

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Principles of Operating Systems

Feb 16, 2006 - CS 446/646 - Principles of Operating Systems - 2. Processes. 88 ... the principles of concurrency are basically the same in all of Page 12 ...

 Télécharger le PDF

 170KB taille
 3 téléchargements
 368 vues

 commentaire

 Report

Principles of Operating Systems CS 446/646 2. Processes a. Process Description & Control b. Threads c. Concurrency Types of process interaction Race conditions & critical regions Mutual exclusion by busy waiting Mutual exclusion & synchronization mutexes semaphores monitors message passing

d. Deadlocks

2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

88

2.c Concurrency Types of process interaction

Concurrency refers to any form of interaction among processes or threads concurrency is a fundamental part of O/S design concurrency includes communication among processes/threads sharing of, and competition for system resources cooperative processing of shared data synchronization of process/thread activities organized CPU scheduling solving deadlock and starvation problems

2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

89

2.c Concurrency Types of process interaction

Concurrency arises in the same way at different levels of execution streams multiprogramming — interaction between multiple processes running on one CPU (pseudoparallelism) multithreading — interaction between multiple threads running in one process multiprocessors — interaction between multiple CPUs running multiple processes/threads (real parallelism) multicomputers — interaction between multiple computers running distributed processes/threads → the principles of concurrency are basically the same in all of these categories (possible differences will be pointed out) 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

90

2.c Concurrency Types of process interaction

Whether processes or threads: three basic interactions processes unaware of each other — they must use shared resources independently, without interfering, and leave them intact for the others processes indirectly aware of each other — they work on common data and build some result together via the data (“stigmergy” in biology) processes directly aware of each other — they cooperate by communicating, e.g., exchanging messages 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

P1

P2

resource

P1

P2

data

P1

P2

messages 91

2.c Concurrency Race conditions & critical regions

Inconsequential race condition in the shopping scenario there is a “race condition” if the outcome depends on the order of the execution

Molay, B. (2002) Understanding Unix/Linux Programming (1st Edition).

> ./multi_shopping grabbing the salad... grabbing the milk... grabbing the apples... grabbing the butter... grabbing the cheese... >

> ./multi_shopping grabbing the milk... grabbing the butter... grabbing the salad... grabbing the cheese... grabbing the apples... >

Multithreaded shopping diagram and possible outputs 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

92

2.c Concurrency Race conditions & critical regions

Inconsequential race condition in the shopping scenario the outcome depends on the CPU scheduling or “interleaving” of the threads (separately, each thread always does the same thing) > ./multi_shopping grabbing the salad... grabbing the milk... grabbing the apples... grabbing the butter... grabbing the cheese... >

> ./multi_shopping grabbing the milk... grabbing the butter... grabbing the salad... grabbing the cheese... grabbing the apples... >

2/16/2006

A B

A B

s le p ap

d la a s

CPU

lk i m

er t t bu

se e e ch s le p ap

d la a s

CPU lk mi

r te t bu

CS 446/646 - Principles of Operating Systems - 2. Processes

e es e ch 93

2.c Concurrency Race conditions & critical regions

Inconsequential race condition in the shopping scenario the CPU switches from one process/thread to another, possibly on the basis of a preemptive clock mechanism > ./multi_shopping grabbing the salad... grabbing the milk... grabbing the apples... grabbing the butter... grabbing the cheese... >

salad

A B

s le p ap

d la a s

CPU

lk i m

er t t bu

apples milk

se e e ch

thread A butter

cheese

thread B

Thread view expanded in real execution time 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

94

2.c Concurrency Race conditions & critical regions

Consequential race conditions in I/O & variable sharing char chin, chout;

char chin, chout;

void echo() { do { 1 chin = getchar(); 2 chout = chin; 3 putchar(chout); } while (...); }

void echo() { do { 4 chin = getchar(); 5 chout = chin; 6 putchar(chout); } while (...); }

B

lucky CPU scheduling

☺

> ./echo Hello world! Hello world! Single-threaded echo 2/16/2006

A

> ./echo Hello world! Hello world! Multithreaded echo (lucky)

CS 446/646 - Principles of Operating Systems - 2. Processes

95

2.c Concurrency Race conditions & critical regions

Consequential race conditions in I/O & variable sharing char chin, chout;

char chin, chout;

void echo() { do { 1 chin = getchar(); 5 chout = chin; 6 putchar(chout); } while (...); }

void echo() { do { 2 chin = getchar(); 3 chout = chin; 4 putchar(chout); } while (...); }

> ./echo Hello world! Hello world!

B

unlucky CPU scheduling

> ./echo Hello world! ee....

Single-threaded echo 2/16/2006

A

Multithreaded echo (unlucky)

CS 446/646 - Principles of Operating Systems - 2. Processes

96

2.c Concurrency Race conditions & critical regions

Consequential race conditions in I/O & variable sharing changed to local variables

void echo() { char chin, chout; do { 1 chin = getchar(); 5 chout = chin; 6 putchar(chout); } while (...); } > ./echo Hello world! Hello world!

B

unlucky CPU scheduling

do { 2 chin = getchar(); 3 chout = chin; 4 putchar(chout); } while (...); } > ./echo Hello world! eH....

Single-threaded echo 2/16/2006

A

void echo() { char chin, chout;

Multithreaded echo (unlucky)

CS 446/646 - Principles of Operating Systems - 2. Processes

97

2.c Concurrency Race conditions & critical regions

Consequential race conditions in I/O & variable sharing note that, in this case, replacing the global variables with local variables did not solve the problem we actually had two race conditions here: one race condition in the shared variables and the order of value assignment another race condition in the shared output stream: which thread is going to write to output first (this race persisted even after making the variables local to each thread) → generally, problematic race conditions may occur whenever resources and/or data are shared (by processes unaware of each other or processes indirectly aware of each other) 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

98

2.c Concurrency Race conditions & critical regions

How to avoid race conditions? find a way to keep the instructions together this means actually. . . reverting from too much interleaving and going back to “indivisible” blocks of execution!! chin='H'

putchar('e') chin='e' chout='e'

thread A putchar('e')

thread B

(a) too much interleaving may create race conditions chin='H' putchar('H')

thread A chin='e' chout='e' putchar('e')

thread B

(b) keeping “indivisible” blocks of execution avoids race conditions 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

99

2.c Concurrency Race conditions & critical regions

The “indivisible” execution blocks are critical regions a critical region is a section of code that may be executed by only one process or thread at a time A B

common critical region

although it is not necessarily the same region of memory or section of program in both processes A B

A’s critical region B’s critical region

→ but physically different or not, what matters is that these regions cannot be interleaved or executed in parallel (pseudo or real) 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

100

2.c Concurrency Race conditions & critical regions

We need mutual exclusion from critical regions critical regions can be protected from concurrent access by padding them with entrance and exit gates (we’ll see how later): a thread must try to check in, then it must check out void echo() { char chin, chout; do { enter critical region? chin = getchar(); chout = chin; putchar(chout); exit critical region } while (...); } 2/16/2006

A

B

void echo() { char chin, chout; do { enter critical region? chin = getchar(); chout = chin; putchar(chout); exit critical region } while (...); }

CS 446/646 - Principles of Operating Systems - 2. Processes

101

2.c Concurrency Race conditions & critical regions

Chart of mutual exclusion 1. mutual exclusion inside — only one process at a time may be allowed in a critical region 2. no exclusion outside — a process stalled in a noncritical region may not exclude other processes from their critical regions 3. no indefinite occupation — a critical region may be only occupied for a finite amount of time 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

102

2.c Concurrency Race conditions & critical regions

Chart of mutual exclusion (cont’d) 4. no indefinite delay when barred — a process may be only excluded for a finite amount of time (no deadlock or starvation) 5. no delay when about to enter — a critical region free of access may be entered immediately by a process 6. nondeterministic scheduling — no assumption should be made about the relative speeds of processes 2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

103

2.c Concurrency Mutual exclusion by busy waiting

HOW is this achieved??

Desired effect: mutual exclusion from the critical region 1. thread A reaches the gate to the critical region (CR) before B 2. thread A enters CR first, preventing B from entering (B is waiting or is blocked) 3. thread A exits CR; thread B can now enter

A B

4. thread B enters CR

A B

2/16/2006

critical region

A B A B

CS 446/646 - Principles of Operating Systems - 2. Processes

104

2.c Concurrency Mutual exclusion by busy waiting

Implementation 0 — disabling hardware interrupts 1. thread A reaches the gate to the critical region (CR) before B 2. as soon as A enters CR, it disables all interrupts, thus B cannot be scheduled 3. as soon as A exits CR, it reenables interrupts; B can be scheduled again 4. thread B enters CR

2/16/2006

A B

critical region

A B A B A B

CS 446/646 - Principles of Operating Systems - 2. Processes

105

2.c Concurrency Mutual exclusion by busy waiting

Implementation 0 — disabling hardware interrupts it works, but is foolish what guarantees that the user process is going to ever exit the critical region? meawhile, the CPU cannot interleave any other task, even unrelated to this race condition the critical region becomes one physically indivisible block, not logically also, this is not working in multiprocessors 2/16/2006

void echo() { char chin, chout; do { disable hardware interrupts chin = getchar(); chout = chin; putchar(chout); reenable hardware interrupts } while (...); }

CS 446/646 - Principles of Operating Systems - 2. Processes

106

2.c Concurrency Mutual exclusion by busy waiting

Implementation 1 — simple lock variable 1. thread A reaches CR and finds a lock at 0, which means that A can enter 2. thread A sets the lock to 1 and enters CR, which prevents B from entering 3. thread A exits CR and resets lock to 0; thread B can now enter 4. thread B sets the lock to 1 and enters CR 2/16/2006

A B

critical region

A B A B A B

CS 446/646 - Principles of Operating Systems - 2. Processes

107

2.c Concurrency Mutual exclusion by busy waiting

Implementation 1 — simple lock variable the “lock” is a shared variable entering the critical region means testing and then setting the lock exiting means resetting the lock while (lock); /* do nothing: loop */ lock = TRUE;

lock = FALSE;

2/16/2006

bool lock = FALSE; void echo() { char chin, chout; do { test lock, then set lock chin = getchar(); chout = chin; putchar(chout); reset lock } while (...); }

CS 446/646 - Principles of Operating Systems - 2. Processes

108

2.c Concurrency Mutual exclusion by busy waiting

Implementation 1 — simple lock variable 1. thread A reaches CR and finds a lock at 0, which means that A can enter 1.1 but before A can set the lock to 1, B reaches CR and finds the lock is 0, too 1.2 A sets the lock to 1 and enters CR but cannot prevent the fact that . . . 1.3 . . . B is going to set the lock to 1 and enter CR, too 2/16/2006

A B

critical region

A B A B A B

CS 446/646 - Principles of Operating Systems - 2. Processes

109

2.c Concurrency Mutual exclusion by busy waiting

Implementation 1 — simple lock variable suffers from the very flaw we want to avoid: a race condition the problem comes from the small gap between testing that the lock is off and setting the lock while (lock);

lock = TRUE;

it may happen that the other thread gets scheduled exactly inbetween these two actions (falls in the gap) so they both find the lock off and then they both set it and enter 2/16/2006

bool lock = FALSE; void echo() { char chin, chout; do { test lock, then set lock chin = getchar(); chout = chin; putchar(chout); reset lock } while (...); }

CS 446/646 - Principles of Operating Systems - 2. Processes

110

des documents recommandant

[image: alt]

Principles of Operating Systems

Sep 15, 2005 - higher (but the total time to complete a process is also longer). With multitasking ... the same illusion of parallelism is achieved at a finer grain process 1 prg 1 illusion of full-time interactivity toward the user while perfor

[image: alt]

Principles of Operating Systems

the disk can be divided up into several partitions that each hold 4/27/2006. CS 446/646 - Principles of Operating Systems - 6. File System. 49. 6.d File System ...

[image: alt]

Principles of Operating Systems

Apr 18, 2006 - typical code organization of a device driver: a. check validity of input parameters coming from above b. if valid, translate to concrete commands, ...

[image: alt]

Principles of Operating Systems

Aug 9, 2005 - system calls offer back-end, low-level services ... service of the same name by (a) placing the arguments Operating Systems Concepts with Java (6th Edition). the microkernel offers a uniform message-passing interface.

[image: alt]

Principles of Operating Systems

Jan 31, 2006 - Note: The historical evolution of computers have left us with a great variety of O/S types, not all of which widely known. In this section, we briefly ...

[image: alt]

Principles of Operating Systems

ex: Java VM ex: MS-DOS ... G. (2003). Operating Systems Concepts with Java (6th Edition). Client RPC using a single thread vs. multiple threads. 2/7-14/ ...

[image: alt]

Principles of Operating Systems

Feb 28, 2006 - Modern Operating Systems (2nd Edition). 2/28/2006. CS 446/646 ... A's mutex; so Q resumes and releases B and A; P can now go. Process Q.

[image: alt]

Principles of Operating Systems

Apr 20, 2006 - 5.d Disk Management. Physical disk ... Stallings, W. (2006) Computer Organization & ... boot sector, free storage map, file allocation table, etc.

[image: alt]

Principles of Operating Systems

Windows NT 4.0. Windows 2000 (NT ... a single control unit issues 1 instruction at a time; multiple ... systems controlling scientific experiments, medical imaging.

[image: alt]

Principles of Operating Systems

Feb 16, 2006 - CS 446/646 - Principles of Operating Systems - 2. Processes. 119. 2.c Concurrency. Mutual exclusion by busy waiting set lock, push mask, and ...

[image: alt]

Principles of Operating Systems

Jan 26, 2006 - Introduction. 30. 1.b Operating System History and Features. Serial processing. âž¢ Human operator-programmer-user. âœ“ the machine was run ...

[image: alt]

Understanding Operating Systems

using Java or pseudocode to illustrate the inner workings of the operating systems; Sample Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes ... Using this path, students will learn about the management of memory, s

[image: alt]

Principles of Communication Systems Simulation with Wireless ... - Read

Although this book is targeted to a one-semester course in communications, reason that we can easily determine the pdf of Vk, even though the system has a the new technology is introduced in a critical element of a communication f

[image: alt]

Principles of Communication Systems Simulation with Wireless ... - Read

Marketing manager: Dan DePasquale. Full-service reason that we can easily determine the pdf of Vk, even though the system has a nonlinearity bandwidth B of the modulated signal is usually approximated by Carson's rule [2], The en

[image: alt]

Principles of Communication Systems Simulation with Wireless ... - Read

sights and support through their teaching and research activites in wireless com- 3In order to demonstrate basic principles, the pdf is assumed to be for a tinuous and Discrete, 4th ed., Upper Saddle River, NJ: Prentice Hall, 1998. 2.

[image: alt]

Foundation of operating systems - Mathieu Delalandre's Home Page

Introduction. â€œA brief historyâ€� (4). 3rd generation e.g. IBM system/360. âœ“ a game of compatible computer 360/(A-L). âœ“ implement multi-programming and spooling.

[image: alt]

Principles Of Truss Analysis

member, has been measured and shown. The drawing is ... Measure its length, and multiply by 50 Ibs. to ... stand these loads, not forgetting to add the required ...

[image: alt]

Principles of Drawings - Description

Mar 16, 2005 - Drawings and other printouts such as reports, nc data files etc. are output To add manual Y-dimensions to the diagonal bracing connection (on We will use the existing ga layout as basis for creating a new layout for GA.Missi

[image: alt]

Operating Systems In Depth - PDF Archive

Jul 17, 2014 - I omit any mention of queuing theory, since in my my code examples and exercises use C. For students who don't know C, a quick â€œintroduction to. C for Java an early computer game (â€œSpace Travelâ€�). The de facto ...

[image: alt]

Operating Systems â€œMemory Managementâ€� - Mathieu Delalandre's

valid, only the addresses from 12288 to 16383 are not valid. Because the program extends to the address. 10468 only, any reference beyond that address is.

[image: alt]

Operating Systems â€œUniprocessor schedulingâ€� - Mathieu Delalandre's

âœ“Optimal: an algorithm is said to be optimal if it minimizes given cost functions defined over the process set. ... Dispatcher is in charge of passing the control of the CPU to the process selected by the short-term scheduler. is the weight

[image: alt]

Real-Time Operating Systems: An Ongoing Review

Dept. of Computer Science and Engineering. University of Texas at ing ISRs (non-schedulable) the technical documentation by. Microsoft [13] describes the ...

[image: alt]

Operating Systems â€œProcess description and controlâ€�

data structure in the operating system kernel containing the information ... process hierarchy and inheritance, like in Object-Oriented Programming (OOP).

[image: alt]

Operating Systems In Depth - PDF Archive

Jul 17, 2014 - Our company is built on a foundation of principles that include responsibility to the communities we serve and the block (delineated by curly braces in C) that contains them. In other words, the an instant later. However

×
Report Principles of Operating Systems

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

