

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

FAST FPGA PLACEMENT USING SPACE-FILLING ... - Xun ZHANG

The platform used is 1.2GHz SunBlade. 2000 workstation, and Matlab package is used to ... Q(Quality) = 100. Cost(VPR) âˆ’ Cost(OurMethod). Cost(VPR). (2).

 Télécharger le PDF

 93KB taille
 3 téléchargements
 339 vues

 commentaire

 Report

FAST FPGA PLACEMENT USING SPACE-FILLING CURVE Pritha Banerjee, Subhasis Bhattacharjee, Susmita Sur-Kolay, Sandip Das, Subhas C. Nandy Advanced Computing and Microelectronics Unit Indian Statistical Institute 203 B. T. Road, Kolkata, India email:{pritha r, subhasisb t, ssk, sandipdas, nandysc}@isical.ac.in ABSTRACT In this paper, we propose a placement method for islandstyle FPGAs, based on recursive bi-partitioning followed by application of space-filling curves. Experimental results of our method show 55% improvement in cost, when compared to random initial placement of the popular tool VPR. The solutions thus obtained require 44.5% fewer moves during final iterative refinement by ultra-low temperature simulated annealing, whereas the quality of solution is on the average 0.1% better. This establishes the utility of the method for fast reconfiguration of FPGA based co-processors. Keywords: FPGA placement, space filling curve, partitioning

1. INTRODUCTION The Field Programmable Gate Arrays (FPGAs) being programmable platforms for a wide spectrum of applications, are increasingly competing with ASICs in medium to low volume market. The most commonly used island-style FPGAs consist of a large number of programmable logic blocks and a programmable routing architecture. Placement in an FPGA is the design phase in which a netlist of circuit blocks is mapped onto physical locations typically arranged in a two dimensional array, such that certain objective functions are optimized. The circuit blocks may be input/output blocks (IOBs) or configurable logic blocks (CLBs). The time taken by recent CAD algorithms for the technology mapping, place and route on a state-of-the-art FPGA chip containing more than 2 × 105 CLBs, may run into hours. This may nullify its time-to-market as well as reconfigurability advantages. With increasing emphasis on reconfigurable computing, there is a pressing need for very fast CAD tools without sacrificing the quality of solution. In earlier works on FPGA placement algorithms, a random initial configuration is iteratively improved to obtain an optimal placement. Although iterative algorithms produce good placements, these require enormous computation time which may depend on the initial configuration of the placement. Typically, many trials are performed with various initial solutions. The key to our strategy for accelerating the

0-7803-9362-7/05/$20.00 ©2005 IEEE

415

placement phase lies in obtaining a high quality initial placement very quickly and then optimizing it by ultra-low temperature simulated annealing (SA). In this paper, we propose a placement method which (i) transforms the two dimensional FPGA placement to a linear order of the nodes of the netlist hypergraph using top-down graph bi-partitioning techniques, (ii) this linear order is then mapped onto a two dimensional grid using recursive space-filling curves to produce an initial placement, and (iii) the optimal placement solution is determined by an appropriate cooling schedule of SA. The intuition behind using space filling curves is that it retains locality properties of the one dimensional ordering. The rest of the paper is organized as follows. In section 2, we briefly describe the basic FPGA architecture followed by the problem definition and the objective function to be optimized. Previous approaches for FPGA placement are also discussed. Section 3 presents our proposed methodology. Experimental results are reported in section 4 and concluding remarks appear in section 5. 2. BACKGROUND FPGAs are user-programmable integrated circuits providing flexibility and reconfiguration advantages for supporting the design and production of digital systems. An island-style FPGA is composed of a two dimensional array of CLBs to support the logic and storage elements of circuits, and programmable Input/Output Blocks (IOBs) at the periphery of the device to provide off-chip interconnections. As shown in Figure 1, a CLB denoted by L, is surrounded on all four sides by routing channels of pre-fabricated wiring segments. An input or output of a CLB, called a pin, can connect to some or all of the wiring segments in the channel adjacent to it via a Connection Block of programmable switches, denoted by C. At every intersection of a horizontal channel and a vertical channel, there is a Switch Block, denoted by S. By programming, i.e., turning on appropriate switches, short wire segments can be connected together to form longer connections. There are wires of different lengths spanning multiple logic blocks to cater to different

logic block

vertical channels

L

C

L

C

L

C

s

C

s

C

L

C

C

s

L

C

C

s

C

L shorter segments

where the summation is over all the nets r in the circuit. For each net i, bbx (i) and bby (i) denote the horizontal and vertical spans of its bounding box. The q(i) factor compensates for the fact that the bounding box wire length model underestimates the wiring necessary to connect nets with more than three terminals. Cav,x and Cav,y are the average channel capacities (# routing tracks) in the x and y directions respectively, over the bounding box of net i.

L

C

L

horizontal channels

2.2. Earlier Works on FPGA Placement FPGA placement is an NP-hard combinatorial optimization problem, hence no polynomial time algorithm is known to produce an exact solution [16]. In recent years, many heuristic techniques have been developed to obtain near-optimal solutions in a reasonable amount of time. The placement methods may be categorized into two classes: constructive and iterative. In constructive placement approaches, a circuit is either recursively bisected in a top-down fashion or basic elements are clustered in a bottomup fashion. Partitioned or clustered elements are assigned to specific locations during the process. Maidee et al. [12] reported a 4-fold speedup in their partition-based placement method PPFF. It has to maintain a tight connection between the circuit graph and the placement during the entire process of partitioning, thereby requiring additional net terminal alignment routines. Iterative improvement methods start with initial placements and improve the solution by searching for small perturbations to the placements that result in better solutions. For example, simulated annealing based placement heuristic methods like VPR[4] have achieved high quality placement solutions but at the expense of long execution time. Other iterative heuristics like Thermodynamic Combinatorial Optimization [17], Tabu search based placement [5] have been proposed. These give near optimal solutions in relatively less time. In summary, most of the effective placement algorithms for FPGAs are based on stochastic iterative methods which however do not pay heed to the quality of the initial solution and its impact on the convergence time. Our motivation is to take advantage of both the partitionbased approach and an iterative improvement technique to obtain a high quality placement solution with significant reduction in execution time.

C

L

longer segments

Fig. 1. Basic FPGA Architecture connection requirements. 2.1. Placement Problem The FPGA placement problem can be formally defined as follows [6]. Given a set of n modules M = { m1 ,m2 ,· · · ,mn } and a set of r signals S = {s1 , s2 , · · · , sr }, we associate each module mi ∈ M with a set of signals Smi , where Smi ⊆ S. The modules may be either CLBs or IOBs, and the total number of nets is typically the sum of the number of CLBs and inputs. With each signal si ∈ S, we associate a set of modules Msi , where Msi = {mj | si ∈ Smj }. In other words, Msi represents the signal net si . We are also given a set of slots L = {l1 , l2 , · · · , lp }, where p ≥ | M | arranged in a two dimensional array on the FPGA chip. Each slot lj ∈ L is represented by a pair of unique integer indices (xj , yj) of the array. The peripheral locations on the two dimensional array are reserved for IOBs, whereas the CLBs are placed inside the region bounded by the periphery. The FPGA placement problem is to assign an unique location lj ∈ L to each module mi ∈ M such that circuit can be routed with the available resources and signal delays meet timing constraints. The cost of routing of a net is usually estimated by the semi-perimeter of the smallest rectangle that encloses it. This is denoted by bounded box cost metric or BB-cost in short. The functional form of this cost metric, a simplified form of the linear congestion cost metric in [4], is bbx (i) bby (i) cost = (1) q(i) + Cav,x Cav,y i∈r

3. PROPOSED METHOD Traditionally, partitioning based placement has a recursive top-down phase followed by bottom-up optimization. In our proposed method, instead of bottom-up construction, we generate a nearly linear order of the blocks and then apply the technique of space filling curve to obtain an initial placement. Thus our method consists of three steps as shown in Figure 2. First, a linear order of the CLBs is determined

416

our method is n/2, where n is the number of CLBs. This implies that at the end of the hierarchical partitioning phase, each partition contains at most two CLBs.

CLB netlist

Linear order of CLBs using recursive bi-partitioning

3.2. Placement by Space-Filling Curves 3.2.1. Preliminaries on space filling curves

Placement by Space-filling Curves (eg. Hilbert, Z, Snake)

A space filling curve is a continuous map from the unit interval into the d-dimensional Euclidean space that passes through every point of a d-dimensional region [15]. Peano [14] first proved the existence of such curves following which Hilbert [7] gave a geometric generating procedure to construct a class of space-filling curves as the limit of a sequence of nested discrete approximations to it. A discrete space filling curve provides a linear traversal or indexing of a multi-dimensional grid space. Space filling curves are commonly used to reduce a multidimensional problem to a 1-dimensional one [2]. But our objective is the converse. A given linear order is to be mapped onto a two-dimensional grid. This is possible because the mapping is bijective as given in the following definition.

High quality Initial Placement of CLB netlist

Improvement by ultra-low temperature Simulated Annealing

Final Placement

Fig. 2. Flow of our Placement Method by recursive bi-partitioning to obtain n/2 parts. We use a hypergraph partitioning tool called hMetis [10]. The ordered list is then mapped to physical locations on 2D array of slots using a space-filling curve. Of the many types of such curves [2], we have considered only Hilbert-curve, Zcurve and snake-curve. This placement is further refined by running a low temperature simulated annealing to obtain the final placement.

Definition 1 For positive integers a, k where a = 2k , let us denote [a] = {1, 2, . . . , a}. A 2-dimensional discrete space filling curve of length a2 is a bijective mapping C : [a2] → 2 [a] , thus providing a linear indexing/traversal or total ordering of all grid points in [a]2 . The 2-dimensional grid is said to be of order k and it has side length a = 2k .

3.1. Linear ordering of CLBs The technology-mapped CLB netlist is modeled as a hypergraph H(V, E). Each vertex in the set V corresponds to a logic block that has to be assigned to a physical location. Each hyperedge in the set E represents a net in the netlist corresponding to a subset of V that constitute a net. The problem of placing the CLBs on a line with equal spacing such that the total wirelength of their nets is minimum, is NP complete [8]. But, for some special cases, i.e., rooted trees and series parallel graphs, this problem can be solved in polynomial time [1, 13]. Our goal is to obtain the linear order of the nodes of a hypergraph with the same objective function. We have adopted a heuristic procedure which recursively bipartitions the hypergraph using balanced mincut. We use the state-of-the-art hypergraph partitioning tool hMetis [10, 11]. It first reduces the size of the graph (or hypergraph) by collapsing vertices and edges (coarsening phase), partitions the reduced graph (initial partitioning phase), and then uncoarsens it to construct a bi-partition for the original graph (uncoarsening and refinement phase). The output of recursive bi-partitioning of the netlist hypergraph using hMetis can be considered as a linear order of its nodes. In general, the number of partitions generated by

417

The generation of a sequence of two-dimensional space filling curve of successive orders usually follows a recursive framework which results in a family of space filling curves. We discuss a few space filling curves relevant to our FPGA placement problem, and their generation algorithm. The Hilbert and Z space filling curves can be constructed from a basic unit shape as shown for k = 1 in Figure 3(a) and (b) respectively. The relative position and rotation of each unit shape is defined by its sequential position in the curve generation. As the resolution of the curve increases, more unit shapes are required for its description, but the principle remains true to the original proposition of dividing each part into smaller parts. Both these curves can be generated using an EOL-type (extended zero-sided Lindenmayer) grammar [18] that basically forces rewriting simultaneously at every cell of the grid partition. A more practical way to generate such curves using recursive procedures appear in [3]. In our case, the matrix size may not necessarily be of the form a = 2k . We draw the Hilbert and z-curves for arbitrary matrices as follows. Let the array dimension be R × C. Let N = max{R, C}. We find an a > R, C of the form a = 2k , as a = log2 N . Then, we find the space filling curve corresponding to a and crop the curve within the array of size R × C.

k=3

k=3

k=2

an ultra-low temperature simulated annealing (LTSA) is executed on it to obtain the final placement configuration. Using the method of [9], we have empirically deduced the starting temperature Tinit to be 0.00887σ, 0.01056σ, 0.00882σ corresponding to the initial placements obtained by Hilbert, Z and Snake curve respectively. Here, σ is the standard deviation of the BB-costs by applying few random swaps of adjacent blocks. We have specifically done n such random swaps where n is the number of CLBs.

k=2 k=1

k=1 k=0

k=0

(b)

(a)

Fig. 3. Generation of space filling curves: (a) Hilbert for k = 0, 1, 2, 3, (b) Z for k = 0, 1, 2, 3 12

10

9

14

15

8

3

2

2

1

1

7

6

5

13

16

11

4

a) Hilbert curve

6

8

5

14

16

13

7 4

3

15

10

9

b) Z-curve

12

11

20

17

16

13

19

18

15

14

11

2

3

6

7

10

4

5

1

8

4. EXPERIMENTAL RESULTS

12

In this section, we present the experimental results of our placement methodology. We compare these with the placement and routing results produced by the popular FPGA placement tool VPR [4] using bounding box cost and default parameter settings. The platform used is 1.2GHz SunBlade 2000 workstation, and Matlab package is used to generate the indices for the space-filling curve. Table 1 summarizes 8 of the MCNC benchmark circuit characteristics in terms of number of CLBs and IOBs. Table 2 presents the results after the first two steps, 1) linear ordering followed by 2) placement using space filling curves. Columns 2 and 3 list the number of partitions and the CPU time used by hMetis respectively. Columns 4-7 show the BB-cost of the placement obtained by application of Hilbert, Z, Snake curve and VPR respectively. The quality of the placement is denoted by Q, the gain percentage over VPR, defined as:

9

c) Snake curve

Fig. 4. Placement of linear list of blocks using space filling curves A snake curve is defined by partitioning an a×a grid into horizontal stripes of height 2k + 1. Each stripe is covered by a snake-like curve of the type shown in Figure 4(c). 3.2.2. Initial Placement using Space Filling Curve First, we calculate appropriate dimensions (say R×C) of the rectangular FPGA array, large enough to place all the CLBs and IOBs, and choose an appropriate space-filling curve for embedding the linear list of netlist blocks obtained in previous step onto R × C FPGA grid. This allocates a specific co-ordinate position for each of the netlist block in the linear list using the sequence generated by the specific space filling curve. Figures 4(a), 4(b) and 4(c) demonstrate the mapping of a linear order onto a two dimensional grid using Hilbert, Z and Snake curve respectively. After the CLB netlist is placed onto 2D FPGA grid, the IOBs (input/output blocks) are placed on the periphery of the grid. In order to place a primary output, the minimum bounding box enclosing the CLBs connected to it is extended to the nearest peripheral slot. In case of a conflict, i.e., if more than one primary output compete for the same slot, one is chosen arbitrarily and assigned to that slot; the other outputs are placed in the subsequent nearest empty slots. After all primary outputs of the circuit are placed, the primary inputs are placed uniformly in the empty slots along the periphery of R × C array.

Cost(V P R) − Cost(OurM ethod) Cost(V P R) (2) There is significant improvement in the initial cost by our method compared to that by VPR. On the average, it is 56.96%, 54.76%, 56.65% better for Hilbert, Z and Snake curve respectively. This phase is dominated only by the partitioning time of the netlist because the indices of the slots in the 2D array can be pre-computed as per the specific spacefilling curve equation. The final cost obtained after low temperature Simulated Annealing is summarized in Table 3. There is about 0.33% Q(Quality) = 100.

Table 1. MCNC Benchmark circuits Circuit # CLBs # Inputs # Outputs ex5p.net 1064 8 63 apex4.net 1262 9 19 alu4.net 1522 14 8 seq.net 1750 41 35 apex2.net 1878 38 3 spla.net 3690 16 46 pdc.net 4575 16 40 ex1010.net 4598 10 10

3.3. Low Temperature Simulated Annealing The initial placement generated thus far provides a fairly good quality solution. To further improve the placement,

418

Circuit ex5p.net apex4.net alu4.net seq.net apex2.net spla.net pdc.net ex1010.net Average:

Table 2. Comparison of initial cost: our method vs. VPR Partition BB Cost Gain in Quality(Q%) # parts time(s) Hilbert Z Snake VPR Hilbert Z Snake 567 2.93 251.02 241.18 236.24 416.8 39.77 42.13 43.32 645 3.48 250.18 264.81 251.25 506.3 50.59 47.7 50.38 772 4.12 255.38 266.64 249.35 600.9 57.50 55.63 58.50 913 4.59 348.82 368.87 348.58 792.8 56.00 53.47 56.03 959 5.29 386.32 413.76 383.05 901.6 57.15 54.11 57.51 1876 10.32 875.62 940.34 941.74 2392.2 63.40 60.69 60.63 2315 13.28 1235.52 1306.61 1247.75 3257.8 62.08 59.89 61.70 2309 15.52 1031.54 1190.82 1169.64 3350.5 69.21 64.46 65.09 56.96 54.76 56.7

Circuit ex5p.net apex4.net alu4.net seq.net apex2.net spla.net pdc.net ex1010.net Average:

Circuit ex5p.net apex4.net alu4.net seq.net apex2.net spla.net pdc.net ex1010.net Average:

Hilbert 161.769 179.476 191.858 246.935 271.769 608.071 878.112 649.046

Hilbert + LT SA 6.74 8.1 11.7 14.0 16.9 44.8 59.4 63.0

Table 3. Comparison of final cost Final BB Cost Gain in Quality(Q%) Z Snake VPR Hilbert Z Snake 162.449 162.183 161.949 0.11 −0.31 −0.14 181.293 181.062 180.456 0.54 −0.46 −0.34 191.866 190.848 191.664 −0.10 −0.11 0.43 246.905 246.879 247.742 0.33 0.34 0.35 267.512 271.204 268.136 −1.35 0.23 −1.14 592.415 596.830 608.155 0.01 2.59 1.86 868.139 873.610 870.872 −0.83 0.31 −0.31 654.104 656.093 654.192 0.79 0.01 −0.29 −0.06 0.33 0.05

Table 4. Speed-up by Our Method # of SA Moves * 106 Gain in Time(T%) Z Snake VPR Hilbert Z Snake + LT SA + LT SA + LT SA + LT SA + LT SA 6.74 6.74 13.6 50.43 50.43 50.43 7.5 8.7 16.4 50.43 53.85 47.01 12.4 11.4 22.1 46.77 43.55 48.39 14.9 14.0 27.4 48.78 48.78 48.78 16.6 16.2 29.0 41.8 42.62 44.26 43.1 45.4 75.2 40.31 42.64 39.53 59.4 60.9 97.2 38.89 38.89 37.30 59.9 64.5 101.5 37.88 40.91 36.36 44.41 45.21 44.01

and 0.05% gain in cost for Z and Snake curve respectively over VPR, with no increase in the FPGA array size. Table 4 shows the speed-up by our method over VPR in terms of number of SA moves for producing the final placement. The percentage of gain in time, denoted by T is defined as: M oves(V P R) − M oves(OurM ethod) M oves(V P R) (3) On the average, the gain over VPR is 44.41%, 45.21%, 44.01% for placement using Hilbert, Z and Snake curve respectively. T (T ime) = 100.

419

Table 5 summarizes the critical path length and the channel width after our placement result is routed by VPR’s router. The results are compared against placement and routing obtained by VPR. It shows that in all the circuits critical path length is much less when Hilbert curve is used for placement, compared to critical path obtained by VPR. With Z and Snake curves, critical path length is better than VPR as the size of the benchmark increases. Finally, we observed that although the number of moves required by VPR can be reduced by changing certain default parameters (i.e., inner num [4]), the critical path length

Ckt ex5p.net apex4.net alu4.net seq.net apex2.net spla.net pdc.net ex1010.net

Table 5. Comparison of Critical Path length Critical Path(107 s) Channel Width Hilbert Z Snake VPR Hilbert Z Snake VPR 1.14784 1.27898 1.22130 1.1218 14 14 14 14 1.23240 1.62950 1.18536 1.27921 14 13 13 13 1.19603 1.10655 1.08779 1.21086 11 11 11 10 1.20107 1.22128 1.35573 1.27411 12 12 12 12 1.23050 1.22665 1.37551 1.21437 12 12 12 13 1.67520 1.53068 2.07083 1.71177 15 14 14 15 2.27592 2.12203 2.23701 2.39288 17 18 18 17 1.96567 2.0187 1.99182 2.3004 11 11 11 11

worsens even further compared to our results. Details are omitted here due to lack of space.

[5] J. M. Emmert, and D. K. Bhatia, “Tabu Search: Ultra-Fast Placement for FPGAs,” in 9th Intl. Workshop on Field Programmable Logic, pp. 81-90, 1999.

5. CONCLUDING REMARKS

[6] J. M. Emmert, S. Blanacha, and D. K. Bhatia, “Physical Layout Techniques for Field Programmable Gate Arrays,” Manuscript, Personal communication.

The proposed placement methodology based on linear ordering of technology mapped CLB netlist by recursive bipartitioning, followed by application of various space-filling curves produces good initial placement for island-style FPGAs. This fact can be inferred from high quality final placement generated by ultra-low temperature simulated annealing. Our solutions come with appreciable speed-up compared to popular methods, without sacrificing the quality. We conclude from the experimental results that, on an average, our method requires 44.5% fewer moves during simulated annealing whereas the quality of solution is 0.1% better. The critical path length also tends to be smaller. The proposed method thus provides a wide scope of application to fast compilation of re-configurable FPGA based co-processors. Comparison of the placement results of our proposed method with those obtained by PPFF [12] on the same platform need to be carried out. Appropriate objective functions that would satisfy various placement constraints for newer FPGA architectures, and take advantage of space filling curves to produce high quality solutions, are also being studied. 6. REFERENCES

[7] D. Hilbert, “Uber stetige Abbildung einer Linie auf ein Fl¨achenst¨uck”, Mathematische Annalen, vol. 38, pp. 459–460, 1891. [8] M. R. Garay, and D. S. Johnson, “Computers and Intractability: A Guide to Theory of NP-completeness,” W. H. Freeman & Co., San Francisco, 1979. [9] M. Huang, F. Romeo, A. Sangiovanni-Vincentelli, “An Effi cient General Cooling Schedule for Simulated Annealing,” in Digest of ICCAD, pp. 381–384, 1986. ˜ [10] http://www-users.cs.umn.edu/karypis/metis/hmetis/ [11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph Partitioning: Applications in VLSI Domain,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 7, no.1, pp. 69–79, 1999. [12] P. Maidee, C. Ababei, and K. Bazargan, “Fast Timing-driven Partitioning-based Placement for Island style FPGAs,” in Proc. of ACM IEEE Design Automation Conference, pp. 598–603, 2003. [13] S. C. Nandy, G. N. Nandakumar, B. B. Bhattacharya, “Effi cient Algorithms for Single and Two-layer Linear Placement of Parallel Graphs,” Computers Math. Applic, Elsevier Science, vol. 34, pp. 121–135, 1997.

[1] D. Adolphson, and T. C. Hu,“Optimal Linear Ordering,” SIAM J. on Applied Math, vol. 25, no. 3, pp. 403–423, 1973.

[14] G. Peano, “Sur une courbe qui remplit toute une aire plaine,” Mathematische Annalen, vol. 36, pp. 157–160, 1890.

[2] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, “Space Filling Curves and Their Use in the Design of Geometric Data Structures,” in Proc. of the Second Latin American Symposium on Theoretical Informatics, pp. 36–48, 1995.

[15] H. Sagan, “Space-Filling Curves,” Springer Verlag, 1994. ISBN 0-387-94265-3. [16] K. Shahookar, and P. Mazumdar, “VLSI Cell Placement Techniques,” ACM Computing Surveys vol. 23, no. 2, pp. 143– 220, 1991.

[3] G. Breinholt, and C. Schierz, “Generating Hilbert’s Spacefi lling Curve by Recursion,” ACM Trans. on Mathematical Software, vol. 24, no. 2, pp. 184–189, Jun. 1993.

[17] J. D. Vicente, J. Lanchares, R. Hermida, “Annealing Placement by Thermodynamic Combinatorial Optimization,” ACM Trans. on Design Automation of Electronic Systems, vol. 9, no. 3, pp. 54–60, 2004.

[4] V. Betz, and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,”in 7th Intl. Workshop on Field-Programmable Logic and Applications, pp. 213–222, 1997.

[18] D. Wood, “Theory of Computation,” Harper & Row, 1987.

420

des documents recommandant

[image: alt]

FPGA IMPLEMENTATION OF AN AUGMENTED ... - Xun ZHANG

This research is being funded by Ministerio de Ciencia y TecnologÄ±a under grant TIC 2003-09557-C02-02. that, although patients consider the system useful for ...

[image: alt]

A NOVEL ASYNCHRONOUS FPGA ... - Xun ZHANG

our asynchronous wrapper design which allows the synchronous logic blocks to communicate with each other through a 2- phase handshaking protocol under ...

[image: alt]

EFFICIENT QUADRATIC PLACEMENT FOR FPGAS ... - Xun ZHANG

Tool for FPGAs. Quadratic placement algorithms try to minimize total squared wire length by solving linear equations. The resulting placement tends to locate all ...

[image: alt]

EFFICIENT FPGA IMPLEMENTATION OF CORDIC ... - Xun ZHANG

Departamento de IngenierÃa ElectrÃ³nica, Universidad PolitÃ©cnica de Valencia. 46730 Grao way that the control signal di is generated in equation (1). Clearly ...

[image: alt]

GENERALIZING SQUARE ATTACK USING SIDE ... - Xun ZHANG

attacks on smart cards. In this paper ... cell representing one byte and we use terms like columns, ... Our measurements are made using the on-board clock at 50.

[image: alt]

A Dynamically-Reconfigurable FPGA Platform for ... - Xun ZHANG

recently that technology is allowing the physical implementation of bio-inspired systems. We are currently pursuing three lines of research : (1) refining.

[image: alt]

An FPGA run-time system for dynamical on ... - Xun ZHANG

... 2004 IEEE. Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS'04) ... description on the basic hardware architecture supporting run-time Symposium on FPGAs for Custom Computing Machines,.

[image: alt]

DESIGN AND FPGA IMPLEMENTATION OF AN ... - Xun ZHANG

in that inter-neural communication is reduced to temporally ... The communication phase involves ware simulator is used by the Neuroscientists to prototype.

[image: alt]

AN FPGA SOLVER FOR WSAT ALGORITHMS Kenji ... - Xun ZHANG

achieve high performance, and (3) fast data-downloading for each instance. We implemented the solver for problems up to 256 variables and 1024 clauses on ...

[image: alt]

An Algorithm for Dynamically Reconfigurable FPGA ... - Xun ZHANG

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan and estimates their cost by our metric. Example 1 In the example shown in ...

[image: alt]

AN FPGA-BASED SOFT MULTIPROCESSOR SYSTEM ... - Xun ZHANG

env ironmentintegratestheIB M P ow erP C 4 0 5 coresonchip, soft M icroB laze cores, and cu ... of softw are programmability and prov ides an easy w ay to.

[image: alt]

AN FPGA NETWORK ARCHITECTURE FOR ... - Xun ZHANG page

This paper presents a DES/3DES core that will support. Cipher Block Chaining (CBC) and also has a built in keygen that together take up about 10% of the ...

[image: alt]

ADDRESS GENERATION FOR FPGA RAMS FOR ... - Xun ZHANG

FPGA offers the potential of being a reliable, and high- performance reconfigurable platform for the implementation of real-time video processing systems.

[image: alt]

DEFECT TOLERANCE IN MULTIPLE-FPGA SYSTEMS ... - Xun ZHANG

scribed in Section 3. System integration (board design, etc.) may require slightly greater effort than usual. Still the sys- tem is easily viable; our research group is ...

[image: alt]

FPGA IMPLEMENTATION OF A GF(24M) MULTIPLIER ... - Xun ZHANG

accelerator for characteristic 2. 3. MATHEMATICAL BACKGROUND. 3.1. Elliptic Curves. A supersingular elliptic curve over the field GF(2 m.) is de- fined by the ...

[image: alt]

CPU-INDEPENDENT ASSEMBLER IN AN FPGA Georg ... - Xun ZHANG

... on the data type. For ex- ample, register r1 with 8/16/32/64 bits is converted to the ... where one Paracode corresponds to one or more native op- codes.

[image: alt]

Untitled - Xun ZHANG

group, and the European Union End to End Reconfigurability Project (E2R) ... train, taxi, next flight to . . . , restaurant, tickets to the opera, etc.). Concierge services ... core network infrastructure containing the billing system and through whi

[image: alt]

software ... - Xun ZHANG

The approach is highly suitable for embedded soft-core SoPC applications. ... adequate design platforms and tools, which enable optimal exploitation of the considered architectures. IEEE Trans Consumer Electron 1992;38(1):18â€“34. 110.

[image: alt]

TRIDENT - Xun ZHANG

experimentation, analysis, and optimization of floating point algorithms on FPGAs ... front-end accepts programs written in C, C++ or potentially other languages,.

[image: alt]

XHwIcap_GetClbBits - Xun ZHANG

Dec 6, 2005 - Powerful embedded processing and real-time operating systems ... Applications of Reconfiguration Linux Kernel's /proc filesystem.

[image: alt]

uncorrected proof - Xun ZHANG

May 15, 2007 - 68 to medium volumes of production. chain. It should be noted that the MicroBlaze processor. 346 and its C compiler Commerce, 1977.

[image: alt]

SOFTWARE ... - Xun ZHANG

representative applications for large format printers. These ... Packard, Inkjet Commercial Division (ICD), R&D Large-Format ... the large format printers industry.

[image: alt]

USING DSP BLOCKS FOR ROM REPLACEMENT: A ... - Xun ZHANG

sets of this technique, corresponding to certain masks. A modulus may be applied to the input address bus for the purposes of evaluating the polynomial, which ...

[image: alt]

MAGNETIC REMANENT MEMORY ... - Xun ZHANG

bit stream and partial dynamic reconfiguration. Some FPGAs and CPLDs use flash memory. This type of memory provides non volatility. However flash can be.

×
Report FAST FPGA PLACEMENT USING SPACE-FILLING ... - Xun ZHANG

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

