*

Figure 5-1 Simple Network Model

5.2.1 Mapping from the model to the graphical representation In a GEF-based editor, EditParts are the controllers that bridge objects from the model and their representation in the view, however, there does not have to be a one-to-one correspondence between model objects and EditParts. Hence, the first step in developing our application is to decide which EditParts to provide to represent objects from the model.

Chapter 5. Using GEF with EMF

167

Mapping to EditParts The first EditPart that we consider is the contents EditPart. This is the part that contains all of the other EditParts, that is, it represents a diagram that is edited within our editor. In our example, the contents EditPart corresponds to the Network class. In general, if a model has a top-level element that contains all other model objects, as is the case with the NetworkModel, and the WorkflowModel used for our sample application, then the contents EditPart corresponds directly to that container. For models that do not have a top-level container, you can think of the contents EditPart as corresponding to the contents of a ResourceSet that contains model objects, rather than corresponding directly to an EObject from the model. GEF provides two base implementations of EditPart that are used in graphical viewers; AbstractGraphicalEditPart and AbstractConnectionEditPart. We can subclass either of these classes for the EditParts that correspond to the objects from our model. For the NetworkEditor example, we subclass AbstractGraphicalEditPart as NetworkEditPart, our contents EditPart. As an AbstractEditPart, NetworkEditPart has methods getModel() and setModel() for getting and setting the corresponding model object with the EditPart. We implement NetworkEditPart so that the Network associated with the part is supplied to the constructor, as shown in Example 5-1. Example 5-1 NetworkEditPart constructor public NetworkEditPart(Network network) { setModel(network); }

Tip: When basing an editor on an EMF model, most of the objects returned by the getModel() methods of the EditParts will be EObjects, however, you can use any object as the model for an EditPart. This is one way to provide EditParts that do not correspond directly to EObjects from the EMF model. We implement the getModelChildren() method for NetworkEditPart, as shown in Example 5-2. This method returns all of the objects directly contained by the EditPart’s model object, in this case, all of the Nodes contained by the Network. This method needs to be implemented by any EditPart that contains children EditParts.

168

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Example 5-2 NetworkEditPart’s getModelChildren() method protected List getModelChildren(){ return getNetwork().getNodes(); }

Usually, the containment hierarchy of EditParts mirrors the containment hierarchy present in the model, so the getModelChildren() method often returns the objects contained by the EditPart’s model object. When this is the case, we can call the methods generated by EMF for each containment EReference to construct a List of all contained objects, as we also see in the sample application in Example 7-3 on page 210. However, if your EditPart containment hierarchy differs from your model hierarchy, remember that this method needs to return all of the objects corresponding to children EditParts, and only the objects corresponding to children EditParts. How you choose to map the other objects from your model to EditParts will depend on how each object is to be represented graphically. The graphical representation for some objects may be simple, but for others, it may be composed of multiple graphical components. These components will either be implemented as child EditParts, or as children of the figure that represents the model object in the view. An example of an appropriate use of child figures is to represent object attributes with simple string or number values. An EditPart is typically used to represent something with which the user interacts, which can be selected and manipulated in its own right. Note: While it is usual for an EditPart to have a direct correspondence to a single object in the model, this is not a requirement. You can choose to use more than one EditPart to represent an object from the model, use a single EditPart to represent multiple model objects, or even create EditParts that have no direct correspondence to model objects. See “Indirect mappings” on page 171 for examples. One approach for mapping from the model is to provide an EditPart for each class, and then decide if you need any extra EditParts to represent its features. For the NetworkEditor, we use an AbstractGraphicalEditPart for both the Network and the Node class. Objects referenced by a containment reference are represented as child EditParts, that is, NetworkNodeEditParts are children of NetworkEditPart, and Links between Nodes are represented as LinkEditParts, which subclass AbstractConnectionEditPart. In addition to implementing the EditParts, we also subclass EditPartFactory as GraphicalEditPartFactory. It is from this class that EditParts are created and associated with their corresponding model objects, as shown in Example 5-3.

Chapter 5. Using GEF with EMF

169

Example 5-3 The createEditPart() method public class GraphicalEditPartsFactory implements EditPartFactory{ public EditPart createEditPart(EditPart context, Object obj){ if(obj instanceof Network) return new NetworkEditPart((Network)obj); else if(obj instanceof Node) return new NetworkNodeEditPart((Node)obj); else if (obj instanceof Link) return new LinkEditPart((Link)obj); return null; } }

Figures Each EditPart has a corresponding figure which is created and returned by the EditPart’s createFigure() method. For each EditPart that you implement, you will need to decide if you also need to provide a specialized figure to represent that EditPart. EditParts that have simple graphical representations can often be represented using one of the figures provided by Draw2D, such as a label or a shape. We use a layer as the figure for NetworkEditPart in the NetworkEditor, as Example 5-4 shows. Example 5-4 NetworkEditPart’s createFigure() method protected IFigure createFigure(){ FreeformLayer layer = new FreeformLayer(); layer.setLayoutManager(new FreeformLayout()); layer.setBorder(new LineBorder(1)); return layer; }

EditParts with visual representations consisting of multiple parts will usually require a custom Figure to contain all of the child figures. We implement NodeFigure to represent NetworkNodeEditParts. The id attribute of each Node is represented as a child Label of the NodeFigure, as shown in Example 5-5. Example 5-5 NodeFigure with child Label for id attribute public class NodeFigure extends Ellipse { protected EllipseAnchor incomingConnectionAnchor; protected EllipseAnchor outgoingConnectionAnchor; protected Label label; protected XYLayout layout; public NodeFigure() { layout = new XYLayout(); setLayoutManager(layout);

170

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

setBackgroundColor(ColorConstants.white); setOpaque(false); incomingConnectionAnchor = new EllipseAnchor(this); outgoingConnectionAnchor = new EllipseAnchor(this); label = new Label(" "); add(label); } public void setId(String id){ label.setText(id); } ... }

Indirect mappings There are few restrictions on how you may map your model objects to EditParts; however, if you decide to map a single model object into multiple EditParts, you will need to contain those parts by a (possibly invisible) parent EditPart that corresponds to the model object. The reason why your model object can only correspond to a single EditPart is because the viewer uses a java.util.Map to map model objects to their corresponding EditParts, using the model object as the key. If grouping the parts is not appropriate for the graphical representation that you have chosen to use, this usually indicates a mismatch between the model and the graphical representation, and you may need to reconsider the representation or refactor your model. Using this approach, when a new object is created, your EditPartFactory implementation can simply return an instance of the parent EditPart as the result of the createEditPart() method. Then the getModelChildren() method of the parent EditPart can construct appropriate Java objects for the children that only contain the data that is relevant to each child EditPart. Usually such objects would represent some subpart of the EObject, such as a feature or collection of features. Grouping the EditParts within a parent can make it easier to update the parts in response to model change, as only the parent EditPart needs to listen for changes to the model object and can then selectively update its children EditParts. We discuss how EditParts listen for and respond to model change in 5.2.4, “Reflecting model changes” on page 175. It is common for multiple model objects to be mapped to a single EditPart in the graphical representation, particularly where containment relationships exist in the model. An example is provided in the sample application and discussed in Chapter 7, “Implementing the sample” on page 203, where ports that are contained by a WorkflowNode are represented as child figures rather than as separate EditParts.

Chapter 5. Using GEF with EMF

171

Sometimes, you may wish to implement EditParts that do not directly represent an instance of a class from the model, for example, EditParts that represent state that is derived from model objects. In this case, you still need to provide an object to the EditPart via the setModel() method, but it does not have to be an EObject from your model. A common example of an EditPart that does not have a direct correspondence to a class from the model is a ConnectionEditPart used to represent a reference. In the following example, we demonstrate how you can implement this mapping. Figure 5-2 shows a modified version of the NetworkModel. In this model, there is no Link class to represent the links between nodes explicitly. Instead, the references upstreamLinks and downstreamLinks are used to maintain the relationships between nodes.

Network name: EString 1 Network

0..* Nodes Node x: EInt y: EInt id: EString downstreamLinks

upstreamLinks 0..*

0..*

Figure 5-2 NetworkModel without the Link class

Each LinkEditPart still needs to correspond to an object so that it can be looked up in the EditPartRegistry of the viewer whenever refreshSourceConnections() or refreshTargetConnections() is called in NetworkNodeEditPart, to create or update the connected links. The corresponding object can be any Java object, and in our example, we use a String that identifies the source and target of the LinkEditPart as its model object. We modify the NetworkEditor as follows: Modify LinkEditPart so that it takes a String argument in the constructor and uses that String as the model object instead of a Link.

172

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

 Modify GraphicalEditPartFactory so that it provides a String to the LinkEditPart constructor when creating a new LinkEditPart. Remove references to Link from the ModelCreationFactory, and use null instead of a ModelCreationFactory in the NetworkPaletteRoot when creating the tool entry for link creation. Provide new implementations of getModelSourceConnections() and getModelTargetConnections() in NetworkNodeEditPart, to return the Strings that we use to identify the links. The String that we use to identify a Link is constructed using toString() on the source and target Nodes. An example of how we construct the identifying String is shown in Example 5-6. Example 5-6 Returning derived objects from getModelSourceConnections() protected List getModelSourceConnections() { Vector s = new Vector(); Iterator i = getNetworkNode().getDownstreamLinks().iterator(); Node n; while(i.hasNext()){ n = (Node)i.next(); s.add(getNetworkNode().toString() + "->" + n.toString()); } return s; }

Remember that you can use any Java object as the model for your EditParts. You can create parts with more complex derivations from the model by providing your own objects to represent those values. You should only use this technique for transient or derived values, as any data that is not stored in the model will not be persisted by default. As we have seen in Example 5-6, you can then associate your custom objects with their corresponding EditParts from within getModelChildren(), getModelSourceConnections() or getModelTargetConnections(), depending on whether you are using child or connection EditParts to represent those objects.

Fitting the graphical representation to the model Sometimes you may wish to modify your model so that it corresponds more closely to the graphical representation that you choose to use in your GEF-based application. GEF assumes that all of the information that you need to store about the diagrams that you are editing is represented in the model. For this reason, you may also need to augment your model to include information such as co-ordinates or dimensions.

Chapter 5. Using GEF with EMF

173

There are several approaches for constructing the model that you will use in your application (the view model) from your original model (the business model): Create a modified version of the original model, with the additional view information added directly to your original model objects. This approach is straightforward to implement, however, the correspondences between the view model and the business model are not explicit, as there is no tangible link between the two models. This is the approach that we use in the sample application. Use two separate models, the business model, and a new model for view-specific information. This is the approach used by the Omondo UML Editor. Use modelling techniques to make the link between the view and business model explicit. For example, create a new package that imports the business model, and subclasses all of the business model objects, adding the necessary view information in the subclasses. We discuss examples of the latter two approaches in Chapter 1, “Introduction to EMF” on page 3.

5.2.2 Displaying properties In the sample application, and also in the NetworkEditor example, we use reflection to construct property sheets for our model objects.“Register the EditPart as a property source:” on page 205 describes the implementation in more detail.

5.2.3 Support for editing the model Changes to the model are made via commands. Remember that commands only know about model objects. It is the responsibility of EditParts to listen for changes made to model objects by commands and update the view accordingly. When you are using a hand-coded model, usually when you use commands to change the model, you know exactly how the changes effect the state of the model. An important thing to note when using an EMF model is that changes that are made to the model sometimes have consequences that you may not take into consideration when implementing undo functionality. For example, if you remove a reference to an object, the reference back from the opposite will also be removed. If you delete an object that contains others, they will also be deleted. This is because the EMF types are implemented to ensure that the model remains consistent. When you are using EMF for the first time, these behind the scenes changes are convenient, as they save you from having to enforce these constraints manually; however, they can come as a surprise if you are not aware of how the underlying objects behave.

174

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

If you are not expecting such changes, you can run into problems, for example when undoing multiple changes in the sample application, if you delete an edge and then the node it was connected to, the port that the edge was connected to will be deleted with the node, so you need to store enough information about the ports and the edge, so that the edge can find the right ports to reconnect to if those deletions are undone. When you are working with a known model it is not usually a problem to know how much information you need to store to facilitate undo, however, if you are working with models generically using the reflective API, the safest way to ensure that undo restores the model exactly how it was before the change, is to snapshot the model each time a command executes. You can either represent each snapshot as a separate serialization, or use diffs to reconstruct model state.

5.2.4 Reflecting model changes EditParts are the representation of model objects in the editor, hence they need to listen for any changes that are made to their corresponding objects in the model and update their representation accordingly. EMF provides a Notification framework: Every EObject is a Notifier that can be adapted (or observed) by any class that implements the Adapter interface provided by org.eclipse.emf.common.notify. You will notice that in the implementation classes generated from an Ecore model, whenever the state of the object is modified by setting or unsetting a feature or adding or removing contained objects, any adapters are notified by a call to eNotify() that provides details of the change. Each Adapter receives these notifications via the notifyChanged() method. The EditParts in our Network editor adapt their corresponding model objects and implement notifyChanged() to respond accordingly to the changes. Each EditPart adds itself to the adapters of any objects that it represents in its activate() method, and removes itself from the adapters of those objects in its deactivate() method. Example 5-7 shows how NetworkEditPart adds itself as an adapter of the Network it represents in its activate() method. Example 5-7 The activate() method of NetworkEditPart public void activate(){ if (isActive()) return; ((Notifier)getNetwork()).eAdapters().add(this); super.activate(); }

Each EditPart also implements the notifyChanged() method. Depending on what has changed, the EditPart may need to update its children, connections or visual representation to reflect the changed state of the model, by calling the

Chapter 5. Using GEF with EMF

175

refreshChildren(), refreshSourceConnections(), refreshTargetConnections() or refreshVisuals() methods. We outline the methods that we might typically call in our implementation of the notifyChanged() method of an EditPart, in response to the different types of Notification, in Table 5-1. Table 5-1 Typical response to change Notifications Notification type

Circumstances

Response

ADD ADD_MANY

Added objects are represented as a child EditPart

refreshChildren()

Added objects are represented as connected ConnectionEditParts

refreshSourceConnections() or refreshTargetConnections()

Notifier object is represented by a child EditPart

refreshChildren()

Notifier is represented by a connected ConnectionEditPart

refreshSourceConnections() or refreshTargetConnections()

Notifier is the model object of this EditPart

refreshVisuals()

REMOVE REMOVE_MANY

SET UNSET

When the graphical representation corresponds closely to the model, as is the case in our Network editor example, the notifyChanged() method is straightforward, as we see in Example 5-8. In this case, the EditPart needs only to refresh its children when the contents of the Network that it represents change, or to refresh its visual representation when a feature of the Network is changed. Example 5-8 NetworkEditPart refreshing children EditParts public void notifyChanged(Notification notification) { int type = notification.getEventType(); switch(type) { case Notification.ADD: case Notification.ADD_MANY: case Notification.REMOVE: case Notification.REMOVE_MANY: refreshChildren(); break; case Notification.SET: refreshVisuals(); break; } }

176

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

If an EditPart does not use all of the features of the model object in its visual representation, additional code could be added so that refreshVisuals() is only called when features that are visualized change. If the visualization is made up of many parts, you may want to provide methods that will only refresh specific parts of the view, and use them from notifyChanged() instead of refreshVisuals(). Refreshing source or target connections is similar to refreshing children. For example, whenever a NetworkNodeEditPart receives notification of changes to its upstreamLinks or downstreamLinks features, it refreshes the connections that represent that link, as we see in Example 5-9. Example 5-9 NetworkNodeEditPart refreshing connected EditParts public void notifyChanged(Notification notification) { int featureId = notification.getFeatureID(NetworkPackage.class); switch(featureId) { case NetworkPackage.NODE__UPSTREAM_LINKS: refreshTargetConnections(); break; case NetworkPackage.NODE__DOWNSTREAM_LINKS: refreshSourceConnections(); break; default: refreshVisuals(); break; } }

In summary, EditParts need to know whenever their corresponding model objects change, so that they can update their children, connections, and visuals appropriately. We can implement this by making each EditPart an Adapter on its corresponding model object, and this works well if the model corresponds closely to the graphical representation, that is, if most EditParts correspond directly to model objects, and the EditPart containment hierarchy mirrors the hierarchy in the model. If the correspondence between objects from your model and the EditParts that you choose to represent them is not so close, you will need to customize this approach. You may wish to consider the following guidelines: If an EditPart represents multiple objects from the model, that EditPart needs to listen for changes to all of those model objects. If the group of objects that it represents can change, it may be necessary for the EditPart to also add or remove itself from the adapters of those objects in response to the objects being added or removed, in notifyChanged(). The sample application provides an example of this for WorkflowNodeEditPart, which represents WorkflowNodes and their Ports and which is described in 7.2.2, “Tracking model events in the editor” on page 207.

Chapter 5. Using GEF with EMF

177

 For EditParts that contain or connect to EditParts that do not correspond directly to objects contained by the parent EditPart’s model object, the EditPart must listen for changes to all model objects that contribute to the state of objects represented by its children, and then update its children or connections whenever those objects change. EditParts that do not directly correspond to model objects do not need to implement the Adapter interface as they rely on their parent to refresh them.

5.2.5 Loading and saving model instances 2.3, “Model instances and serialization” on page 64 demonstrates how to serialize model instances via resources. In the NetworkEditor example, we use the default XMI serialization provided by XMIResource, however the way that we load and save models from the editor is the same regardless of the type of resource that we choose to represent our network instances. We provide a class NetworkModelManager, which manages an XMIResource containing a network, and which provides methods that create, load and save that resource. Using a different serialization would simply require another implementation of the NetworkModelManager class that used a custom resource type and factory, instead of XMIResource. The NetworkEditor class uses NetworkModelManager, creating one per file that is open in the multi-page editor, and provides methods to get and save the Network instance currently being edited via the NetworkModelManager. Example 5-10 shows how the editor uses the NetworkModelManager instance to get a network from a file opened in the editor. This method is called when the editor is initialized from its init() method. Example 5-10 Getting an instance from the ModelManager private Network create(IFile file) throws CoreException{ Network network = null; modelManager = new NetworkModelManager(); if (file.exists()){ try{ modelManager.load(file.getFullPath()); } catch (Exception e) { modelManager.createNetwork(file.getFullPath()); } network = modelManager.getModel(); if (null == network){ throw new CoreException(new Status(

178

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

IStatus.ERROR, NetworkEditorPlugin.PLUGIN_ID, 0, "Error loading the worklow.", null)); } } return network;

} The editor uses a similar mechanism to save Networks via the NetworkModelManager, using the following method call: modelManager.save(file.getFullPath()); When the save() method is called, the NetworkModelManager calls the save() method on the Resource containing the Network, and it is serialized into an XMI document and saved to the path supplied.

5.2.6 Putting it all together We complete the editor by integrating the model-specific code into a multi-page editor that we package as a plug-in. We subclass MultiPageEditorPart as NetworkEditor. This class sets up commands, actions and the palette used in the editor. As this is standard GEF, and is very similar to the code described for the sample application, we do not describe these details of the NetworkEditor implementation here. Finally we hook our model and corresponding EditParts into the viewer when we create the GraphicalViewer within the NetworkPage class, as shown in Example 5-11. Example 5-11 Hooking the model into the GraphicalViewer private void createGraphicalViewer(Composite parent){ viewer = new ScrollingGraphicalViewer(); ... // initialize the viewer with input viewer.setEditPartFactory(new GraphicalEditPartsFactory()); viewer.setContents(getNetworkEditor().getNetwork()); }

Chapter 5. Using GEF with EMF

179

Figure 5-3 shows a screen capture of the graphical view of the completed NetworkEditor application.

Figure 5-3 The NetworkEditor

5.3 Using JET in GEF-based editor development In this section, we discuss how JET may be used to speed up development of an editor based on EMF and GEF. We provide an example that generates skeletons for some classes that are used in a GEF editor, from a model. We can use the technique described in this section regardless of whether we take the approach described in 5.2, “Using an EMF model within a GEF-based application” on page 167, or whether we are using GEF to augment an EMF.Edit-based editor. You can flesh out the generated code into an application as described in Chapter 3, “Introduction to GEF” on page 87.

180

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

When developing your GEF-based application based on an EMF model, you will notice that you are usually creating many similar classes, for example, often you will create NodeEditParts for most of the classes in your model, perhaps using ConnectionEditParts for some of them. Often you will use a custom figure for your NodeEditParts. In the following example, we use JET templates to generate EditParts and Figures from classes in our model. This is a very basic example, to illustrate concepts. We do not provide a complete example due to time constraints, as the templates required to generate more complete implementations would be non-trivial. You would probably want to provide more detail in the templates if you wanted to generate EditParts specific to your application. Refer to the JET Tutorial, Part one for an introduction to using JET. We use a similar process to the example described to generate our skeleton EditParts and Figures from the WorkflowModel. We take the following steps: 1. To begin with, we create a project, and add a JET Nature to the project from the right-click context menu. This sets up the template directory. 2. In the template directory, we create a new file NodeEditPart.javajet. 3. We edit the NodeEditPart to create all of the required methods. We base the content of the template on the NetworkNodeEditPart from the NetworkEditor described in 5.2, “Using an EMF model within a GEF-based application” on page 167. Example 5-12 shows an excerpt from the template. Our example only really uses the name of the class so far to generate the skeleton, however you could use methods on the EClass to get more detail. For example, you might want to generate a skeleton notifyChanged() method with a switch that selected from all of the features of the class. Example 5-12 NodeEditPart template ... imports ... public class EditPart extends AbstractGraphicalEditPart implements NodeEditPart, Adapter { private IPropertySource propertySource = null; private Notifier target; public EditPart(o) { setModel(o); } public get() {

Chapter 5. Using GEF with EMF

181

return ()getModel(); } /* (non-Javadoc) * @see org.eclipse.gef.editparts.AbstractGraphicalEditPart#getModelSourceConnections() */ protected List getModelSourceConnections() { // TODO: implement to return the objects represented by the connections sourcing from this node throw new UnsupportedOperationException(); } /* (non-Javadoc) * @see org.eclipse.gef.editparts.AbstractGraphicalEditPart#getModelTargetConnections() ... }

4. We also create NodeFigure.javajet, to generate a figure for each EditPart. 5. We change the JET properties for our project to ensure that the translated templates are compiled into the src directory. To do this, we open the properties of the project, select JET Settings, and then set Source Container to src. 6. We compile each template by selecting the template and then selecting Compile Template from the right-click context menu. Now, we should see the translated templates appear in the src directory. 7. We create a class EditPartGenerator in the com.ibm.itso.sal330r.codegen package that was created for the translated templates. 8. In the main method of EditPartGenerator, we add code to get classes from the model, and use them as arguments to the generate() method of our compiled templates. Example 5-13 shows the code that we add to facilitate this. Note that we must use the init() method on the NetworkPackage to initialize it before use. Example 5-13 Using the templates NodeEditPartTemplate n = new NodeEditPartTemplate(); NodeFigureTemplate f = new NodeFigureTemplate(); WorkflowPackageImpl.init(); Map registry = EPackage.Registry.INSTANCE; String workflowURI = WorkflowPackage.eNS_URI; WorkflowPackage workflowPackage = (WorkflowPackage) registry.get(workflowURI); // Generate TaskEditPart EClass taskClass = workflowPackage.getTask(); String result = n.generate(taskClass));

182

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

9. The result of calling generate() on the template is a string containing the text generated from the template. In our simple example, we print this to System.out, however if you were really generating code, you would want to create a resource containing the contents of the String. 10.If you run the EditPartGenerator as a Java application, you will see the resulting code printed to the console. Using a similar approach to the EMF codegen for the model, edit, and editor plug-ins, you could generate a generic graphical editor for any model using JET. You would probably want to use your own GenModel to represent options such as whether a class maps to a Node or Connection EditPart, whether it can contain other nodes, and possibly also to specify the type of Figure used to represent the class. You could then generate from instances of that model rather than from the application model directly.

Chapter 5. Using GEF with EMF

183

184

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Part 2

Part

2

Sample application In this part of the book, we describe our redbook sample application. We discuss sample requirements and design, and show how to implement the sample.

© Copyright IBM Corp. 2004. All rights reserved.

185

186

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

6

Chapter 6.

Sample requirements and design In this chapter, we introduce our redbook sample application, and describe its objectives. We define the requirements and explain our design decisions.

© Copyright IBM Corp. 2004. All rights reserved.

187

6.1 Sample application requirements In this section we introduce the sample application and describe its features.

6.1.1 The application The problem space we have chosen to demonstrate model construction is workflow. It has a few key concepts that should be interesting to our readers, and is general enough so that all our readers should understand these concepts. A workflow is a collection of tasks. Two types of task have been defined: simple and complex.

Simple tasks A simple task, as represented in Figure 6-1, has one input, one output, and one fault output. A simple task does some sort of processing on the data given to it. Two tasks are linked together with an edge. Data on the input is processed by the task and made available on the output.

Label T In

Task

Out Fault

Figure 6-1 Task representation

Complex tasks These are the complex tasks that we use in our sample application: Compound task: A compound task is a kind of container. It follows the composite pattern. It contains a containment reference to a workflow, which can contain other simple or compound tasks. Loop task: The loop task gives us the ability to iterate, as long the condition, a predicate, is true. Choice task: The choice task implements branching. Transformation: Transformation has been introduced in order to enable a task to do a combination of its multiple inputs.

188

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 6-2 shows the representation we use for complex tasks.

Compound Task (= Nested Task) Task

Task

Task Choice

X=

2

Task X=3

True

Task

LoopTask While Condition

T

Label A Label B

T

Transformation

Label O

A+B

Figure 6-2 Complex task representation

Edge An edge is used to link two tasks together. The output of the first task is redirected to the input of the second task. An edge represents both control and data flow. This means that once the first task has completed, the data made available to and the control flow is transferred to the second task.

Chapter 6. Sample requirements and design

189

Multiple edges can end to a task input slot. This means that the task has to wait for all former tasks to reach the completion stage, before being able to process the multiple data set available. Figure 6-3 shows our representation of edges.

Concurrency

Task

Task

Task Task

Figure 6-3 Concurrency and edge representation

Variables and labels The final two concepts that we introduce are the use of labels and the use of variables. Labels can be used to decorate any of the input, output, and fault slots of a task, to decorate conditions on a conditional edge from a conditional task, and to decorate variables. Variables are used to store data, usually coming from the output of a task, and to hold the data until another task in the workflow makes use of it. Variables can be seen as a way to separate the control flow from the data flow. Control goes to the next task, while the data is held in the variable.

Start and end tasks In order to run the workflow, we define a start and end point as a decoration of a task. The start icon is a green triangle, while the stop icon is a small red square. See Figure 6-4 for an example.

Variable

Label Variable P P Task

Task Task

Task

Figure 6-4 Data flow, variable, start, and stop tasks representation

190

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

6.2 Sample application design The EMF and GEF sample application is an Eclipse plug-in. It is an editor, which uses a property view to capture user input, and provides an outline view to help the user to navigate more easily through the model. It also has multiple levels of undo and redo, and provides several Eclipse plug-in extension points. These plug-in extension points are: The view menu, which contains the Zoom In and Zoom Out menu items The undo, redo tool bar At the editor level, additional context dependent features have been defined: Inplace editing for compound tasks: – A task can be added to a compound task by means of drag and drop. – A sub-workflow can be accessed through the compound task itself. A separate editor tab for compound task editing: – This provides an extended work space to work on a sub-workflow defined in a compound task. During edge creation, which is a link between two nodes, the link creation tool is smart enough to recognize where the link can be connected: – No loop on a single task is allowed. – No link from a task of a sub-workflow to a task in the main workflow is allowed. – Link cursor is dynamically updated to represent the ability to connect to a given endpoint. Dynamic update of the main and properties view, to reflect the user action on the outline view. Drag and drop from the palette into the viewer. Right-click contextual menu: – For example, the Choice right-click menu contains undo, delete, add condition to choice and save actions.

6.2.1 Design decisions During the design process, we made some important decisions, including these: There is one top level workflow per file. The sub-workflow of a compound task is contained in the workflow itself. No reference to an external workflow or sub-workflow is supported.

Chapter 6. Sample requirements and design

191

Note: In Eclipse, only one editor can be opened on a workflow at a time, but multiple workflows can be edited in different Eclipse workflow editors.

6.2.2 The workflow model This section documents the WorkflowModel, shown in Figure 6-5.

WorkflowElement comment: EString height: EInt id [1..1]: EString name: EString width: EInt x: EInt y:EInt

Comment

1

Comments 0..*

Workflow

Workflow 1

Nodes 0..*

WorkflowNode

Node 1

isFinish [1..1]: EBoolean isStart [1..1]: EBoolean

Subworkflow 1

Node 1 Transformation

Task

Choice

transformationExpression: EString Port 1..* Outputs

Inputs 1..* InputPort Edges 0..* 1 Target Edges Edge 0..*

Edges 0..*

OutputPort 1 Source

ConditionalOutputPort

CompoundTask

LoopTask FaultPort

conditionalOutput [1..1]: EString

whileCondition [1..1]: EString

Figure 6-5 The WorkflowModel

WorkflowElement The WorkflowElement class provides features common to all elements present in a workflow. It is the common abstract supertype of the Workflow, WorkflowNode Port, Edge and Comment classes. Table 6-1 provides a summary of the WorkflowElement class.

192

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Table 6-1 WorkflowElement summary Owned By Inheritance Features

name: Identifies the Workflow comment: An optional comment string x: Coordinate used for layout y: Coordinate used for layout width: Used for layout of container elements height: Used for layout of container elements id: Used to uniquely identify a workflow element

Constraints

Workflow The Workflow class represents the description of a process. A Workflow contains WorkflowNodes representing the steps in the process and Edges that represent data and control flow between the nodes. A Workflow may also contain comments that annotate the process described by the Workflow. Table 6-2 provides a summary of the Workflow class. Table 6-2 Workflow summary Owned By Inheritance

WorkflowElement

Features

nodes: The WorkflowNodes contained within this Workflow edges: The Edges contained within the Workflow comments: The Comments contained within the Workflow

Constraints

WorkflowNode The class WorkflowNode represents a step in a Workflow. WorkflowNodes have ports and may be connected to other WorkflowNodes via those ports. Table 6-3 provides a summary of the WorkflowNode class. Table 6-3 WorkflowNode summary Owned By Inheritance

WorkflowElement

Chapter 6. Sample requirements and design

193

Features

isStart: Indicates whether this is the starting node of a Workflow isFinish: Indicates whether this is the finishing node of a Workflow workflow: A reference to the Workflow that contains the node outputs: Output ports (including fault ports) owned by the node inputs: Input ports owned by the node

Constraints

WorkflowNodes have no more than one Fault port.

Task The class Task represents an action or unit of work within the Workflow. The start and end icons in the documentation are different from the ones currently implemented. In the application, the start task’s InputPort is replaced by a green square and the end task’s OutputPort is replaced by a red square as shown in Figure 6-6. Table 6-4 provides a summary of the Task class.

Start Task

End Task

Figure 6-6 Task visual Table 6-4 Task summary Owned By Inheritance

WorkflowNode

Features Constraints

A Task has exactly one input port and one (non-fault) output port.

CompoundTask The class CompoundTask is a Task that is defined by a sub-workflow. The CompoundTask is complete when the sub-workflow that composes it is complete. As CompoundTask inherits from Task, it has a single input port, output port and fault port. When a CompoundTask begins, the inputs to the start nodes of the sub-workflow are the inputs that are received at the input port of the CompoundTask. Similarly, when the sub-workflow completes, the output data from the finishing nodes of the sub-workflow provide the data that is output from the output port of the CompoundTask. Figure 6-7 shows the visual representation of a CompoundTask.

194

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Compound Task (= Nested Task) Task

Task

Figure 6-7 Compound task visual

Table 6-5 provides a summary of the CompoundTask class. Table 6-5 CompoundTask summary Owned By Inheritance

Task

Features

subworkflow: The Workflow that defines the CompoundTask

Constraints

LoopTask The LoopTask represents actions that are repeated while a condition is true. The actions that are repeated are contained by the sub-workflow of the LoopTask. The data received at the Input of the LoopTask is provided as the input to the first execution of the start node in the LoopTask’s sub-workflow. For each repetition of the sub-workflow, the output from the previous execution becomes the input to the current one. The output from the finishing nodes from the final execution of the loop becomes the output of the LoopTask. Figure 6-8 shows the visual representation of the LoopTask

LoopTask While Condition

T

T

Figure 6-8 LoopTask visual

Table 6-6 provides a summary of the LoopTask class.

Chapter 6. Sample requirements and design

195

Table 6-6 LoopTask summary Owned By Inheritance

CompoundTask

Features

whileCondition: While this holds, the sub-workflow is repeated

Constraints

Choice The class Choice represents a switch between alternative execution and data flow paths. Data and control flow is only activated for Edges that source from output ports of the Choice where the condition of the OutputPort evaluates to true. Conditions must be unique in a Choice. The default name for a condition is false. The way conditions are represented in the workflow editor differ a little bit from the present documentation, where a condition is drawn close to the corresponding edge. In the editor, they are drawn inside the Choice visual itself. A condition is placed in front of the corresponding ConditionalOutputPort port, see Figure 6-9.

Task Choice X=

2

Task X=3

True

Task

Figure 6-9 Choice visual

Note: The little icon on the upper right corner of the Choice is used for adding a condition to it. If you click it and nothing happens, check if the default false condition is not already defined in the Choice. Table 6-7 provides a summary of the Choice class.

196

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Table 6-7 Choice summary Owned By Inheritance

WorkflowNode

Features Constraints

Choice has only one input port, but may have multiple output ports. Non-fault OutputPorts owned by a Choice must be ConditionalOutputPorts.

Transformation The class Transformation takes multiple inputs and performs a transformation on that data to produce a single result. Figure 6-10 shows the visual representation of a Transformation.

Label A Label B

Transformation

Label O

A+B

Figure 6-10 Transformation task visual

Table 6-8 provides a summary of the Transformation class. Table 6-8 TransformationTask summary Owned By Inheritance

WorkflowNode

Features

transformExpression: Expresses how the input data is transformed into the output data

Constraints

Transformation has only one (non-fault) output port, but may have multiple input ports

Edge The class Edge represents a connection between an output port and an input port, that is, a flow of data from the output of one WorkflowNode to the input of another. Table 6-9 provides a summary of the Edge class.

Chapter 6. Sample requirements and design

197

Table 6-9 Edge summary Owned By

Workflow

Inheritance

WorkflowElement

Features

workflow: The containing Workflow source: The output port from which the Edge begins target: The input port at which the Edge terminates

Constraints

Port The abstract class Port is the common supertype for InputPort and OutputPort.Table 6-10 provides a summary of the Port class Table 6-10 Port summary Owned By Inheritance

WorkflowElement

Features Constraints

InputPort The class InputPort represents the Port at which data and control is received by a node in the Workflow. Table 6-11 provides a summary of the InputPort class Table 6-11 Input Port summary Owned By

WorkflowNode

Inheritance

Port

Features

edges: The edges that target the InputPort node: The WorkflowNode that owns the InputPort

Constraints

OutputPort The class OutputPort represents the Port at which data and control is provided by a WorkflowNode upon completion. Table 6-12 provides a summary of the OutputPort class.

198

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Table 6-12 OutputPort summary Owned By

WorkflowNode

Inheritance

Port

Features

node: The WorkflowNode that owns the OutputPort edges: The edges for which the OutputPort is the source

Constraints

FaultPort FaultPort represents the output of a node that terminates under exceptional conditions. The exception may be handled by another node if there is an Edge linking the FaultPort with the InputPort of the handling WorkflowNode, otherwise the Workflow containing the WorkflowNode that owns the FaultPort fails. Table 6-13 provides a summary of the FaultPort class Table 6-13 FaultPort summary Owned By Inheritance

OutputPort

Features Constraints

ConditionalOutputPort The ConditionalOutputPort class represents an output of a Choice. For any Choice, the conditions of its ConditionalOutputs determine the execution paths that are taken upon evaluation of the Choice, as only Edges sourcing from a ConditionalOutputPort where the condition evaluates to true will be activated when the Choice completes. Table 6-14 provides a summary of the ConditionalOutputPort class Table 6-14 ConditionalOutputPort summary Owned By Inheritance

OutputPort

Features

condition: The condition used to determine the execution path

Constraints

Chapter 6. Sample requirements and design

199

Comment The Comment class represents a free-standing comment within a Workflow. The text of the comment is represented in the comment attribute inherited from WorkflowElement. The Comment class provides a mechanism for including comments in the workflow that are not attached to the Ports, Edges or WorkflowNodes. Table 6-15 provides a summary of the Comment class. Table 6-15 Comment summary Owned By

Workflow

Inheritance

WorkflowElement

Features Constraints

6.3 Sample application demo The sample application workflow editor is the default editor for file with a .workflow extension. To run the workflow sample application, we need to first create a simple project, than create a workflow file using the simple file creation wizard or the workflow wizard. The workflow wizard provides workflow file extension handling and control. To create a simple project: 1. Click File -> New -> Other..., select Simple -> Project, click Next. 2. Give the project name, click Finish. To create a workflow model with the simple file creation wizard: 1. Click File -> New -> Other..., select Simple -> File, click Next. 2. Give the file name, for example myworkflow.workflow, click Finish. To create a workflow model with the simple file with the workflow wizard: 1. Click File -> New -> Other..., select Other -> Workflow, click Next. 2. Give the file name, for example My.workflow, click Finish. In both cases, the workflow editor opens automatically on a new empty workflow. Figure 6-11 shows a workflow model built using our redbook sample application.

200

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 6-11 Workflow sample application window

Notes: 1. If your starting point is the additional material, which contains the plug-in code, you have to run the plug-in on a Run-time Workbench. Eclipse automatically opens the editor on the workflow file, created during the simple file creation process. 2. The Edge creation tool was considered as a composite of the model. It was presented in a way similar to Tasks, with an Edges menu and an Edge entry. Later on, it has been considered not as being a composite, but more like a link between two composites. As such, it was moved to the top of the menu, just after the Select and Marquee tools.

Chapter 6. Sample requirements and design

201

202

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

7

Chapter 7.

Implementing the sample In this chapter, we discuss the implementation of our workflow editor sample application. We describe its architecture, the model, and the multi-page editor.

© Copyright IBM Corp. 2004. All rights reserved.

203

7.1 Overview In this section we provide an overview of the sample application. We provide a summary of the packages and classes in the implementation, along with instructions for how to run the sample application. We also highlight notable sections from the JavaDoc.

7.2 Architecture In this section we describe the architecture of the sample application. We discuss the techniques that we use to connect the EMF model with the editor framework.

7.2.1 Mapping the EMF model to GEF EditParts One of the key tasks in creating a GEF application is the process of mapping your applications EditParts with your model. In this section we discuss the process that we took to bind our sample application's EMF-based model with the editor framework. The GEF provides a lot of flexibility as far as how its EditParts relate to the underlying model. There are no strict requirements on how EditParts map to actual objects in the model. The first step, then, is to decide what this mapping will be in your application. In general, there will probably be fewer EditParts than there are object classes in your model. For instance, in our sample application, we created the WorkflowNodeEditPart to be the base class for model elements that have connections. In the model, the ports are separate objects; but in the editor, we chose to have the WorkflowNodeEditPart represent both the node and all its ports. One criterion for making a determination about this mapping is to consider how dynamic the visual behavior of a component needs to be. For instance, if a model object needs a visual representation that can be moved, resized, or can be individually added or deleted, then it may be a good candidate for mapping it to its own EditPart. In our sample application, we designed the EditPart class hierarchy shown in Figure 7-1.

204

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 7-1 The sample application’s EditPart class hierarchy

EditPart functionality The base class for our EditParts is the WorkflowElementEditPart class, which provides the following three main functions needed by all its subclasses: Register the EditPart a listener of its model: The WorkflowElementEditPart class implements the interface that is used by listeners of EMF's notification mechanism: org.eclipse.emf.common.notify.Adapter

Tracking changes in the model is crucial to the EditPart's function (discussed in detail in 7.2.2, “Tracking model events in the editor” on page 207). We override the EditPart's life cycle methods activate() and deactivate() to manage registration of the EditPart as an Adapter on its model. Register the EditPart as a property source: All EditParts inherit the IAdaptable interface from their AbstractEditPart base class. This Eclipse interface supports a kind of multiple inheritance in which a class can offer a proxy object to implement an interface requested by the Eclipse framework. In our case we want all of our EditParts to provide an implementation of the IPropertySource interface. By doing so the Eclipse property page viewer will display the properties of our EditParts as they are selected, and also allow them to be edited. The implementation of the IPropertySource interface requires adding Eclipse-specific code. While we could have extended our model's objects to implement this interface directly, we felt that it would be preferable to keep the Eclipse properties handling out of the model classes. Fortunately, the EMF-generated classes provide a lot of metadata. This made it simple to create a proxy class that provides a generic IPropertySource implementor, WorkflowElementPropertySource, that can provide the requisite IPropertyDescriptor's for any of our model's classes.

Chapter 7. Implementing the sample

205

This also provides for editing property values. Most of the work happens in this class’s getPropertyDescriptors() method, shown in Example 7-1. Example 7-1 A generic getPropertyDescriptors implementation for EMF classes public IPropertyDescriptor[] getPropertyDescriptors() { Iteratorit; EClass cls = element.eClass(); Collectiondescriptors = new Vector(); it = cls.getEAllAttributes().iterator(); while(it.hasNext()) { EAttributeattr = (EAttribute)it.next(); EDataTypetype = attr.getEAttributeType(); if(attr.isID()) { // shouldn't be editable descriptors.add(new PropertyDescriptor(Integer.toString(attr.getFeatureID()), attr.getName())); } else if(type.getInstanceClass() == String.class) { descriptors.add(new TextPropertyDescriptor(Integer.toString(attr.getFeatureID()), attr.getName())); } else if(type.getInstanceClass() == boolean.class) { descriptors.add(new CheckboxPropertyDescriptor(Integer.toString(attr.getFeatureID()), attr.getName())); } } return (IPropertyDescriptor[])descriptors.toArray(new IPropertyDescriptor[] {}); }

Using metadata in the EAttribute and EDataType classes, we construct a property descriptor for each property (attribute) of a model object. The EAttribute provides a unique ID and displayable name for each attribute. The type information in the EDataType is used to create subclasses of PropertyDescriptor that will provide cell editors appropriate for the data type of each attribute. Notice the special case for ids, which are identified by testing the EAttribute.isID() method. This attribute is the unique ID that is generated for each object in the model. We don't want this attribute to be editable, so we create an instance of PropertyDescriptor, which results in a read-only entry in the property page.

206

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

 Provide a default implementation of the refreshVisuals method: Our implementation of this method handles changes to an EditPart's size and position. In our sample application all of our EditParts can be moved, and most of them can be resized. Therefore we provide this functionality in our EditPart base class. The refreshVisuals() method simply applies the changed position and extent values in the model to the EditPart's figure by updating its layout constraint accordingly. The WorkflowNodeEditPart derives from WorkflowElementEditPart and its purpose is to support EditParts that have connections. This is the base EditPart for EditParts that map to the model classes derived from the WorkflowNode. This class implements GEF’s NodeEditPart interface, which supports the connection feedback mechanism in GraphicalNodeEditPolicy. This gives user feedback when Connections are initially connected and also if they are later disconnected and reconnected.

7.2.2 Tracking model events in the editor Once your EditPart to model mapping strategy has been designed, the next step is to enable your EditParts to be able to track changes in your model. As we have said, GEF itself does not provide nor require any specific event notification mechanism. If you are working with a model that does not include an event mechanism, one approach is to use the Java beans event support provided by the classes, java.beans.PropertyChangeSupport and java.beans.PropertyChangeListener. This is the approach taken in the logic example that the GEF project provides. In our case we are fortunate to have the full-featured notification mechanism that is generated automatically in EMF classes. Recall that all the EditParts in our sample are registered as adapters on the EMF model class(es) that they represent. Each EditPart then provides an override of the notification method: public void notifyChanged(Notification notification)

This method is called when any attribute of a model class is changed, or when a child object is added or removed. The Notification class provides extensive context describing the model change that has occurred. It includes information such as: The notifier, that is, which object's property has changed, or had a child added or removed The new and previous values of the target attribute The data type information for the affected attribute An identifier for the attribute

Chapter 7. Implementing the sample

207

This information is used to filter out events so that each EditPart only processes changes that are unique to properties of that particular part. Processing of more generic changes, for instance a change to a part's size or location, should be delegated to the superclasses implementations of notifyChanged(). Notice that the notification mechanism provided by EMF is very thorough, so that a change to any attribute will result in a notification event. This means that a more complicated model operation, in which several attributes are manipulated, results in a large number of notification events. Ideally the EditPart's implementation will filter these events accordingly so that the visual representation is maintained accurately while events that do not require a change to the visual representation are ignored. Remember that a single EditPart may be responsible for the representation of more than one object in the underlying model. In our sample application this is the case with WorkflowNodeEditParts, which represent a WorkflowNode with some number of Ports. In our model the action of adding or removing a connection is something that happens to ports, not the WorkflowNode to which it is attached. Therefore our WorkflowNodeEditPart needs to perform some additional registration to make itself a listener on its WorkflowNode's ports. Otherwise it will not be notified of connection changes to its ports. This is done in the notifyChanged() method of the WorkflowNodeEditPart, which is a base class for all the EditParts in our sample application that support connections. When a port is added to any WorkflowNode model element, the WorkflowNodeEditPart adds itself as a listener on the new port.

7.2.3 Refreshing Once we have ensured that our EditParts are receiving all the notifications they require to track their model, we then need to add code in our EditParts that acts on this information. The implications of a model event to an EditPart can be distilled into three general operations. The EditPart must interpret the notification to decide which of these operations are required: Updating the visual representation: Underlying attributes of the model are often represented visually using colored indicators, text annotations, or other graphical effects. For example, in the sample application the name of an element is drawn inside a task rectangle or on the title bar of a compound task. The ports change color to indicate when a task is a start or finish task. The EditPart class provides the method refreshVisuals(). Its implementation should provide a full update of every graphical feature that is mapped to a model attribute. This method will be called once when the EditPart is first activated so that the model and figure are synchronized. Subsequently it is the responsibility of the application to decide when a model change event requires an update to the visualization. It is not required, or always advisable, to update the entire visualization if only a

208

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

single attribute has changed. This is a judgement call depending on the complexity of the figure. With a detailed notification mechanism such as the one provided by EMF, it is easy to determine exactly what has changed in the model and decide whether to update details of the figure vs. calling refreshVisuals() to update the entire figure. Updating children: In our sample application, our model has containment relationships that are mirrored in our EditPart hierarchy, which is a common situation in GEF applications. In our case the Workflow object may contain Task, CompoundTasks, Choice and LoopTask objects, and so on. Our model supports nesting, so that there are sub-workflows within CompoundTasks and LoopTasks. The EditParts that represent these objects maintain a similar structure. When a container EditPart is notified that a child model element has been added or removed from its model, it must interact with the GEF framework to synchronize by either adding or removing the EditParts that represent the affected model children. GEF provides the EditPart method refreshChildren() for this purpose. GEF provides the implementation of this method. Our notification just needs to call it when appropriate, as we do in the WorkflowNodeEditPart, shown in Example 7-2: Example 7-2 The notifyChanged() implementation in WorkflowNodeEditPart public void notifyChanged(Notification notification) { int type = notification.getEventType(); int featureId; switch(type) { case Notification.ADD: case Notification.ADD_MANY: if(notification.getNewValue() instanceof Edge) { if(notification.getNotifier() instanceof InputPort) { refreshTargetConnections(); } else { refreshSourceConnections(); } } else { // listen for connection changes on the port if(notification.getNewValue() instanceof Port) { Port port = (Port)notification.getNewValue(); port.eAdapters().add(this); } refreshChildren(); } break;

Chapter 7. Implementing the sample

209

case Notification.REMOVE: case Notification.REMOVE_MANY: if(notification.getOldValue() instanceof Edge) { if(notification.getNotifier() instanceof InputPort) { refreshTargetConnections(); } else { refreshSourceConnections(); } } else { if(notification.getNewValue() instanceof Port) { ((Port)notification.getNewValue()).eAdapters().remove(this); } refreshChildren(); } break;

We detect the addition or removal of children using the Notification.getEVentType() method. GEF’s refreshChildren() method it will need to know what parts of the model the EditPart considers to be its model’s children. Therefore EditParts that contain other EditParts must provide an implementation of the EditPart.getModelChildren, which returns a list of the child model elements. GEF then reconciles the model children against the list of EditParts that it maintains. If a there is a new child element then an EditPart will be created for it, or if one has been deleted than the corresponding EditPart will be removed. The implementation of getModelChildren() for CompoundTaskEditParts is show here Example 7-3: Example 7-3 The getModelChildren implementation in CompoundTaskEditParts protected List getModelChildren() { List result = new ArrayList(); if(getCompoundTask().getSubworkflow() != null) { Iterator it; it = getCompoundTask().getSubworkflow().getNodes().iterator(); while(it.hasNext()) { result.add(it.next()); } it = getCompoundTask().getSubworkflow().getComments().iterator(); while(it.hasNext()) { result.add(it.next()); }

210

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

} return result; }

Notice that the Comment objects are also added here because they are owned by the containing workflow (but are not part of the node hierarchy). Updating connections EditParts must notify GEF when they detect model changes indicating the making and breaking of connections. The mechanism for this is very similar to the mechanism described above for child additions and deletions. In the case of our sample application we do this processing in the example Example 7-2 above. GEF provides two methods for refreshing connections, depending on whether the affected EditPart is the source or target of the connection. The methods are named EditPart.refreshSourceConnections and EditPart.refreshTargetConnections. As it does when refreshing children, GEF then asks our EditPart to provide a list of the connections for which our EditPart is the source or target. For our model we simply need to return the result of the WorkflowNode class's getOutputEdges or getInputEdges, which conveniently return a List as required by GEF (see Example 7-4) Example 7-4 Returning a node’s connections protected List getModelSourceConnections() { return getWorkflowNode().getOutputEdges(); } protected List getModelTargetConnections() { return getWorkflowNode().getInputEdges(); }

7.2.4 Factories We use two factories in order to integrate between GEF and our EMF-based model. First we need to use the EMF-generated factory, WorkflowFactory, whenever we are creating new model objects. Typically this happens when a creation command is either initialized by a policy or when the creation command is executed. The factory is made available to these functions by setting it as the factory for the creation tools created in the palette, as we do in the WorkflowPaletteRoot class. The factory is set in the constructor for the CreationToolEntry class. The class ModelCreationFactory, which implements CreationFactory, is where the EMF factory is invoked. The getNewObject() method in this class is where objects are actually created, as show in the snippet in Example 7-5.

Chapter 7. Implementing the sample

211

Example 7-5 A snippet of the getNewObject() factory method public Object getNewObject() { Map registry = EPackage.Registry.INSTANCE; String workflowURI = WorkflowPackage.eNS_URI; WorkflowPackage workflowPackage = (WorkflowPackage) registry.get(workflowURI); WorkflowFactory factory = workflowPackage.getWorkflowFactory(); Object result = null; if(targetClass.equals(Task.class)) { result = factory.createTask(); } else if(targetClass.equals(CompoundTask.class)) { result = factory.createCompoundTask(); } else if(...)) { } return result; }

In 7.2.3, “Refreshing” on page 208, we discussed the reconciliation process that GEF performs when our EditParts call refreshModelChildren, refreshTargetConnections or refreshSourceConnections. If GEF detects that there are model elements without an associated EditPart, it uses the graphical viewer’s factory to create the missing EditPart. In the sample application the class GraphicalEditPartsFactory is our implementation of EditPartFactory that performs this function. This simple class is what ultimately specifies how our model’s objects will be mapped to our application’s EditParts.

7.2.5 Policies and commands GEF editors only become interactive when the appropriate EditPolicy implementations are added to EditParts. The EditPolicies are responsible for creating commands to operate on the model and to provide feedback behaviors that allow figures to be selected, dragged, added, deleted, and edited. Our sample uses the following EditPolicies: WorkflowContainerXYLayoutEditPolicy: One of the main function of this policy is to construct creation commands in response to a CreateRequest request. Most of the objects in the sample application’s model that map to EditParts are subclasses of WorkflowNode. The class CreateWorkflowNodeCommand is the command that handles creation of these objects. In the policy’s getCreateCommand the command is initialized with parent workflow, and then the factory is called to get a new child instance (Example 7-6). Notice the special handling when the host is a

212

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

CompoundTask. In that case the parent workflow is obtained by calling the CompoundTask’s getSubworkflow() method. Example 7-6 Initializing the CreateWorkflowNodeCommand CreateWorkflowNodeCommand create = new CreateWorkflowNodeCommand(); if(getHost().getModel() instanceof Workflow) { create.setParent((Workflow)getHost().getModel()); } else { create.setParent(((CompoundTask)getHost().getModel()).getSubworkflow()); } create.setChild((WorkflowNode)request.getNewObject());

The Comment object has its own creation command, CreateCommentCommand, because it is not a WorkflowNode; it has no connections and is always contained by a workflow. Other functionality provided by the WorkflowContainerXYLayoutEditPolicy includes providing a ChangeConstraintCommand. This command is executed when the user changes the size or location of a model element. The policy also determines the SelectionHandlesEditPolicy for new EditPart children, making CommentEditParts nonresizeable, while the other EditParts are allowed to be resizeable. ChoiceDirectEditPolicy: This class supports the direct edit mechanism that the sample application uses for editing the expressions in ChoiceEditParts. It constructs a ChoiceExpressionCommand for a DirectEditRequest. It also performs some ancillary functions such as saving the current value of an expression and implementing the showCurrentEditValue() method to take into account which label the user is attempting to edit. CompoundHighlightEditPolicy: We created this subclass of GraphicalEditPolicy to provide visual feedback when a CompoundTask is the target of an operation, such as when a Task is being dragged into it. The feedback is simply to change the background color of the figure which contains the sub-workflow figures. EdgeEditPolicy: This policy supports the deletion of Edges from the model by constructing a ConnectionCommand for the host Edge with null specified for the source and target. EdgeEndpointEditPolicy: We override the ConnectionEndpointEditPolicy to provide some extra visual feedback when an EdgeEditPart is selected. The feedback is simply to double the width of the connection’s polyline figure, and to return its width to a single pixel again when it is deselected.

Chapter 7. Implementing the sample

213

 EdgeSelectionHandlesEditPolicy: We must provide a concrete implementation of the abstract base class SelectionHandlesEditPolicy that returns the selection handles for our connection EditParts. Since in the sample we do not support a bendpoint router, we just return handles for the start and end of the connection. WorkflowContainerEditPolicy: This is another container related policy. WorkflowNodeEditPolicy: This policy creates commands for connection initiation and completion (ConnectionCommand). Its superclass, GraphicalNodeEditPolicy, provides visual feedback while a connection is being drawn.

7.3 The model In this section, we describe the model used by the sample application.

7.3.1 Modifying the WorkflowModel In this section we describe the modifications made to the WorkflowModel in order to use it in the workflow editor sample application.

Choosing the naming convention for references A reference between two classes has usually two names associated with it. One for each of the navigation paths between them. The one-to-one association names are singular and are always easily chosen. For the one-to-many association names, we have an extra level of freedom, because we can choose the Modeling or the Java naming convention to give it a name. The main difference between the two is that Modeling uses singular while Java uses plural. Java coding conventions are strong. By respecting them, code is generally more readable and understandable. It is not that those conventions are the only way or the best way to go, but when you follow them, code become more easily familiar to developers. Modeling uses different conventions, because the interests are not the same. Knowing that the convention choice has some effect on the generated code, the result is that you rapidly end up with some sort of decision like, do we privilegize the modeling or Java standpoint? When implementing the sample application, with Java code as the only mapping, we decide to use the Java standpoint.

214

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

To help you visualize the potential implications of the choice of one view, we use the Workflow to WorkflowNode association, called node(s) from Workflow to WorkflowNode. In Java, the association is implemented by a collection called nodes.See Example 7-7: Example 7-7 Java reference implementation package com.ibm.itso.sal330r.workflow.impl; public class WorkflowImpl extends WorkflowElementImpl implements Workflow { /** * The cached value of the '{@link #getNodes() Nodes}' containment reference list. * * * @see #getNodes() * @generated * @ordered */ protected EList nodes = null; /** * * * @generated */ public EList getNodes() { if (nodes == null) { nodes = new EObjectContainmentWithInverseEList(WorkflowNode.class, this, WorkflowPackage.WORKFLOW__NODES, WorkflowPackage.WORKFLOW_NODE__WORKFLOW); } return nodes; } }

In XML, if you look at a file containing the result of a workflow serialization, you will see an extra ‘s’ at the end of each node entity, which is unusual for an XML entity. You can look at any Ecore file for more examples of eClassifiers or eReferences XML entities. See Example 7-8.

Chapter 7. Implementing the sample

215

Example 7-8 Workflow XMI file serialization

7.3.2 Modifying the code generated from the model This section describes additions and customizations made to the interfaces and implementations generated from the WorkflowModel, in order to use this generated code as the model for the workflow editor sample application.

7.3.3 Respecting model constraints in the editor In this section we use the connectTo method in the Workflow class to show model object relationships, and explain the execute and undo method of the ConnectionCommand class. We describe the containment relationship between Workflow and Edge and the relationship between InputPort and OutputPort and Edge.

Enforcing model constraint in the model implementation WorkflowNodes have Ports. The application requires Task, CompoundTask, and LoopTask tasks to have only one Input and one Output. Transformations can have multiple Inputs, and Conditionals can have multiple Outputs. All nodes have a default FaultPort.

216

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The model, as designed, tell us that the association between tasks and ports are inherited from the WorkflowNode, where two one-to-many associations are defined between WorkflowNode and InputPort on one side and WorkflowNode and OutputPort on the other side. The reference named outputs contains all the OutputPort, all the ConditionalOutputPort, and the default FaultPort ports. With those elements in mind, we can see that we have a problem to reduce the visibility of the inherited methods for outputs and inputs relationships. The model provides methods dealing with a collection, where methods dealing only with one object should be defined. Nothing prevents the following code to be written in the case of a CoumpoundTask: this.getInputs().addAll(collection);

Several solutions have been investigated and evaluated. Here is a short description of the most important ones: 1. A model redesign to move inputs and outputs references to the subclasses, Task, Transformation, and Choice, would have solved the problem elegantly, but at a price of three times the number of references. Task would have three one-to-one references for the InputPort, the OutputPort, and the FaultPort port. Transformation would have a one-to-many reference for the InputPort, a one-to-one reference for the OutputPort, and a one-to-one for the FaultPort port. Choice would have a one-to-one reference for the InputPort, a one-to-many reference for the OutputPort ports, and a one-to-one for the FaultPort port. The main problem with this approach is that the WorkflowNode loses its knowledge of Ports, so there is no easy way to loop on all the ports, or to connect an OutputPort, or a FaultPort port to an InputPort with an Edge. 2. The Java way of manually implementing the model would have required the inputs and outputs associations to be left at the same place and to be private. The corresponding accessor methods handling the many cardinalities of the reference would be private or protected. All subclasses would have to redefine the methods accessing the collection in order to enforce the constraints. Unfortunately, this solution cannot be implemented easily in EMF, because the serialization process requires the reference to be publicly accessible. There is no way to have a private reference in EMF. 3. The existence of a constraint language, integrated with the code generation tools taking could have been a good solution. We could have kept the associations at the WorkflowNode level and be able to express the constraints. 4. The solution we implemented has the following goals: a. To keep the model as designed in order to minimize the number of association and to benefit of the polymorphism for the ports

Chapter 7. Implementing the sample

217

b. To not to use the default methods generated, including the one giving direct access to the underlying collection c. To use the method we provided to support and enforce the application constraints Figure 7-2 shows the resulting WorkFlowNode hierarchy.

WorkflowNode isIsStart() isIsFinish() getOutputs() getInputs() connectTo(in WorkflowNode) setFault(in FaultPort) getFault() addFault() addInput() addInput(in InputPort) addOutput() addOutput(in OutputPort) getInputEdges() getOutputEdges() getOutput(in String) getInput(in String) createDefaultPort() Init()

Transformation

Task

Choice

getInput() getOutput()

CompoundTask LoopTask

Figure 7-2 WorkflowNode hierarchy

218

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Note: At the moment, the design can be split into three simple implementation lanes. The first is one input and one output; the second is with many inputs and one output; and the third is the one input and many outputs. Once we have more than one class in a lane, basically two classes with no direct inheritance in between, it would be nice to create an abstract intermediate class in order to provide one-one, many-one, or one-many behavior.

The connectTo method The algorithm to connect an OutputPort port to an InputPort port with an Edge consists of these steps: 1. Checking if the link does not already exist. 2. Adding the Edge to the Workflow in order to have the object created in the Workflow entity context, because of the containment reference between them. 3. Linking the OutputPort to the Edge. 4. Linking the InputPort to the Edge. The Java code for the connectTo method is found in the WorkflowImpl class as shown in Example 7-9: Example 7-9 TaskImpl connectTo method /** * Connects the output port to the given input port. * From an edge standpoint, the source is an output port * and the target an input port. * * @param outputPort * @param inputPort * @param res */ public Edge connectTo(OutputPort outputPort, InputPort inputPort) { // Check to see if input and output are not already // connected by an edge. Edge edge = outputPort.findEdgeTo(inputPort); if (edge == null) { // No connection found WorkflowFactory workflowFactory = WorkflowModelManager.getFactory(); // Create an edge edge = workflowFactory.createEdge(); // Add the edge to the workflow, to benefit

Chapter 7. Implementing the sample

219

// of the containment link between workflow and edge this.getEdges().add(edge); // Link input and output to the edge inputPort.getEdges().add(edge); outputPort.getEdges().add(edge); } return edge; }

The EMF eOpposite attribute of the eReferences entity is very helpful when making a connection between two ports with an edge, because for all the references with an eOpposite attribute, EMF keeps track of the changes on the other side of the reference. This means, for example, that if you add an Edge to an OutputPort: outputPort.getEdges().add(edge);

Then EMF will do the opposite setup automatically and transparently for you: edge.setSource(outputPort);

When creating an association in the EMF Class Diagram in the UML plug-in. The Navigable checkbox (see Figure 1-12 on page 20) drives the access to the association features. Once an association is navigable on both ends, a change on one side is reflected on the other side, because the eReferences’ eOpposite attributes are used.

7.4 Implementing the multi-page editor When implementing a multi-page editor, there are several issues which have to be considered before and during development. This section gives you an introduction to a possible multi-page editor implementation. It also discusses some issues encountered during our development of the sample application. Note: The source code of our sample application is available along with this book. See Appendix A, “Additional material” on page 225 for details on obtaining the sample code. We suggest that you study the code for implementation details. We tried to document it as often as possible. Because of that, we are not going to reproduce a lot of example code within this section. Instead, we give you an overview of the implementation and explain what and why implementation decisions were made.

220

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Our multi-page editor consists of only two pages One page is for editing a whole workflow and the second page is for editing compound tasks of the same workflow. This provides an alternative way of editing compound tasks because in-place editing might not be suitable in all situations.

7.4.1 Getting started First we start creating our multi-page editor by extending org.eclipse.ui.parts.MultiPageEditorPart. Thus, our main editor class is the class WorkflowEditor, which has to be registered as an Eclipse extension in the plugin.xml in the regular way. The MultiPageEditorPart uses regular IEditorPart implementations or simple controls as editor pages. Because we expected that there will be some code that is shared between our editor pages, we created an abstract editor page AbstractEditorPage. Note: In general, we reuse as much code as possible from the concepts described in Chapter 3, “Introduction to GEF” on page 87.

7.4.2 Sharing an EditDomain One of the most important questions is what to share within your pages. However you decide to do this, you will have to consider some issues. We decided not to share a single EditDomain within our editor pages. Our reasons were clear, because our editor would only have two pages. The functionality of each page might be similar, but the concept of each page is different. On one page you should be able to edit the workflow, and on the second page you should edit the content of compound tasks. We thought that changes on one page should not affect the other page except for updating the UI. Thus, we wanted to have completely different undo/redo stacks for each page. If you want all your pages to be using the same undo/redo stack (CommandStack), you will have to share the EditDomain between your pages. Because of some current limitations in GEF, you have to think about solutions for the following issues: If you share an EditDomain within several pages, you have to remember that an EditDomain can have several EditPartViewers but only one palette. Thus, you might consider a concept of sharing one palette or attaching a new palette with every page switch.

Chapter 7. Implementing the sample

221

7.4.3 The editor’s dirty state You have two options for resolving this for a multi-page editor. Either you delegate this to every page or you implement this only once for the whole editor. We decided to implement this directly into the multi-page editor because we think it might be less expensive to calculate this once for all pages rather than letting each page calculate this itself and asking each page. The concept is basically the same as we would have used for a simple editor. The editor listens for CommandStack changes and updates its dirty state according to the state of the CommandStack. Our WorkflowEditor provides a MultiPageCommandStackListener, which is capable of listening to multiple CommandStacks. All CommandStacks that need to be observed can be registered to it. We do this at the same time we create our pages.

7.4.4 Actions Our multi-page editor provides one ActionRegistry for the whole editor. Thus, all actions are available on all pages. We don’t need to have different actions for different pages. Again the concept is similar to a single editor. Actions are registered to an ActionRegistry.

The ActionBarContributor The GEF ActionBarContributor is not able to provide support for tracking page changes in a multi-page editor. If you need this, you can either implement the functionality from org.eclipse.ui.part.MultiPageEditorActionBarContributor or inherit from this class. But if you inherit from this class, you don’t have the action handling support provided by the GEF ActionBarContributor.

7.4.5 Support for the properties view The base concept is similar to a single editor. Our multi-page editor uses the undoable property sheet root entry provided by GEF. But this is only capable of committing to one CommandStack. If you share only one EditDomain within all pages, there is no special work necessary and you can stop here. Due to internal caching in Eclipse, it is not possible to have a separate property sheet page for every single page. There can be only one for the whole editor. But somehow the property sheet page needs to keep track of the active page to commit to the correct CommandStack.

222

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

We are handling this with a workaround. Our undoable property sheet page root entry gets a delegating CommandStack. The DelegatingCommandStack is a CommandStack that delegates work to a current CommandStack, which can be changed. Thus, we only need to update the DelegatingCommandStack when the current page changes, and this can be easily done from within our multi-page editor.

7.4.6 The outline view We had a little bit more work to do for the outline view, but basically the concept is the same as seen before. The outline view is updated every time the page changes. Although it is strongly connected to our multi-page editor, we tried to keep the implementation as generic as possible to allow you to reuse it for your projects. The implementation can be found in WorkflowEditorOutlinePage. It provides both a tree outline and an overview figure. You only need to call one method on each page change to reinitialize the outline view with a new content. This can be easily done from within our multi-page editor.

7.4.7 The palette Each page has its own PaletteViewer. You can’t share one PaletteViewer instance within several pages. It is possible to have only one PaletteViewer for the whole editor, but this must be implemented in the multi-page editor class because the SWT control needs to be created there. However, having multiple PaletteViewers is no issue because you can share a single PaletteRoot between them, like we did. Our multi-page editor provides the same PaletteRoot for every page. If you would like to have different PaletteRoots for your pages, this is no problem either. You just have to implement it that way.

Chapter 7. Implementing the sample

223

224

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

A

Appendix A.

Additional material This redbook refers to additional material that can be downloaded from the Internet as described below.

Locating the Web material The Web material associated with this redbook is available in softcopy on the Internet from the IBM Redbooks Web server. Point your Web browser to: ftp://www.redbooks.ibm.com/redbooks/SG246302

Alternatively, you can go to the IBM Redbooks Web site at: ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook form number, SG246302.

Using the Web material The additional Web material that accompanies this redbook includes the following files: File name sg246302.zip

Description Zipped Code Samples

© Copyright IBM Corp. 2004. All rights reserved.

225

System requirements for downloading the Web material The following system configuration is recommended: Hard disk space: Operating System: Processor: Memory:

15 MB minimum Windows 1Ghz or higher 1GB or higher

How to use the Web material Unzip the contents of the Web material zip files into the plug-in folder of your Eclipse SDK. The material is organized around the chapters and sections of our redbook, and the source code can be imported into your Eclipse SDK as an existing project. The additional material is organized by chapter and sections within a chapter. Most of the material is in the form of Eclipse projects that you can import into your Eclipse workbench. After you unzip the sg246302.zip file, you will have four main folders created: 1. emf-examples: This folder contains Eclipse projects for the examples described in Chapter 2, “EMF examples” on page 29. Each major section of Chapter 2, “EMF examples” on page 29 has a matching Eclipse project. The projects are cumulative and they also depend on your having completed the modelling and code generation described in Chapter 1, “Introduction to EMF” on page 3. You will need to make sure that you have created the Java build path variables described in 1.3.9, “Compiling the code” on page 27, otherwise you may get classpath errors when importing the sample projects. 2. gef-intro: This folder contains Eclipse projects for the examples described in Chapter 3, “Introduction to GEF” on page 87. If you import the sample projects you will need to set up the Eclipse environment as described in “Eclipse Classpath settings for sample projects” on page 227. 3. emf-with-gef: This folder contains Eclipse projects for the examples described in Chapter 5, “Using GEF with EMF” on page 165. Each major section of Chapter 5, “Using GEF with EMF” on page 165 has a matching Eclipse project. Also be sure to import the appropriate model project for the editor project you want to work with. For example, to work with

226

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

the NetworkEditor project, you must also import the NetworkEditorModel project. Some of the sample projects in this chapter also expect that you have the SAL330RWorkflowModel project in your workspace. You may have created this project by working through the examples described in Chapter 1, “Introduction to EMF” on page 3, or you can import this from our redbook sample material. If you import the SAL330RWorkflowModel project, you will need to set up the Eclipse environment as described in “Eclipse Classpath settings for sample projects” on page 227. If you create the SAL330RWorkflowModel project, you will need to make sure that you have created the Java build path variables described in 1.3.9, “Compiling the code” on page 27, otherwise you may get classpath errors when importing the sample projects. 4. sample-application: This folder contains code for the sample application described in Chapter 7, “Implementing the sample” on page 203. We provide two zip files: – workflow-sample-plugins-1.0.0.zip: This is our redbook sample application packaged as a plug-in for install in Eclipse. To us this plug-in, unzip the archive to the directory where you installed Eclipse. You can then experiment with the functions of our sample workflow editor by create a new file resource with a .workflow extension. – workflow-sample-src-1.0.0.zip: This is the zipped source code for our redbook sample application. When you unzip this archive, two Eclipse project folders are created with projects that can be imported into Eclipse: SAL330RGEFDemoApplication, which is the sample editor code; and SAL330RWorkflowModel, which is the associated workflow model used by our redbook sample editor. If you import the sample projects, you will need to set up the Eclipse environment as described in “Eclipse Classpath settings for sample projects” on page 227.

Eclipse Classpath settings for sample projects When you add our redbook sample application to your Eclipse workbench you need to make sure that all the required plug-ins can be found. There are two alternate ways to set up your environment to do this: 1. Import external features and plug-ins: a. Set up your workspace with plugins as the last folder. For example, use d:\sampleapp\plugins b. Start Eclipse.

Appendix A. Additional material

227

c. Choose File -> Import. d. Check External Features and click Next. e. Accept the default Choose from features in run-time workbench and click Next. f. Select the features you need to import, including: • • • • •

org.eclipse.platform org.eclipse.platform.win32 org.eclipse.jdt org.eclipse.emf org.eclipse.gef

g. Click Finish. h. Import any missing plug-ins by choosing File -> Import... -> External Plug-ins and Fragments. i. Make sure to choose Copy plug-in contents into workspace location. j. Select all the required plug-ins and click Finish. Note: The tasks view will list all plug-ins that are missing from the required classpath of the sample project you import. 2. Configure the target platform: a. Workspace folder has no special naming requirement. b. Start Eclipse. c. Choose Window -> Preferences. d. Choose Plug-in Development -> Target Platform. e. Select this application and click either Not In Workspace or Select All. f. Click OK. g. Select the plugin.xml file of the imported sample project, right-click and choose Update Classpath. h. Select all the plug-ins that need their classpath updated. i. Click Finish.

228

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Abbreviations and acronyms ADL

Architectural Description Language

DTD

Document Type Definition

EAI

Enterprise Application Integration

EJB

Enterprise Java Bean

EMF

Eclipse Modeling Framework

FAQ

Frequently Asked Questions

GEF

Graphical Editing Framework

HTML

HyperText Markup Language

HTTP

HyperText Transfer Protocol

IBM

International Business Machines Corporation

IDE

Integrated Development Environment

IDL

Interface Definition Language

ITSO

International Technical Support Organization

JET

Java Emitter Templates

MDA

Model Driven Architecture

MDE

Model Driven Environment

MOF

Meta Object Facility

MVC

model-view-controller

NLS

National Language Support

NLS

National Language Support

OMG

Object Modelling Group

OVID

Object View and Interaction Diagram

SWT

Standard Widget Toolkit

SWT

Standard Widget Toolkit

URI

Universal Resource Identifier

XSD

XML Schema definition

© Copyright IBM Corp. 2004. All rights reserved.

229

230

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Related publications The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

Other publications These publications are also relevant as further information sources: The Java Developer’s Guide to Eclipse, Sherry Shavor et al, Addison Wesley, ISBN: 0-321-15964-0 Eclipse Modeling Framework, Frank Budinsky et al, Addison Wesley, ISBN: 0131425420

Online resources These Web sites and URLs are also relevant as further information sources: eclipse.org main page: http://www.eclipse.org

 Eclipse Modeling Framework home page: http://www.eclipse.org/emf

 Graphical Editing Framework home page: http://www.eclipse.org/gef

 Omondo EclipseUML page: http://www.eclipseuml.com

 Object, view and interaction design: http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589

 Eclipse XML Schema Infoset Model: http://www.eclipse.org/xsd

 XML Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm

 JET tutorial part 1: http://eclipse.org/articles/Article-JET/jet_tutorial1.html

© Copyright IBM Corp. 2004. All rights reserved.

231

 JET tutorial part 2: http://eclipse.org/articles/Article-JET2/jet_tutorial2.html

 Eclipse Wiki: http://eclipsewiki.swiki.net

 Metanology MDE: http://www.metanology.com

 Eclipse designer plug-in: http://eclipsedesigner.sourceforge.net

 eSuite project: http://jeez.sourceforge.net

How to get IBM Redbooks You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at this Web site: ibm.com/redbooks

Help from IBM IBM Support and downloads: ibm.com/support

IBM Global Services: ibm.com/services

232

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling

Index A accessibility 161 accessible 161 ActionRegistry 123 actions 123, 222 adapters 119, 130 anchor points Draw2D 101 ANT 90 architecture sample 204 association 19, 23, 32 attribute 23, 44 creation 14 attributes 39, 48

connection routers Draw2D 101 connections 105 decorating 148 Draw2D 102 GEF 105 constraints 39 container role 108 control flow 189 controllers 166–167 coordinate system 94 coordinate systems 141 CreateRequests 106 cursor 94–95, 150

D B borders Draw2D 97

C cache 46 canvas 93, 95 Choice 196 choice task 188 class 46, 48 class diagram 12 code generation 4, 23, 27, 29, 31, 47, 51, 58 JET 79 commands 109, 113, 150, 174, 212 keyboard 161 CommandStack 113–114, 222 Comment 67, 192, 200 complex task tasks complex 188 complex tasks 188 component role 107 compound task 188 CompoundTask 21, 77, 194 ConditionalOutputPort 39, 199 connection role 108

© Copyright IBM Corp. 2004. All rights reserved.

data flow 189 dataflow 30 datatypes 39 decorating connections 148 descriptors 47 design 187 sample 191 DiagramConnection 36 DiagramModel 36 DiagramNode 36, 46 direct edit 158 direct edit role 108 DirectEditPolicy 150 Directory 80 dirty state 222 displaying properties 174 documentation EMF 6 drag and drop 143 Draw2D 87–88, 95, 136 anchor points 101 borders 97 connection routers 101 connections 102 event dispatcher 96 figures 93, 95 introduction 93

233

layers 99 LayoutManagers 98 Locator 100 methods 95 update manager 97 DTD 4 dynamicTemplates 80

E EAI 5 EAnnotation 39 EAttribute 36, 44, 46, 67 EClass 31–33, 35, 43–44, 46 eClassifiers 33 Eclipse 4 Eclipse help system 6 Eclipse Modeling Framework See EMF Eclipse Project 5 Eclipse Tools Project 5 EclipseUML 10 modeling 12 Ecore 30, 47–48, 70 Ecore model 38 EDataType 35, 39, 44, 46 Edge 19, 31, 192, 197 edge 189 edit 47, 61 edit plug-in 47, 63 EditDomain 113, 117, 221 sharing 221 editor 14, 45, 47, 61 dirty state 222 multi-page 220 editor example 112 editor plug-in 45, 47 EditPart 140, 167, 205 figures 170 EditParts 103, 140, 204 create 137 life-cycle 104 mapping 168 EditPolicies 107, 150, 212 component role 107 connection role 108 container role 108 direct edit role 108 GEF 107 graphical node role 108

234

layout role 108 tree container role 108 EEnum 46 EInt 39 EJBs 5 elements 38, 43, 48, 192 EList 46 EMF 3, 165 documentation 6 examples 29 features 24 help 6 installation 6 interfaces 13 mailing list 5 model 29 model creation 25 models 35 newsgroup 5 objectives 4 prerequisites 5 EMF class diagram 12 EMF.Edit 45, 166 editors and GEF 166 EMFPluginClass 47 end task 190 EObject 35, 47, 175 EOperation 46, 61 eOpposite 32–33 EPackage 31–32, 34–36, 42, 45–46 EReference 32–33, 43–44, 67 EString 14, 39, 44 eSuperTypes 46 event dispatcher Draw2D 96 events 93, 95, 207 examples 58 editor 112 EMF 29 GEF 139 serialization 67 exception 199

F factories 211 factory 109 FaultPort 199 features 46

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

feedback 150 field 46 figures 93, 95, 105, 141, 170 GEF 105 root 96 FlowLayoutEditPolicy 152 focus 94–95 framework 4, 45 GEF 103 frameworks 165 Freeform 99 freeform 141

getter 46, 61 Graphical Editing Framework See GEF graphical node role 108 GraphicalNodeEditPolicy 151 GraphicalViewer 109, 117 graphics 94 graphics context 94, 96 GroupRequests 107

H handles 152 help EMF 6

G GEF 9, 87–88, 103, 165 accessibility 161 applications 89 commands 150 direct edit 158 drag and drop 143 EditParts 103 examples 139 feedback techniques 150 GraphicalViewer 109 introduction 87 printing 144 requests 106 resource management 149 techniques 143 tools 144 using an EMF model 166–167 viewer 153 zooming 145 generalization 18 generation XML Schema 53 GenModel 45, 47–48, 73 editor 50 properties 47, 49 class-level 55 DataType-level 57 feature-level 56 operations 57 package-level 54 parameters 57 top-level 52 GenModel properties JET-related 79

I IAdaptable 119 IContentOutlinePage 130 IDE 90 IDL 4 implementation sample 203 inheritance 18 InputPort 21, 31, 198 installation EMF 6 instances 178 create 64 interface 13, 46, 51 interface design 13 ItemProvider 47 ItemProviderAdaptor 47 ItemProviderAdaptorFactory 47 ItemProviders 47

J Java 4, 46, 173 Java Emitter Templates See JET Java interface annotation 22 Java project 11 Java Server Pages See JSP JavaDoc 204 JET 29, 45, 79, 165, 180 code generation 79 templates 80 JFace 47, 109, 166 JSP 82

Index

235

K key strokes 134 keyboard commands 161 KeyHandlers 134

L labels 190 layers 96, 111, 142 Draw2D 99 layout 135 layout manager 95 layout role 108 LayoutEditPolicy 151 LayoutManagers Draw2D 98 lightweight system 94 LightweightSystem class 95 listeners 95 LocationRequests 107 Locator Draw2D 100 loop task 188 LoopTask 39, 195

M mapping 5, 42, 168, 204 mappings indirect 171 MDA 4–5 menu 47 Meta Object Facility See MOF meta-data 4 meta-model 4 methods 46, 95 model 4, 9, 47, 61, 135, 204, 214 constraints 216 creation 10, 30 Ecore 38 editing 174 elements 35 EMF 29 events 207 instances 64, 66, 178 migrating 40 properties 10 serialization 64 Workflow 30, 33 workflow 9, 192

236

WorkFlowElement 35 Model Driven Architecture See MDA model plug-in 45, 61, 64 modeling Java interface annotation 22 MOF 4 mouse 93 mouse events 94 multi-page editor 220 MVC 166

N namespace 42 naming convention 214 National Language Support See NLS NLS 53 Notification 175 notifications 47, 208 Notifier 175

O object 48 Object Management Group See OMG Object, View and Interaction Diagram See OVID OMG 4 Omondo 10 operations 39, 46, 48, 57 outline view 130, 223 OutputPort 21, 31, 198 OVID 28

P packages 45 painting 93 palette 120, 153, 223 sticky tools 144 palette-less applications 153 PaletteRoot 120 PaletteViewer 120, 223 panes 96 parameters 57 patterns 56 Singleton 56 Stateful 56 plug-in 11, 47, 49, 61 development 10 Draw2D 93

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

edit 47, 63 editor 45, 47 installation 10 model 45, 61, 64 XSD 43, 53, 70, 75 polymorphism 78 Port 31, 33, 192, 198 presentation 47 printing 144 process 193 project 10 creation 10 properties 15, 129 display 174 properties view 222

R Rational Rose 10, 40 Redbooks Web site 232 Contact us xii references 48, 214 refresh 208 rendering 94 requests 106 requirements 187 Resource 55 resource implementation 75 ResourceFactory 55 Resources 69 resources 149 ResourceSets 69 root figure 96 RootEditPart 110, 117, 140

S sample 30, 187 architecture 204 design 191 implementation 203 requirements 188 ScaledGraphics 145 SDK 88 SelectionEditPolicy 152 SelectionHandlesEditPolicy 152 SelectionTool 144 serialization 4, 43, 64, 66, 74 customize 70 examples 67

setter 46, 61 Shape 96 signatures 39, 46 simple task 188 Singleton 56 skeletons 39 SKU 44 start task tasks start 190 Stateful 56 Struts 90 supertypes 46 SWT 92–93, 109, 130, 143

T Task 31, 33, 36, 67, 194 task 188 tasks 30 choice 188 compound 188 end 190 loop 188 simple 188 techniques 143 tooltips 95 tracking 207 Transformation 197 transformation task tasks transformation 188 transparency 95 tree container role 108 TreeViewer 47 type 43, 46 types 36, 39

U UML 9–10 update manager Draw2D 97 URI 42

V variables 190 viewers 47, 153 attaching 117

Index

237

visibility 95

W Web services 5 widgets 96 wizard 47, 51 Workflow 9, 19, 32, 48, 192–193 instance 67 model 9, 17, 30, 33 serialization 67 workflow 188 workflow model 192 Workflow.genmodel 27 WorkflowDiagram 36, 46 WorkflowDiagramPackage 36 WorkflowDiagramTask 36, 46 WorkflowElement 13, 47, 192 model 35 WorkflowElementEditPart 205 WorkflowModel 12, 30, 36, 39, 45, 47–48, 192, 214 WorkflowNode 21, 192–193 WorkflowNodes 193 Worklow 21

X XMI 10, 31–32, 34, 38, 48–49, 55, 76 XMI serialization 76 XMIResource 69, 75 XML 4, 44, 55, 70 XML Metadata Interchange See XMI XML Schema 30, 40, 44, 53, 70 XML serialization 77–78 XMLHelper 77–78 XMLLoad 78 XMLMap 74 XMLResource 75 XMLSave 78 XSD 4, 43 plug-in 43, 53, 70, 75

Z zooming 145 ZoomManager 145

238

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Eclipse Development using the Graphical Editing Framework & the Eclipse Modeling Framework

(0.5” spine) 0.475”0.875” 250 459 pages

Back cover

®

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework Understanding the GEF and EMF frameworks Developing with GEF and EMF Code examples

Eclipse Development using the Graphical Editing Framework and the Eclipse Modelling Framework is written for developers who use the Eclipse SDK to develop plug-in code. This IBM Redbook is intended for a technical readership and for developers who already have good knowledge and experience in Eclipse plug-in development. In this book, we examine two frameworks that are developed by the Eclipse Tools Project for use with the Eclipse Platform: the Graphical Editing Framework (GEF), and the Eclipse Modeling Framework (EMF). We cover both the Graphical Editing Framework and the Eclipse Modeling Framework, but these frameworks can be used separately, and there is no dependency between them. This book provides a high level introduction to these frameworks so that Eclipse plug-in developers can consider whether the frameworks will be useful for the requirements of their particular development environment. Next, tips and techniques are provided for writing code that uses GEF and EMF. Also, a detailed example is developed to illustrate a GEF editor that uses an EMF model.

INTERNATIONAL TECHNICAL SUPPORT ORGANIZATION

BUILDING TECHNICAL INFORMATION BASED ON PRACTICAL EXPERIENCE IBM Redbooks are developed by the IBM International Technical Support Organization. Experts from IBM, Customers and Partners from around the world create timely technical information based on realistic scenarios. Specific recommendations are provided to help you implement IT solutions more effectively in your environment.

For more information: ibm.com/redbooks SG24-6302-00

ISBN 0738453161

des documents recommandant

[image: alt]

IBM Redbooks

19 avr. 2013 - technologies IdO (pour Internet des objets) ont des répercussions Les autres noms de société, de produit et de service peuvent être des ...

[image: alt]

MQSeries Programming Patterns - IBM Redbooks

Install, tailor and configure specialist tools such as JMS admin. Popular MQSeries programming choices discussed. Common programming pattern examples.

[image: alt]

MQSeries Programming Patterns - IBM Redbooks

System requirements for downloading the Web material Because this book has been written by a team of MQSeries customers and business Provider url.

[image: alt]

Java Connectors for CICS - IBM Redbooks

guide you through the process, starting with the screen shown in authentication are not currently supported in WebSphere V4, but future versions will these methods correspond to the row and column values specified by the POS.

[image: alt]

Java Connectors for CICS - IBM Redbooks

Afterwards, a set of practical programming examples are provided that detail how to build ... Solutions Expert in CICS Web Enablement, and holds a BS degree in Applied environment is a time consuming exercise, and adds unnecessary Softw

[image: alt]

WebSphere Application Server V6.1: Planning and ... - IBM Redbooks

Clients who sell products that are based on WebSphere and who want to persistence will survive node failures and application server restarts, but introduces ...

[image: alt]

WebSphere Application Server V6.1: Planning and ... - IBM Redbooks

Clients who sell products that are based on WebSphere and who want to persistence will survive node failures and application server restarts, but introduces ...

[image: alt]

IBM IBM

Advanced Function Printing. AFP. AIX. AIX/6000. BookManager. CICS must be one of the 10 Arabic numerals. Other Clauses: USAGE DISPLAY must be ...

[image: alt]

IBM IBM

Use this book in conjunction with the IBM COBOL Programming Guide for your plat- ... ments will be eliminated from a future release of an IBM COBOL compiler.

[image: alt]

eclipse

La technologie des plaquettes collantes rÃ©duit la dÃ©pendance aux insecticides ... et autres Ã©tablissements de service alimentaire, de par son allure discrÃ¨te, son.

[image: alt]

eclipse

Le piÃ¨ge lumineux ECLIPSEâ„¢ anti-insectes volants allie conception ultramoderne et technologie de pointe pour fournir une solution discrÃ¨te et efficace contre la prÃ©sence d'insectes volants devant les maisons. Il est idÃ©al Ã utiliser en faÃ§ade

[image: alt]

eclipse

l'étiquette et la fiche de sécurité du produit contiennent les signaux de danger, les ... sur Diversey HazMat Library, uniquement disponible via Internet Explorer,.

[image: alt]

IBM IBM - balard informatique

The first entry, sentence, statement, or clause begins on either the same line as the A COBOL source program is a syntactically correct set of COBOL statements. example, for PICTURE 99PPP, the literal must be within the range 1000.

[image: alt]

IBM IBM - balard informatique

IBM VisualAge COBOL Version 3.0.1 (program number 5639-B92) and to all The RETURN-CODE special register can be used to pass a return code to the A chart of PICTURE clause symbols appears in Table 11 on page 161. Identifier. When u

[image: alt]

Front cover WebSphere J2EE Application Development for IBM .fr

Apr 11, 2002 - Cliff Liang is a Senior Consultant at ASTECH Solutions. Inc., a Toronto ... presentations and hands-on exercises that map to customer The getAllV() method executes the SQL query previously prepared in the psAllRecord Read

[image: alt]

eclipse - D3R

Issue: 1 01.05.2015. P.01 /02. LIRE ATTENTIVEMENT LES INSTRUCTIONS AVANT DE COMMENCER LE MONTAGE. CE PRODUIT DOIT ÃŠTRE INSTALLÃ‰ ...

[image: alt]

IBM Netfinity Servers IBM Netfinity 3000 - IBM Networking Home Page

1. For systems that are part of a shared DASD cluster, run one test at a time in looped Category 5 to meet various standards, including Data carrier detect.

[image: alt]

IBM Netfinity Servers IBM Netfinity 3000 - IBM Networking Home Page

of a large paper clip into the emergency-eject hole located above and to the left of the. CD-ROM drive in-use light. 2. In some models, you might have to remove ...

[image: alt]

eclipse - D3R

Issue: 1 01.05.2015. ECLIPSE. P.01 /02. LIRE ATTENTIVEMENT LES INSTRUCTIONS AVANT DE COMMENCER LE MONTAGE. CE PRODUIT DOIT ÃŠTRE ...

[image: alt]

SATELLITE ECLIPSE

SATELLITE COMMUNICATIONS DEPARTMENT OF COMMUNICATION AND ELECTRONIC ... During Eclipse the Earth obfuscates the satellites primary.

[image: alt]

Tape Autoloader IBM TS2900

en personnel informatique et de centraliser les sauvegardes dans le centre de données. Le système TS2900 prend également en charge le chiffrement des ...

[image: alt]

IBM - Blog MARKESS

architecture modulaire et extensible (IBM Content. Collector) ;. â€¢ La gestion des ... ment) vise Ã simplifier l'architecture informatique des organisations, Ã rÃ©duire ...

[image: alt]

Total Solar Eclipse of 2009 July 22 - NASA Eclipse

FIGURE 4: PATH OF THE ECLIPSE THROUGH CHINA. Total Solar Eclipse of 2009 July ... Semi W,H = 11.0 7.0 Lat 1,2 = 20.0 40.0. 2007 Jul 04 - Wed 13:03:41.

[image: alt]

Digital Eclipse - Aldebaran.cz

be an exact amount that is perfect for all images. 13. ... Choose Image > Calculations, and set it up as shown to the ... light that only the human eye can capture.

×
Report Eclipse Development - IBM Redbooks

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

