DNA nanotechnology: structure, computation and networks

André Estévez‐Torres. Laboratoire de photonique et de nanostructures. CNRS, Marcoussis, France. DNA nanotechnology: structure, computation and networks ...
6MB taille 0 téléchargements 253 vues
DNA nanotechnology: structure, computation and networks

André
Estévez‐Torres


Laboratoire
de
photonique
et
de
 nanostructures
 CNRS,
Marcoussis,
France


What Nature can do with nanotechnology

10
µm
 A
white
globule
chasing
a
bacterium


From
D.
Rogers
1950s
(Vanderbilt
University)
 Downloaded
from
hPp://www.youtube.com/watch?v=JnlULOjUhSQ


Structure: The ribosome

25
nm
 Korostelev
et
al
PNAS
2007



Structure: E. coliʼs flagellum motor

Francis
et
al
J.
Mol.
Biol.
1994
 Alberts
et
al
Essen*al
Cell
Biology,
3rd
Edi^on
 downloaded
from:
youtube.com/watch?v=Ey7Emmddf7Y



Structure: DNA double helix

Watson
and
Crick,
Nature
1953


Structure: DNA double helix

≈10
bases
 ≈
3.4
nm


Watson
and
Crick,
Nature
1953


≈2
nm


Structure: DNA double helix

≈10
nm


≈2
nm


Computation

Networks

Operon lactose

Tyson,
Annu.
Rev.
Phys.
Chem.
2010


DNA nanotech
 Structures

Seemanʼs idea (1982)

La
profondeur.
M.C.
Escher
 Seeman,
J.
Theo.
Biol.,
1982


How?

Hollyday,
Gen.
Res,
1964


First DNA nano-object: A cube (1991)

20
bases
 ≈
7
nm
 Chen
and
Seeman,
Nature,
1991


2D crystals (1998) AFM
image


300
nm


Winfree,
Lieu,
Wenzler
and
Seeman,
Nature,
1998


DNA length and salt 1
µM


100
µM


10
mM


3
M


Increasing
monovalent
salt
concentra^on


Makita
et
al
Macromolecules
2006


M3+ salt induce DNA condensates Compact
DNA
 Coiled
DNA


2
µm


• 
Slow
transla^onal
diffusion
 • 
High
intra‐chain
fluctua^ons


• 
Fast
transla^onal
diffusion
 Videos
by
A.
Estévez‐Torres,
Kyoto
University,
2007


• 
No
intra‐chain
fluctua^ons


DNA condensates Cryoelectron
microscopy


50
nm
 λ
DNA
condensed
with
Co(NH3)3+
200
µM
 Hud
and
Downing
,
PNAS,
2001


Reversible DNA condensation (2006)

5
µm


Le
Ny
and
Lee,
J.
Am.
Chem.
Soc.
2006


Reversible DNA condensation 
 for gene regulation (2010)

Estévez‐Torres
and
Baigl,
SoA
MaBer,
2011


Reversible DNA condensation 
 for gene regulation (2010)

Estévez‐Torres
et
al,
PNAS,
2010


DNA origami (2006)

backbone:
M13
ssDNA
(7176
nt)
 staples:
32
nt


Rothemund,
Nature,
2006


DNA origami (2006)

Shawn,
Wyss
Ins^tute
 Downloaded
from
hPp://wyss.harvard.edu/viewmedia/32/dnaorigamibased‐self‐assembly


100
nm


Rothemund,
Nature,
2006


3D origami

Douglas
et
al,
Nature,
2009


A nanobox with a controllable lid (2009)

Andersen
et
al,
Nature,
2009


Reconfigurable DNA canvas (2012)

150
nm
 17
h,
yield:
6‐40
%
 Wei,
Dai
and
Yin,
Nature,
2012


DNA nanotech
 Computation

Computation with DNA (1994)

Adleman,
Science,
1994


Algorithmic self assembly (2004) Sierpinski
triangle
 W.
Sierpinski,
1915


Rothemund
et
al,
Plos
Biol,
2004


DNA nanotech
 Networks

DNA-fuelled DNA machine (2000)

Yurke
et
al,
Nature,
2000


Walkers (2004)

Shin
and
Pierce,
J.
Am.
Chem.
Soc.
2004


Chemical synthesis (2010)

He
and
Liu,
Nature
Nanotech,
2010



DNA strand-displacement logic gates (2006)

Seelig,
Soloveichik,
Zhang
and
Winfree,
Science,
2006


DNA strand displacement and 
 chemical kinetics (2010) Species
A
 Barcode


Species
B


Soloveichik,
et
al,
PNAS,
2010


DNA strand displacement and 
 chemical kinetics

Validated
in
simula^ons
only


Soloveichik,
et
al,
PNAS,
2010


Introducing time-responsiveness
 with enzymes (2011) α 



 "


β
:




α 
ac^vates

β


Montagne
et
al,
Mol.
Sys.
Biol.,
2011


The first engineered chemical oscillator (2011)

Montagne
et
al,
Mol.
Sys.
Biol.,
2011


www.biomod.net