de la derive des continents a la tectonique des ... - Mines Saint Etienne

charbons dont on estime que le climat tropical humide est facteur favorisant, à la présence ...... trop fort, ce qui implique l'extraction de chaleur autrement que par.
7MB taille 42 téléchargements 335 vues
E.N.S.M. St Etienne

2010

Jill Scott «Continental Drift» «Continental Drift» compares the process of speculation and excavation in the landscape to the process of diagnosis and treatment in human illness. It focuses on the relationship between the crust of the earth and a comparison between the health of the human body and that of the planet. «Continental Drift» was inspired by the artist's own experience of breast cancer and alternative cures. www.medienkunstnetz.de

DE LA

DERIVE DES CONTINENTS A LA

TECTONIQUE DES PLAQUES Aperçu épistémologique de la géologie entre deux paradigmes

Axe Processus Naturels E.N.S.M. St Etienne

Block diagram illustrating schematically the ocean-floor spreading hypothesis, and more particularly the relationship between ocean ridges, island arc-trench Systems and transform faults of ridge-to-ridge and arcto-arc types. The arrows indicate the relative motion between adjacent blocks. Adapted from ISACKS, OLIVER and SYKES (1968), J. geophys. Res., 73, 5857.

EMSE : Axe Processus Naturels 23/07/13

p. 0

Les XVI° et XVII° siècles : L'ERE des CATASTROPHISTES L'acquis des anciens, grecs et latins, ayant été oblitéré par le Moyen-âge, il faut attendre le XVI° siècle pour voir le redémarrage des connaissances dans le domaine des sciences de la Terre. Toutefois, à cette époque, la notion de temps est imposée par l'Eglise pour qui toutes les explications sont contenues dans la Bible. Le déluge en particulier est considéré comme un événement "incontournable" de l'histoire de la Terre. J. Ussher (archevêque primat d'Irlande) établit une chronologie de la planète exclusivement basée sur la Bible. Cette chronologie servit longtemps de modèle, à tel point que certaines éditions actuelles de la Bible y font encore référence. "La Terre et le ciel ont été créés le dimanche 23 octobre 4004 av JC", Noé est monté en bateau le mardi 7 décembre 2349 av JC. Aucune explication géologique ne saurait dès lors ignorer cet épisode clef sans risque de passer pour hérétique, tel B. Palissy qui osait prétendre en 1570 que l'eau et la mer usaient les roches tellement vite qu'il faudrait bien que celles-ci soient remplacées sous peine de voir bientôt disparaître les continents sous les flots. Ce XVI° siècle est aussi celui des voyages et des découvertes. Certains rapportèrent ainsi d'Extrême-Orient que la chronologie de plusieurs familles dépassait l'âge du déluge. Grâce à ces grands voyages, les relevés cartographiques progressèrent énormément. Dès cette période, les géographes constatèrent la similitude des côtes Atlantiques. Mais s'ils soulignèrent le fait, ils n'en tirèrent cependant pas de conclusions. En 1620, sir F. Bacon va plus loin et suggère dans son "Novum Organum" que le parallélisme entre les côtes Atlantique "ne peut être le fruit du hasard". L'explication en fut donnée un peu plus tard par F. Placet: "le déluge avait séparé ce qui autrefois était réuni". D'autres remarques sur le développement de la vie sur Terre étaient de plus en plus difficiles à concilier avec les enseignements de la bible. En 1634, Descartes admet que la formation de la Terre est un processus continu mais par prudence il ne publie pas sa théorie. N. Sténo établit que la superposition des couches sédimentaires peut contenir la chronologie des événements géologiques (fig. 1). En 1669, il met en accord sa Fig. 1 : Graphiques publiés en 1669 par Sténo et présentés dans l'ordre inverse de celui de théorie avec le dogme en rendant le déluge la chronologie ; ils illustraient la conception qu'il avait de l'origine des composants de la terre : les premières strates (en bas à droite), affouillées par l'eau, s'effondraient (en haut responsable de la sédimentation. à droite) en laissant des vides que remplissaient ensuite les sédiments (en bas à gauche). Une deuxième séquence d'affouillements et d'effondrements, selon Sténo, aboutissait à la création des falaises, des collines et des vallées.

Le XVIII° siècle : L'EMERGENCE des IDEES CONTINUISTES Lors de la mesure de la hauteur des Andes (1735), P. Bouguer utilise un fil à plomb pour mesurer les verticales. Il est donc conduit à introduire une correction pour tenir compte de la déviation horizontale engendrée par la masse des montagnes avoisinantes. La déviation qu'il observe est beaucoup plus faible que ce qu'il prévoyait. Presque simultanément G. Everest obtient le même résultat en Himalaya. P. Bouguer en conclut que les montagnes étaient beaucoup moins denses qu'on l'imaginait, à moins qu'elles ne fussent creuses. La notion de montagnes creuses fut très mal reçue, mais les observations de Bouguer et Everest ne trouvèrent pas d'autre explication, et les choses en restèrent là pendant un siècle. En 1749, Buffon commence la publication de son "Histoire Naturelle". Il y note entre autre que "l'on retrouve les mêmes fossiles en Irlande et en Amérique, et qu'on ne les trouve nulle part ailleurs" et en déduit que ces deux régions avaient dû être reliées jadis, en 1782, B. Franklin constate de son côté que les fossiles marins existent dans les montagnes. Il en conclut avec une pré-science étonnante que la croûte de la Terre doit être une coquille flottant sur un fluide interne, "de sorte que la surface du globe pourrait être brisée et bouleversée par des mouvements du fluide sur lequel elle repose". En 1780 enfin, J. Hutton (thèse publiée par son biographe en 1805) est le premier à oser dire le rôle important du temps infini à l'échelle géologique, et à concevoir que les phénomènes géologiques ne sont pas cataclysmiques, c'est à dire accidentels au sens du déluge, mais ressortent au contraire de phénomènes physiques continus. Pour lui la Terre a évolué et continue d'évoluer par des processus naturels, accumulation, érosion, plissement, de nouveaux continents remplaçant les anciens.

EMSE : Axe Processus Naturels 23/07/13

p. 1

Le XIX° SIECLE : des OBSERVATIONS en AVANCE sur les CONCEPTS La charnière du XIX° siècle est marquée dès 1805 par W. Humboldt. Il connaît très bien l'Afrique lorsqu'il aborde l'Amérique Latine, ce qui lui permet de corréler les chaînes de montagnes tronquées par l'Atlantique avec leurs homologues africaines. En plus de ces identités géographiques, il constate des similitudes géologiques frappantes entre ces chaînes (brésilienne et congolaise par exemple), et entre les bassins (Amazone et Guinée). Il va plus loin encore et étend ce principe de puzzle en pièces détachées à l'Amérique du Nord et l'Europe. La conclusion est alors évidente: l'Atlantique n'est qu'une vallée, remplie par le déluge. Comme J.Hutton, J.B. Lamarck considère que rien n'est impossible au temps. Il lui vient une curieuse idée pour expliquer à la fois le déplacement des continents et la présence de fossiles marins sur ceux-ci. En s'appuyant sur les courants marins, il imagine une érosion des continents sur une de leurs façades maritimes et une sédimentation à l'opposé, ce qui aurait pour effet d'engendrer une migration apparente des continents. La période 18301850 est marquée par le développement des théories continuistes de C. Lyell. Il considérait comme Hutton que tout était le fruit d'un processus naturel encore à l'œuvre. Il ne croyait pas aux déplacements latéraux des continents de Lamark. Vers 1850, J.D. Dana émit l'hypothèse que la Terre, originellement en fusion, se refroidissait en subissant une contraction à la manière d'une pomme qui se ride en séchant. Les bourrelets montagneux à la surface du globe correspondaient à ces rides. Les océans représentaient dans sa théorie des zones de contraction plus récente et donc plus profondes, les continents étant alors figés. Les fortes contraintes engendrées aux limites océan-continent seraient responsables des montagnes jeunes (Andes par ex). Cette théorie aura la vie dure. Pourtant dès 1858, dans "La Création et ses mystères dévoilés", SniderPelegrini s'oppose à la théorie de la contraction de Dana. Il est d'accord avec lui pour une Terre en fusion au début de son histoire, mais il réfute la contraction: pour Snider-Pelegrini, si les continents s'emboîtent, c'est qu'à une période ils n'ont formé qu'une seule masse; ensuite ils se sont déplacés. A l'appui de sa théorie, il avait même retracé des cartes du globe (fig. 2). Il est regrettable que ce trait de génie ait été discrédité par l'explication (enfin démodée) qu'il donnait du déplacement ultérieur des continents, le déluge, mais aussi par l'influence grandissante des théories de Lyell et de Dana. En 1855, G. Airy réinterprète les observations de Bouguer et Everest. Il suggère d'une part que, compte tenu de leur hauteur, les montagnes représentent un excédent de poids important et qu'elles doivent donc avoir des racines importantes, et il suggère d'autre part qu'étant constituées de granite (matériel de densité faible), les montagnes flottaient comme des icebergs sur la couche basaltique plus dense du manteau. "On peut supposer que la croûte flotte en équilibre". L’isostasie était née avant l'heure. Cette notion de soulèvement progressif fut reprise vers 1870 par J.W. Powell pour expliquer le tracé sinueux du Colorado malgré son enfoncement dans le Grand Canyon. Le nom d' "isostasie" ainsi que la formalisation du concept d'équilibre de la croûte en terme de gravité datent de 1899 et sont dus à C. Dutton. En 1879, G.H. Darwin (ne pas confondre avec Charles Darwin auteur de "De l'origine des espèces par voie de sélection naturelle" 1859) publia l'hypothèse selon laquelle la lune aurait été arrachée à la Terre en des temps très reculés de l'histoire de la Terre. L'océan pacifique en serait la cicatrice. Pour O. Fisher, qui considère en 1881 dans "Physics of the Earth's crust" que l'intérieur de la Terre pourrait être relativement fluide et animé de courants de convection ascendants sous les océans et descendants sous les continents, l'arrachement de la lune aurait provoqué un déplacement latéral et une fragmentation de la croûte granitique refroidie. Cette théorie aussi restera un serpent de mer dont la gorge ne sera tranchée que durant les années 1960: le dragage et le Fig.2 : Antonio Snider-Pellegrini, un Américain émigré en France, fut l'un des tout premiers géologues à exposer dans un traité, publié en 1858, l'idée d'une carottage du fond océanique pacifique révéla qu'il n'y avait dérive des continents illustrée par les canes ci-contre. Il prétendait, contrairement pas de roches plus vieilles que 200 Ma environ, alors que à la thèse soutenue plus tard, que les terres qui bordent l'Atlantique avaient été l'analyse des échantillons prélevés sur la lune en 1969 brutalement séparées par un cataclysme causé par le déluge de la Bible. montra que celle-ci était née en effet il y a près de 4 Ga.

La charnière XIX° XX° SIECLE, ELASTICITE - RIGIDITE du MANTEAU A la charnière du XX° siècle, la géophysique se développe rapidement. De 1841 à 1844, Milne avait montré qu'un ébranlement se propage par des ondes sphériques. En 1897, Oldham distingue deux types d'ondes: les ondes "P" ou primaires, et les ondes "S" ou secondes, qui se révélèrent être de cisaillement. Le fait qu'elles soient transmises sauf dans le noyau imposa l'idée d'une croûte rigide et d'un noyau liquide (Oldham en 1906). Les grandes discontinuités de la Terre sont mises en évidence par A. Mohorovicic entre croûte et manteau en 1909 et par B. Gutenberg entre manteau et noyau. Les géologues Américains et Anglais considèrent alors que puisque le manteau et la croûte transmettent les ondes de cisaillement, ils doivent être très rigides. Au contraire les géophysiciens Allemands adoptent généralement des conceptions mobilistes voisines de celles de Fisher, mais leurs idées sont peu répandues (barrière linguistique). Elles sont cependant EMSE : Axe Processus Naturels 23/07/13 p. 2

importantes dans la mesure où A. Wegener, allemand lui aussi, en était forcément imprégné lorsqu'il conçut sa théorie de la dérive des continents. On considère que le ralentissement des ondes S dans la zone à faible vitesse (Low Velocity Zone, fig. 3) est dû au fait que les roches sont proches de leur point de fusion ou contiennent une faible proportion (1% maximum) de liquide magmatique. Vers 1840, C. F. Gauss avait analysé la distribution du champ magnétique terrestre, et donné une description complète de celui-ci, en direction (déclinaison) et en inclinaison. La première observation de l'aimantation de roches est due à A. Delesse en 1849. Vers 1900, les travaux de P. Curie sur le magnétisme des minéraux (point de curie) vont permettre d'utiliser le magnétisme rémanent des roches. En 1906, B. Brunhes découvrit que certaines Fig. 3 : Ondes P et S dans la Terre. roches étaient aimantées à l'inverse du champ actuel. Il en déduisit que le champ magnétique avait pu subir une inversion dans un lointain passé. L'absence de matériel de mesure précis et sensible fit que, malgré tout l'intérêt de ces découvertes, l'étude du magnétisme terrestre ne devait prendre son véritable essor qu'après 1950, lorsque S. Chapman et J. Bartels eurent démontré que l'on pouvait ramener le champ magnétique terrestre à un dipôle placé en son centre, et que les irrégularités superposées (appelées effets régionaux) étaient dues aux composantes multipolaires du champ. En ce début de siècle, les découvertes paléontologiques et biologiques se sont accumulées, imposant l'idée de liaisons (isthmes temporaires par exemple) entre les continents actuels: Flore à Glossoptéris (fougère de 270 Ma) vivant au Brésil et en Afrique du Sud; aire de répartition du Mésosaurus (reptile terrestre) couvrant le Brésil, l'Afrique équatoriale actuelle et Madagascar; l'existence d'espèces animales actuelles communes à Madagascar et à l'Inde. Entre 1885 et 1909, E. Suess qui était un fervent partisan des thèses de Dana publia "Le Visage de la Terre". Opposé aux idées de C. Dutton, il considérait que la croûte, originellement uniforme et répartie en deux super continents qu'il appela Gondwana et Atlantis, s'était partiellement effondrée dans le manteau sous l'effet de la contraction. Cette nouvelle hypothèse permettait de rendre compte des découvertes paléontologiques précédentes sans faire appel à des passerelles aujourd'hui disparues. Lors de ces épisodes de contraction, la bordure des continents aurait subi une poussée tangentielle, et il en résulterait la constitution de chaînes de montagnes arquées. Suess avait en effet remarqué que les chaînes bordières présentent leur bordure convexe vers l'océan (fig. 4). L'histoire retiendra aussi et surtout de Suess qu'il distingua 3 couches dans la structure interne de la Terre, le noyau interne, le manteau intermédiaire, et la croûte externe, terminologie toujours en vigueur. Parallèlement aux travaux de Suess, le paléontologue M. Neumayr avait reconstruit en 1887 Fig. 4 : d’après E.Suess, les chaînes bordières présentent leur la topographie des terres à 190 Ma en s'appuyant sur les répartitions bordure convexe vers l'océan, en voici une illustration moderne. connues de fossiles dans le monde. Il avait tracé trois super continents. .Atmosphère

N 72.3 O 25.4 A 13.0

Hydrosphère eau de mer eau douce % ppm ppm H 10.6 O 86.5

Cl 1.89 Na 1.06

Mg 0.13

H 52.5 O 39.0

Cl- 18980 Na+ 10556

SO422+ Mg

C 0.013

S Ca K Br

0.08 0.04 0.03 0.06

C 6.50

2649 1300

Ca2+ 400 K+ 380 CO3- 140

HC03Mg2+ SO42Ca2+ Si02

58.4 41.0 11.4 15.0 13.1

Br- 65 H2BrO3 26

Cl- 7.8 Na+ 6.3 NO3- 1.0

Kr 0.0003

Sr2+ 8

Fe 0.7

He 0.00006 Xe 0.00004

Total 34476

Total 120.0

Ne 0.0012

C 0.003

Biosphère

N 0.50 Ca 0.38 K 0.22 Si 0.12 Mg 0.10 S 0.070 Al 0.055 P 0.052 Cl 0.050 Fe 0.038 Mn 0.021 Na 0.019

Croûte continentale

océanique

O 41.2 Si 28.0 Al 14.3

O 43.7 Si 22.0

Fe Ca K Na Mg

4.70 3.90 2.30 2.20 1.90

Ti 0.40 C 0.30 H 0.20

Fe Mg Al Ca Na Ti

8.40 7.60 7.50 7.10 1.60 1.40

K 0.33 Mn 0.15

Mn 0.07

Manteau supérieur inférieur (lherzolites) (chondrites)

Noyau externe interne

O 44.70 Mg 24.70 Si 21.10

O 43.70 Si 22.50 Mg 18.80

Fe 80-85

Fe 5.60 Al 1.90 Ca 1.40

Fe 9.80 Ca 1.70 Al 1.60

Ni 5

Na 0.15 Ti 0.12

Na Cr Mn P K

K 0.08 Mn 0.07

0.84 0.41 0.33 0.14 0.11

Fe 80 Ni 20

S,Co,Si. 0.10-0.15

Ti 0.08

Fig.5 : Composition chimique des différentes enveloppes du globe Terrestre : Elles correspondent à des valeurs moyennes et sont exprimées en % pondéraux (d'après Brown et Musset. Krauskopf. Reeves). Pour les "eaux". on a indiqué aussi des valeurs en parties par million (ppm) des principaux ions dissouts

EMSE : Axe Processus Naturels 23/07/13

p. 3

1912 la DERIVE des CONTINENTS de A. WEGENER Le début du XX° siècle avait été marqué par une foison de théories sans fondement visant à expliquer l'ensemble des observations. Cependant, les connaissances du globe progressaient, en particulier dans le domaine de la chimie. Les premiers pas de la chimie des roches sont dus à l'anglais De la Bêche et à E. de Beaumont au milieu du XIX°. Le plus gros travail de recensement et d'analyse statistique, effectué entre 1889 et 1924, est dû à F. W. Clarke et à Washington. On appelle Clarke d'un élément son niveau de concentration dans la nature. A l'époque, on distingue déjà la croûte continentale sialique légère ou SIAL (acronyme de silicium et aluminium), de la croûte océanique censée représenter le manteau ou SIMA (de silicium et magnésium). Si ces termes ont à peu près disparu aujourd'hui, le tableau des compositions moyennes des enveloppes terrestres de la fig. 5 montre que la distinction était bien fondée. En 1908, F. Taylor publia une communication très importante. Pour lui, les chaînes de montagnes telles que les Andes, les Rocheuses, les Alpes ou l'Himalaya étaient nées de formidables pressions exercées latéralement et pendant une longue période de temps. Il envisageait deux proto-continents situés aux pôles qui auraient subit "une puissante progression rampante" vers l'équateur, causée par "un irrésistible fluage". Les chaînes tertiaires seraient nées de leur collision. L'hypothèse de Taylor passa inaperçue, partiellement en raison de la faiblesse de son analyse des faits.

Fig. 6 : Reconstitution par Wegener des diverses positions des continents, du Carbonifère jusqu'au Quaternaire. D'après Wegener,fig- 4- 1929-

La théorie de A. Wegener, très proche mais beaucoup plus étayée, allait avoir un tout autre retentissement. Météorologue glaciologue, astronome de formation et explorateur (spécialiste du climat du Groenland), A. Wegener était un homme éclectique (nous dirions aujourd'hui pluridisciplinaire) passionné de climatologie, d'hydrographie, de volcanisme etc... Ses lectures géologiques l'amenèrent vers 1910 à réfléchir sur les théories en vigueur. Comme nombre de ses contemporains, il n'admettait pas la théorie sans fondement des isthmes pour expliquer les associations faunistiques actuelles ou fossiles. Il avait noté aussi les incohérences entre la théorie de la contraction de Dana et l'observation. Il en est ainsi de la distribution des chaînes de montagnes dans le monde qui, au lieu d'être régulièrement réparties comme l'impliquerait une contraction homogène constituent d'étroites bandes curvilignes. Les datations par radioactivité, quoique pas encore très précises (P. et M. Curie prix Nobel en 1903 puis Marie en 1911) qui révèlent des âges de formation très variés mais groupés autour d'épisodes séparés par de longues périodes tranquilles, sont en contradiction avec la contraction qui aurait dû entraîner une formation simultanée ou à tout le moins continue des chaînes de montagnes. A. Wegener allait fédérer les connaissances des paléontologues sur la répartition des fossiles, des géophysiciens sur l'isostasie, des géologues sur la nature de la croûte continentale et océanique, et des géographes sur la morphologie des continents en une hypothèse globale, "La formation des traits caractéristiques principaux de la croûte de la Terre" est présentée en janvier 1912 devant l'association géologique de Francfort. Les idées de Wegener furent très mal reçues, en particulier à cause du caractère pluridisciplinaire de l'auteur. W. Koppen, directeur de l'observatoire de Hambourg écrivait alors: "S'attaquer à des sujets qui sortent des limites tracées à une science par la tradition expose tout naturellement l'intrus à se voir considérer avec méfiance". En 1915 puis en 1920,1922 et 1929, il publia "La Genèse des continents et des océans" ouvrage dans lequel il avait rassemblé tous ses arguments pour expliquer que les continents, d'abord rassemblés en une seule masse nommée "Pangaea", avaient dérivé ensuite vers leur position actuelle (fig. 6). En 1930, A. Wegener décède au cours d'une expédition au Groenland. Les premiers arguments de A. Wegener étaient d'ordre géophysique. Il étudiait la topographie Statistique de la Terre, qui met en évidence deux altitudes dominantes, l'une autour de -5000m

EMSE : Axe Processus Naturels 23/07/13

p. 4

correspondant aux océans, l'autre, légèrement positive, correspondant aux continents (fig. 7). Cette observation coïncidait parfaitement avec la distinction entre SIAL et SIMA. Wegener considérait que les limites des continents se situaient non aux rivages de ceux-ci mais à la limite entre SIAL continental et SIMA océanique, c'est à dire au talus continental. Il considérait que si, comme l'admettait la théorie de l'isostasie de Airy, des déplacements verticaux de la croûte sialique étaient possibles malgré la rigidité de celle-ci (transmission des ondes S), rien ne s’opposait à des mouvements horizontaux. Après rapprochement de l'Afrique et de l'Amérique du Sud, il reprenait les observations et les Fig. 7 : Les deux maxima dans la distribution des altitudes idées de Humboldt sur la à la surface de la Terre., d'après Wegener, fig. 8y 1929. continuité des ensembles géologiques d'un continent à l'autre: les remarquables similitudes entre les séries plissées du Cap et de Buenos Aires; similitudes entre des séries continentales houillères du Karroo en Afrique du Sud et de Santa Carina au Brésil; similitudes encore entre les boucliers africain et brésilien (fig. 8); similitudes aussi entre les grès rouges d'Amérique du Nord, du Groenland et d'Europe. Il écrivait: " Tout se passe comme si nous devions rassembler les morceaux déchirés d'un Journal sur la seule base de leurs contours, pour vérifier ensuite seulement que les lignes imprimées se raccordent correctement. Si tel est bien le cas, il ne reste plus qu'à conclure que les morceaux étaient en effet disposés ainsi. Quand bien même nous ne disposerions que d'une seule ligne pour procéder à cette www.geology.ohio-state.edu Fig. 8 : L'extension des structures géologiques de vérification, nous aurions une très grande probabilité de tomber juste. En part et d'autre des cotes de l’Afrique et de I présence de n lignes cette probabilité est élevée à la nième puissance ". Il développa tout particulièrement les preuves paléontologiques (parmi les exemples figurent les cas du reptile terrestre Mesosaurus, de la Flore à Glossoptéris, fig. 9), mais il s'appuyait aussi sur des espèces actuelles. Il utilisa en particulier le cas de vers de terre dont Michaelson avait montré des ressemblances faunistique entre espèces d'Amérique du Nord et d'Europe, entre espèces d'Amérique du Sud et d'Afrique, et entre espèces d'Afrique du Sud, d'Australie, d'Inde et de Patagonie. La répartition des marsupiaux fut aussi un élément important de sa thèse. Ceux d'Australie ont, à l'évidence, subit une évolution indépendante au moins depuis le début du Tertiaire. Avant, l'Amérique du Sud était reliée à l'Australie, comme le montre la présence de l'Opossum sur ce territoire. Par contre, les marsupiaux sont absents d'Europe et d'Amérique du Nord. A. Hallam (1976) remarque que Wegener n'avait pas Utilisé les coraux, alors que ceux-ci sont de remarquables marqueurs des mers chaudes Dans les deux dernières éditions, il ajouta des arguments paléoclimatiques que Koppen et lui-même avaient recensés (fig. 10): II fit ainsi appel aux tillites (sédiments périglaciaires déposés par et sous les glaciers), aux charbons dont on estime que le climat tropical humide est facteur favorisant, à la présence de grés caractéristiques des ceintures désertiques.

Fig. 9 : Positions de l'Afrique et de l'Amérique du Sud, il y a environ 200 Ma, à partir des informations structurales et paléontologiques. C'est sur de telles données que Wegener avait fondé sa théorie de dérive des continents"

Amérique du Sud démontre l'unité de ces deux continents avant la rupture de la Pangée. Les vieux boucliers, encore appelés cratons sont ceinturés par des chaînes elles-mêmes plus anciennes que 450 Ma (modifié de P. Hurley.1979. La dérive des continents. Belin éd.20-31.

www.ggl.ulaval.ca/.../bourque/s1/derive.html. La continuité des structures géologiques aujourd'hui séparées par l'Océan Atlantique entre l'Amérique du Nord et l'Europe confirme aussi l'idée de Wegener. Les Appalaches (Est de l'Amérique du Nord), les Mauritanides (nord-est de l'Afrique) et les Calédonides (Iles Britanniques, Scandinavie), sont une seule et même chaîne formée entre 470 et 350 Ma.

Wegener expliquait la formation des chaînes de montagnes par un écrasement et des plissements en bordure des continents lorsque ceux-ci trouvent une résistance lors de leur dérive. A force de vouloir ajouter des arguments à sa théorie pour la rendre crédible, il commit l'irréparable. Premièrement, en se basant sur l'hypothèse fausse de l'existence d'une calotte glaciaire à 2 Ma, et sur des mesures fausses de longitude faites au Groenland en 1823 et 1870, Wegener estima la vitesse de déplacement des continents Nord Amérique et Europe à 36m/an, valeur beaucoup trop forte pour être acceptable. Deuxièmement, en voulant à tout prix trouver un moteur à la dérive des continents, qu'il chercha dans la force centrifuge due à la rotation de la Terre, et dans l'attraction des planètes et du soleil, il offrit à ses détracteurs le moyen de discréditer l'ensemble de son travail. Ces seuls points faibles de sa théorie suffirent à la faire rejeter.

EMSE : Axe Processus Naturels 23/07/13

p. 5

L'Entre-deux-guerres, l'ère de la CONTROVERSE Le géophysicien anglais H. Jeffreys, farouche partisan d'une Terre en contraction à partir d'un stade initial gazeux puis ensuite condensé, s'attacha à démontrer que les moteurs proposés par Wegener étaient irrecevables. D'autres géologues préféraient la théorie de "l'accrétion planètésimale à froid"' de T. C. Chamberlin, suivie d'un stade liquide, puis rejoignaient leurs collègues au stade de la contraction solide. Seul ce dernier point est actuellement rejeté. Les arguments des opposants à Wegener n'étaient pas tous scientifiques, et le fait qu'il ne fût pas géologue ou géophysicien ne fût pas l'un des moindres. Outre le fait que A. Wegener était un brillant et donc insupportable touche à tout, la communauté scientifique de l'époque n'était pas prête à comprendre et donc à admettre les hypothèses de Wegener. Plutôt que de rapporter par le menu les diatribes des opposants à la théorie de Wegener je rappellerai seulement qu'en congrès, en 1928, il fut dit: "Si nous devions croire à l'hypothèse de Wegener, il nous faudrait oublier tout ce que nous avons appris durant les 70 dernières années et repartir à zéro ".

Fig. 10 : La glaciation du Permo-Carbonifère. Les secteurs en noir représentent les calottes glaciaires et la ligne épaisse l'Equateur actuel. D'après Wegener, fig. 34, 1929.

Durant L'entre-deux-guerres, les adeptes de Wegener furent rares. Il y eut Taylor bien sûr, dont les théories étaient très proches de celles de Wegener, et qui fut aussi l'objet des mêmes railleries. Van der Gracht se rangea aux côtés de Wegener et de Taylor, considérant qu'il fallait distinguer la notion de résistance du manteau aux déplacements dans la théorie de Wegener, de la notion physique de rigidité qui résulte de la transmission des ondes sismiques. Aux USA, Wegener eut un allié de poids en la personne de R. Daly, géologue influent de Harvard qui, quoique' en désaccord avec le mécanisme proposé par Wegener, considérait que le principe de la dérive des continents devait être tenu pour acquis. En suisse, malgré l'opinion anti-allemande très marquée, E. Argand entreprit l'étude des chaînes de montagnes tertiaires à la lumière de la théorie de Wegener. De même, en Angleterre, E. B. Bailey y trouva l'explication des similitudes entre l'Amérique du Nord, l'Ecosse et la Norvège (Calédonides). En Afrique du Sud A. Du Toit fut lui aussi un chaud partisan des thèses de Wegener. Lui qui connaissait bien le Fig.11 : Les zones climatiques du Carbonifère et du Permien. Les Brésil écrivait: "Les similitudes entre les 2 rives ont été constatées en hachures représentent les zones arides. C = charbon; Gl = si grand nombre qu'il est impossible de les qualifier d'accidentelles". glace; D = grès désertiques; S = sel; Gy = gypse. Tiré de Wegener fig. 35 et 36, 1929. Dans "Nos Continents errants" publié en 1927, il se livra à un travail de reconstitution encore plus minutieux que celui de Wegener, et aboutit avec un luxe de détails, pour la période post-paléozoïque au moins, à deux super continents au lieu d'un, l'un centré sur le pôle Sud qu'il appela à la suite de Suess Gondwana" et l'autre centré sur l'Equateur, qu'il appela "Laurasie" (de la Laurentia de Suess et de Asie). Ils auraient été séparés par une mer étroite, la "Téthys" au moins jusqu'à ce que, au tertiaire, l'Inde et l'Afrique se soient mises à dériver vers l'Eurasie. Il date l'ouverture de l'Atlantique du Jurassique, mais l'ouverture ne serait devenue majeure qu'au Crétacé et au Tertiaire. Au début du tertiaire, la péninsule ibérique aurait subit une rotation, ouvrant ainsi le golfe de Gascogne, pendant que, parallèlement, les Pyrénées se seraient formées. Du Toit est le premier à envisager deux types de chaînes de montagnes: le type Alpin, qui serait dû à l'empiétement du Gondwana sur la Laurasie, et le type Siéra Nevada en Californie (conforme aux idées de Holmes décrites ci-après), qui serait dû au déplacement du continent américain vers I' Ouest. L'anglais A. Holmes, considéré par ailleurs comme l'un des fondateurs de la chronologie absolue, était convaincu de la justesse de la théorie de Wegener, mais en réfutait le moteur. Il www.mines.utah.edu/.../plate%20tectonics/. admettait (1929) une Terre à trois couches composées de granite (roche acide), de diorite (roche intermédiaire), et de péridotite (roche ultrabasique). Pour lui, la croûte était constituée des 2 premières couches, plus la partie sommitale de la troisième. En dessous, ce qu'il appelait le substrat était constitué du reste de la 3° couche, mais à l'état vitreux, alors que la partie engagée dans la croûte était cristalline. Il rejoignait en cela les idées de Barrell qui introduisit en 1914 les concepts de '"lithosphère EMSE : Axe Processus Naturels 23/07/13

p. 6

rigide" et "d'asthénosphère ductile" dans 2 articles au Journal of Geology, afin de rendre compte du fait que les surcharges locales (poids d'un delta par exemple) ne sont pas compensées localement par l'isostasie mais le sont à une échelle bien plus large. Il estime en effet que si l'on admet que la lithosphère est rigide et que l’asthénosphère est ductile, la lithosphère doit s'enfoncer sur une surface plus large que le delta lui-même. Pour Holmes, la chaleur libérée par radioactivité est insuffisante pour Fig. 11 : L’interprétation de Holmes de la dérive des continents, expliquer la quantité de volcanisme observée dans le monde. Il D'après Holmes>, fig.•2 et 3,1929 faisait donc appel à une circulation convective sous la croûte pour amener la quantité de chaleur nécessaire (fig. 11). Il fait de cette http://www.er.uqam.ca/nobel/k27454/geologie/plaque_tectonique/tect convection le moteur de la dérive des continents. Il suggère que onique.html les courants soient ascendants sous les continents, car ceux-ci contiennent la plus grande part des éléments radioactifs, dont la chaleur vient s'ajouter à celle de l'échange convectif. Ces remontées de matériel et leur étalement sous le continent provoqueraient l'effondrement de bassins "disruptifs" sous forme d'un nouvel océan. Dans les océans, dont Holmes admet que le soubassement sub-sédimentaire serait constitué principalement de gabbros, d'éclogites et d'amphibolite, il considère par opposition aux continents qu'ils sont froids et qu'ils subissent une compression. C'est donc là que doivent se situer les courants descendants, et il estime que l'on pourrait de cette manière rendre compte des grandes profondeurs océaniques telles que celles qui bordent le Pacifique. Il envisage enfin que de tels mouvements tangentiels puissent engendrer un transfert de matériel sialique léger, produisant un épaississement de la croûte et donc des chaînes de montagnes sur les bordures continentales. Holmes estime enfin la vitesse des courants subcrustaux nécessaires à 5 Cm/an. Pour lui, la théorie de la convection explique d'importants phénomènes à l'échelle de la planète. Il explique ainsi les bassins subsistants, sillons de sédimentation très abondante en bordure des continents qu'il dénomme géosynclinaux. Il explique aussi par des mouvements convectifs le grand rift africain, mais aussi les épisodes de transgressions qui résulteraient d'une élévation du niveau marin causée par une dérive rapide des continents. Une dérive rapide engendrerait la création d'une quantité importante de matériau océanique, donc chaud et expansé. Il en résulterait une montée du niveau marin (transgression, cf. "Sédimentologie", cours I. Cojan). Le ralentissement de la dérive laisserait à ce matériau le temps de se contracter, entraînant un abaissement du niveau marin (régression). Peu avant la guerre, F.A. Vening-Meinesz mit en évidence que les fosses océaniques qui bordent les arcs insulaires étaient caractérisées par une forte anomalie négative de Fig.12 : dérive apparente du pôle Nord depuis le Précambrien pesanteur correspondant à un déficit de masse à ce niveau. L'auteur jusqu’à l’époque actuelle, selon les donnés recueillies en Europe et en Amérique du Nord. C. Allègre, L'écume de la interprétait cet écart important à l'équilibre isostatique comme la preuve Terre, Paris, Fayard, 1983, d'après K. Runcorn. de courants subcrustaux descendants, conformes au modèle de Holmes. Les géologues pensèrent en outre trouver là l'explication des géosynclinaux où s'accumulent les sédiments, et celle de, la formation des chaînes de montagnes. Du Toit avait ainsi corrigé nombre d'erreurs de la théorie de Wegener. Holmes avait, quant à lui, proposé un mécanisme plausible, maintenant conforté par les observations de Vening-Meinesz. Pourtant, la dérive des continents n'était toujours pas admise. Le refus de la théorie de Wegener par la communauté scientifique résulte en fait d'une conjonction d'éléments. D'une part le contexte socioculturel et politique d'avant 1914 et de l'entre deux guerres ne prône pas l'ouverture et l'indépendance d'esprit qui auraient été nécessaires à une remise en question aussi importante des idées admises jusqu'alors, et d'autre part la clef de l'énigme posée par Wegener gisait dans le domaine le plus mal connu du globe, les océans. En 1940, 70% de la surface de la Terre restaient encore à découvrir.

rst.gsfc.nasa.gov/Intro/Part2_1a.html. From H. Levin, The Earth Through Time, 4th Ed., Saunders

EMSE : Axe Processus Naturels 23/07/13

p. 7

L 'Après-guerre, la DECOUVERTE des OCEANS Durant les années 50, les premiers arguments en faveur de la dérive des continents viennent encore des continents à travers l'étude du paléomagnétisme (principalement volcanique). Rappelons que le magnétisme terrestre est considéré comme provenant du noyau ferreux et liquide de la Terre, dont on imagine qu'il fonctionne comme une magnéto (hydrodynamique), et que l'on assimile généralement à un dipôle. Au début des années 1950, P. Blackett (Nobel de physique nucléaire en 1948) inventa le magnétomètre à proton. Ce physicien était convaincu de la dérive des continents, et il pensait que le paléomagnétisme permettrait de déterminer si les continents avaient réellement changé de position. L'analyse de roches prélevées en Angleterre montra des déviations de 30° par rapport au pôle actuel, mais surtout une faible inclinaison du champ qui indiquait que certaines roches avaient dû cristalliser à des latitudes beaucoup plus basses. En 1955, regroupant ces données provenant d'Angleterre avec celles qu'il avait obtenues sur le continent, S.K. Runcorn conclut qu'il n'y avait pas de dérive des continents, mais que l'on pouvait retracer "l'errance des pôles" sur 20000 km à travers 200 Ma (fig. 12). Il allait changer d'avis peu après, car une campagne de mesures qu'il entreprit en 1956 en Amérique du Nord montra un écart grandissant en fonction de l'âge des roches avec les mesures faites sur le vieux continent. Pour les plus anciennes l'écart disparaissait totalement si l'on rapprochait les continents en supprimant l'Atlantique Nord. L'ensemble des études entreprises partout dans le monde (sur tous les continents) montra que tous les continents, excepté l'antarctique, avaient dérivé vers le Nord. L'analyse des piles volcaniques telles que les trapps du Deccan en Inde se révélèrent être des enregistrements presque continus du déplacement des continents. Cependant, le crédit qu'apporta la communauté scientifique à ces travaux fut réduit, d'une part parce que la magnétométrie est une méthode d'analyse délicate, impliquant par une analyse statistique le rejet d'un nombre important de résultats (donc contradictoires) et d'autre part parce que ces travaux soulevaient un nouveau problème non résolu, l'inversion des pôles, que rien d'autre ne venait étayer. Parallèlement, la découverte du monde marin a commencé. Jusqu'au début du XX° siècle, le sondage des mers se fait au moyen de lignes lestées que l'on mouille de loin en loin. L' échosondeur apparaît en 1920. En 1934, M. Ewing, géophysicien sismologue, fut le premier à utiliser la sismique réfraction en géologie. Il fut l'initiateur, puis durant toute sa carrière un partisan acharné de la géologie marine. Il en résulta immédiatement une bien meilleure connaissance du plateau continental, dont les géophysiciens constatent alors qu'il fait partie intégrante du continent, et qu'il est le lieu d'un piégeage important de sédiments par

fig. 13a : Les grandes provinces morphologiques des fonds sous-marins. Coupe schématique et synthétique orientée perpendiculairement à l'axe d'une dorsale océanique active.

subsidence (cf. "sédimentologie"). La guerre 39-45 allait faire naître des échosondeurs (sonars) très performants. Le rôle joué durant cette période par les sous-marins, puis ensuite la mise en chantier des sous-marins nucléaires durant la guerre froide, a fig. 13b: The three major morphological subdivisions of the oceans, illustrated by a profile across the North Atlantic from New England to the Spanish Sahara. Redrawn from HEEZEN (1962), Continental drift, p. 237. Académie Press.

conduit les américains à un effort considérable dans la connaissance océanographique. Plusieurs fig. 14: Seismic profiling results from the Argentine Basin, showing the structure of dizaines de bâtiments militaires ou civils furent layer 1 in the south-western Atlantic. Redrawn from EWING (1965), Q. Jl. H. astr. équipés de sondeurs pour effectuer le relevé Soc., 6, 14 and 17. hydrographique du fond de tous les océans, dont les éléments morphoscopiques sont maintenant bien connus (fig. 13). En 1947, les enregistrements sismiques révélèrent que la couche sédimentaire océanique était très peu épaisse et n'était pas l'enregistrement complet de l’histoire du globe que prévoyaient les hypothèses en vigueur telles que la contraction de la Terre, l'immobilisme des continents et la pérennité des océans. Les carottages, effectués dès 1948, montrèrent en plus qu'au voisinage de la "dorsale" (ou "ride" ou "zone d'accrétion" cf. plus loin) médio-Atlantique, les sédiments (Layer 1 fig. 14) étaient très minces et qu'ils reposaient sur des basaltes très récents (moins de 20Ma, layer 2 fig. 14). Sur la ride même http://www-odp.tamu.edu/publications/206_IR/chap_01/c1_f5.htm le basalte caractéristique d'épanchements sousmarins en coussins (pillow lava) ou en draperies affleurait. La même année, la sismique montra que contrairement à la croûte continentale granitique bien connue et épaisse de 30 à 40 km en moyenne, la croûte océanique n'était épaisse que de EMSE : Axe Processus Naturels 23/07/13

p. 8

fig. 15: Oceanic crustal structure as determined by refraction lines in the Atlantic Ocean east of Argentine. The line runs from (46-0° S, 60-3 °W) on the shelf to (427° S, 50-2 °W) in the ocean. Redrawn from EWING (1965), Q. Jl. R. astr. Soc., 6, 19.

Fig. 16: L'une des premières cartes du système des dorsales médioocéaniques, d'après Heezen et Tharp (fig. 19, in Runcorn, 1962) dans son édition de Columbia University, Heezen et Tharp 1962, http://www.earth.columbia.edu/news/story7_1_01.html.

quelques 4 à 5 Km et constituée de basalte (fig. 15). B. Heezen et M.Tharp entreprirent la synthèse des relevés http://instruct.uwo.ca/earth-sci/300b-001/erthsys1.htm hydrographiques de l'Atlantique en 1953. Il apparut que non seulement la dorsale était parcourue par un sillon, mais que les secousses sismiques étaient toutes localisées dans cette vallée. En 1956, Heezen et Ewing publièrent leurs observations (fig.16) et leurs conclusions sur l'existence d'un rift mondial où se crée la croûte (fig. 17, voir aussi la figure 31), généralement océanique, mais pouvant être continentale, comme le Rift Africain. Cette hypothèse, qui impliquait une expansion de la Terre au lieu de la contraction admise, fut très généralement rejetée. L'hypothèse de Heezen et Ewing allait être confortée par nombre d'observations. Des relevés de flux de chaleur furent effectués sur le plancher océanique dans les années 1950. Alors que l'on s'attendait à trouver un flux très bas à cause de la faible teneur des basaltes en éléments radioactifs par rapport aux granites qui constituent l'essentiel de la croûte continentale, on observait un flux globalement comparable au flux continental, ce qui impliquait un apport de chaleur. En plus, le flux était jusqu'à 8 fois plus élevé au niveau de la ride que sur le plancher océanique des plaines abyssales, ce que E. C. Bullard interpréta comme un apport convectif de matériel profond et chaud au droit de la dorsale. Durant la même période les âges du fond des océans commencèrent à affluer, et l'on observa que les âges les plus anciens connus ne dépassaient pas 150 à 180 Ma. La figure 18 donne l’état actuel de nos connaissances. Fig. 17 : Morphologie des fonds océaniques et comparaison avec le rift africain, d’après Heezen, fig.20, in Runcorn, 1962.

De bas en haut à droite Lac Tanganiyka ; Lac Kivu ; Lac Edward ; Lac Alberthttp://www.cnrs.fr/cw/dossiers/dosgeol/imgArt/schema/extension/terrain/rea.html www-public.tu-bs.de:8080/.../pov/earth2.html.

EMSE : Axe Processus Naturels 23/07/13

p. 9

Fig 18. hors texte: Worldwide pattern of sea-floor spreading is revealed by the age of the sea floor as determined from magnetic data. Mid-ocean ridges, along which new sea floor is extruded, coincide with the youngest sea Floor. The dating of magnetic anomaly stripes makes it possible to establish isochrons (shown by different colours and textures) that give the age of the sea floor in millions of years since creation at the ridges. The Atlantic Ocean is symmetrical about the mid-Atlantic ridge. Asymmetry of the pattern in the Pacific is partly caused by subduction in the Aleutian trench south of Alaska, in the Peru-Chile trench along the west coast of South America, and in many trenches in the Western Pacific.EMSE (After map prepared by John Naturels Sclaler and 23/07/13 Linda Meinke of MIT : Axe Processus p. 10

Les SIXTIES, de la DÉRIVE des CONTINENTS à la TECTONIQUE DES PLAQUES : L'EXPANSION des FONDS OCEANIQUES de H. HESS ; Les preuves de F.J. VINE et D. MATTHEWS ; La TECTONIQUE des PLAQUES de T. WILSON, de D. McKENZIE puis de J. MORGAN

Durant toute cette période, Le Lamont-Doherty Geological Observatory de la Columbia University (New-York), le Scripps Institute of Oceanography (Californie), l'Université de Princeton(New Jersey), le Woods Hole Océanographic institution (Massachusetts) et l'Université de Cambridge en Angleterre furent la cheville ouvrière et le bouillon de culture qui mit au monde la théorie des plaques, en armant et en utilisant tout d'abord le navire océanographique Explorer et le sous-marin Alvin mis à L’eau en 1962, puis le bateau Glomar Challenger à partir de 1968 pour exécuter le programme de recherche JOIDES (Joint Océanographie Institute Deep Earth Sampling). X. Le Pichon et J. Francheteau furent parmi les rares français à participer dès cette période à cette aventure. La France devait rentrer plus tardivement dans ce domaine, durant les années 70, en lançant le Jean Charcot, et la soucoupe Cyana, pour participer aux programmes internationaux IPOD (International Program for Ocean Drilling) et DSDP (Deep Sea Drilling Project). H. Hess, qui avait découvert l'existence de monts sous-marins au sommet tronqué pendant la guerre grâce aux sonars de son sous-marin, et auxquels il avait donné le nom de "Guyot" (géologue du XIX°), interpréta ses observations à la suite de la publication de Heezen et Ewing. Il établit que le sommet d’un guyot et le plancher océanique qui le porte sont d'autant plus loin de la surface que le guyot est éloigné de la ride. Il remarque aussi que le sommet tronqué des guyots est topographiquement très comparable au relief érodé des îles situées au voisinage de la dorsale, dont la pente de la partie aérienne est beaucoup plus douce que les flanc immergés. Il en déduit que ces guyots ont eux aussi constitué une île au début de leur histoire. Hess comprit alors que ses propres observations plus de celles de Ewing et de ses collègues plus celles de Vening-Meinesz, permettaient d'imaginer un mécanisme d’expansion (que FL S. Dietz appellera "Sea Floor Spreading" en 1962) et de renouvellement des fonds océaniques. En 1960, confiant en l'ouverture d'esprit du monde scientifique de son temps, Hess rédigea prudemment un "essai de géopoésie" dans lequel il explique que les fonds océaniques sont en renouvellement constant (fig. 19). La dorsale est une véritable fissure de la croûte par laquelle les matériaux résultant d'une fusion partielle du manteau arrivent à la surface (basaltes tholéiitiques très généralement, et localement basaltes alcalins). Pour Hess, le manteau qui arrive au voisinage de la surface subit une hydratation importante, transformant la péridotite mantellique en serpentine. Partant de là, le fond des océans doit se déplacer de façon rigide, la croûte étant solidaire du manteau. Le fond océanique est en quelque sorte le dos des cellules convectives mantelliques affleurant à la surface de la Terre, alors que la croûte continentale est découplée du manteau et ne le suit pas dans sa convection. Pour Hess toujours, les guyots doivent être entraînés "comme sur un tapis roulant" par le fond océanique. Enfin, puisque la Terre n'est pas en expansion, Hess considérait que la croûte devait être détruite dans les fosses océaniques (fig. 20, voir aussi fig. 31), qu'elle devait atteindre au bout de 200 Ma environ, et où elle fig. 18 : A gauche, la croûte formée dans une zone étroite du rift par serpentinisation devait subir une déshydratation. L'eau libérée (hydratation de la roche péridotitique du manteau) se déplace ensuite rigidement couplée au amorce une fusion dans le manteau sus-jacent manteau tandis que les sédiments se déposent transgressivement à sa surface. provoquant le volcanisme des arcs jumelés aux A droite séquence ophiolitique d’après Boudier et Nicolas 1985 fosses. Pour Hess, les océans doivent aussi entraîner les continents avec eux, mais ces derniers s'opposent aux océans en ce sens qu'ils ne sont jamais résorbés, alors que les bassins océaniques sont des formations transitoires. En 1962, Hess publie l'essentiel de ses idées dans: "Histoire des bassins océaniques" L'essentiel des mécanismes de la dérive des continents et de la tectonique des plaques est dès lors dans les esprits. www.gly.fsu.edu/.../5Plate_Tectonics_index.html.

EMSE : Axe Processus Naturels 23/07/13

p. 11

FIG. 20

:. Plongement de la lithosphère océanique sous une guirlande d'îles (exagération verticale : x 2).

Density profile along the Canadian Margin quake.wr.usgs.gov/.../cascadia/vancouver.html.

http://www.ifm-geomar.de/typo3temp/pics/7adc9eb35e.jpg Plaque océanique à droite portant des monts sous-marins, subductée sous le talus continental à gauche. On note à la base du talus la présence de monts sous-marins de la plaque océanique déjà engagés dans le talus continental. Les sédiments du talus rebroussés par le mouvement des plaques dessinent des bourrelets autour des monts, qui laissent un sillon derrière eux.

Une branche particulière du paléomagnétisme allait apporter une contribution décisive à la théorie de Hess, l'étude des inversions magnétiques. Durant les années 1950, les américains avaient effectué le relevé magnétique de l'Est Pacifique. A. Raff et R. Mason observèrent que le fond océanique était zébré de bandes, de magnétisme alternativement fort et faible, sensiblement parallèles à la côte. Ce fait demeurera inexpliqué jusqu'en 1963. En 1962, F. J. Vine et D. Matthews effectuent le relevé magnétique de la dorsale Carlsberg (océan Indien) et publient leurs conclusions en 1963 à la lumière des idées de Hess. En vertu du renouvellement des fonds océaniques, la ride étant le lieu de création du plancher océanique, c'est à ce niveau qu'est acquise l'aimantation lors du refroidissement, dans la direction du champ actuel (fig. 21a). Les bandes parallèles de magnétisme alternativement fort et faible représentent donc des épisodes antérieurs de fossilisation du magnétisme terrestre, acquis dans les mêmes conditions que précédemment. Vine et Matthews suggérèrent que l'alternance de magnétisme faible et fort puisse provenir d'inversions de polarité du champ terrestre (cf. "L'intérieur de la Terre"), la polarité Sud n'ayant pas nécessairement la même intensité que la polarité Nord. En 1963 encore, A. Cox, R. Doell et B Dalrymple allaient conforter l'hypothèse jusque là fortement débattue des inversions de polarité. Depuis Brunhes en 1906, on avait fréquemment observé des roches de magnétisme inverse mais sans apporter la preuve de l'inversion du champ terrestre. Les inversions pouvaient aussi être attribuées à des phénomènes secondaires d'inversion de polarité d'ailleurs reproduits expérimentalement ou à des anomalies locales. L'idée de Cox, Doell et Dalrymple fut de corréler des échantillons du monde entier avec leur âge, obtenu par la méthode 40K/40Ar. Ils éliminaient ainsi le risque d'effets locaux ou d'inversion secondaire. Ils identifièrent 9 inversions durant les 3 derniers Ma, Fig. 21a :Courbe supérieure : Profil d'ouest en est ; la courbe la plus récente datant de 1 Ma. On sait maintenant que l'inversion inférieure bleue est le profil magnétique observé, la courbe proprement dite est très rapide, elle ne dure que 5000 à 10000 ans, supérieure rouge représente le profil calculé à partir du modèle de ce qui confère au plancher océanique produit en continu l'aspect de champs s’inversant (d'après PITMAN et HEIRTZLER, 1966). EMSE : Axe Processus Naturels 23/07/13

p. 12

bandes alternées Nord et Sud. En 1965, T. Wilson H. Hess, F.J. Vine et D. Matthews observèrent lors de discussions que le renouvellement continuel des fonds océaniques devait éloigner les bandes de magnétisme de même polarité de façon symétrique par rapport à la dorsale. Les premières cartes de Vine et Matthews n'étaient pas assez détaillées pour permettre une telle observation, mais celle de Vine et Wilson 1966 parallèlement au travaux de J. R. Heirtzler et W. C. Pitman en 1966 (Fig. 21b), permirent d’établir une relation étroite entre largeur des bandes, polarité des bandes et position par rapport à la ride à partir des cartes de Raff et Mason sur la ride Est-Pacifique pour les 4 derniers Ma. Les demi vitesses d'expansion (vitesse d'écartement par rapport à la dorsale) calculées par Vine à partir des données accumulées, variaient de 2 Cm/An dans l'Atlantique Nord à 4.5 Cm/An dans l'Est Pacifique. Le Glomar Challenger.allait apporter la preuve définitive du renouvellement des fonds océaniques: plus les forages étaient effectués loin de la dorsale médio-Atlantique, plus les âges des premiers sédiments portés par le plancher océanique étaient anciens. Les estimations de vitesse faites à partir de ces observations coïncidaient avec les précédentes, 2 Cm/An environ. L'accumulation des relevés topographiques des océans, en particulier de l'Atlantique, permit à Bullard de proposer un nouveau "fit" des continents Amériques, Afrique et Europe autour de l'Atlantique (fig. 22). La connaissance grandissante des dorsales Fig. 21b : Profil magnétique au travers de la crête de la dorsale du océaniques Pacifique et Pacifique oriental démontrant l'extraordinaire symétrie des Atlantique montrait anomalies par rapport à la ligne de rift. Magnetic anomaly pattern qu'elles sont southwest of Vancouver Island. Stripes having normal magnetization are colored. The central red bands coincide with the systématiquement recent ridge axes of Juan de Fuca (northern stripe) and Gorda morcelées par des failles (southern stripe). Figure from Vine [1966] qui se prolongent de part et d'autre de la ride sur des centaines, voir des milliers de Km. Durant les années 50, la tectonique continentale avait mis en évidence de grandes failles dites "failles transverses", capables de décaler des blocs continentaux sur des centaines de Km, par le jeu de petits décalages centimétriques s'accumulant pendant des laps de temps considérables, chiffrables en dizaines, voir en centaines de Ma. En appliquant ce modèle continental au plancher océanique, S. W. Carey, remarquable géologue tectonicien par ailleurs, s'était appliqué à remonter le temps en réduisant progressivement ce qu'il appelait les "méga cisaillements" et autres mouvements majeurs de l'écorce terrestre, et il était parvenu en 1958 à présenter lui aussi une terre aux continents regroupés à la fin du Paléozoïque. La technique de reconstitution de Carey (par réduction des fractures) l'avait amené à considérer que le diamètre de la Terre à la fin de l'ère primaire devait être inférieur d' 1/4 à ce qu'il est maintenant. Il réfutait ainsi la dérive des continents, considérant que les continents s'étaient écartés

fig. 22 : fit of all the continents around the Atlantic, obtained by least square fitting at the 500 fathom contour. Redrawn from BULLARD, EVERETT and SMITH (1965), Phil. Trans. R. Soc., 258A, opp. p. 49. image colorisée par www.uwgb.edu/dutchs/EarthSC202Notes/platetec.htm

Fig. 23 : Epicentres of earthquakes (1955-1965) along the equatorial section of the mid-Atlantic ridge, showing four focal mechanism solutions for fracture zone events. Note that the epicentres cluster (1 ) along the crest, and (2) on the fracture zones between adjacent portions of crest, but not beyond. The focal mechanism solutions all indicate strike-slip movement in the sense expected for transform faults. Gauche After Sykes (1967), J. geophys. Res., 72, 2137; centre www.le.ac.uk/.../art/gl209/lecture2/lect2-1.html; droite www.pmel.noaa.gov/.../nepac/nepac_seis.html

EMSE : Axe Processus Naturels 23/07/13

p. 13

les uns des autres par augmentation de la taille de la Terre. L’intérêt du travail de Carey réside dans le fait que sa reconstitution considérait la limite des continents au milieu du talus continental (vers 1500 m de profondeur) et non au niveau zéro des mers comme l'avait fait Wegener qui ne disposait pas d'un relevé bathymétrique précis ; or le niveau zéro est particulièrement soumis à l'érosion et aux fluctuations du niveau marin. Il en résulte un emboîtement quasi parfait des continents Afrique et Amérique du Sud dans la reconstitution de Carey. A la suite de cet auteur, nombre de géologues et géophysiciens interprétèrent les fractures sous-marines comme des cisaillements majeurs du plancher océanique. T. Wilson, dans un travail très important utilisant les travaux de sismologie de L Sykes 1967, montra que ces grandes fractures ne sont actives que dans la partie qui décale les 2 segments de la dorsale. De part et d'autre, la fracture n'est pas active (fig. 23). Wilson considérait que ces failles constituaient le 3° type de structure exprimant des mouvements relatifs de la croûte ° terrestre. Les deux autres étaient les dorsales océaniques (lieu d'expansion ou accrétion) et les chaînes de montagnes et (ou) arcs insulaires (lieu de "résorption" et la croûte océanique ou "zone de subduction"). Tous deux sont aussi marqués par une intense activité sismique, mais en plus par un volcanisme très actif. En 1965 Wilson présenta ces "ceintures mobiles" comme un réseau continu découpant là planète en "plaques rigides". Le passage d'un type de structure à l'autre étant toujours brutal, et impliquant une faille, Wilson utilisa le nom de "failles Transformantes" (fig. 24, 25, 26). Les idées de Wilson furent reprises en 1967 par D. McKenzie et R. Parker dans une étude exhaustive des zones sismiques du pourtour Pacifique. Pour eux, les zones sismiques marquent les frontières de dalles rigides, à la fois indéformables et cependant en mouvement, les plaques ou "p/ate tectonics" (locution utilisée la première fois en 1968 par Vine et Hess). Ces dalles "s'emboîtent sans solution de continuité". J. Morgan (1967 encore), en étendant le concept de faille transformante à la surface sphérique de la Terre allait fournir un modèle aux idées de Wilson. L. Euler (XVIII°) a démontré que le déplacement d'une calotte sphérique sur sa sphère peut être ramené à

Fig. 24 : Représentation schématique du concept de faille transformante chez Wilson. (a) première phase; (b) phase ultérieure. Les lignes pointillées représentent les anciennes positions de la dorsale. D'après Wilson, fig. 3 et 4, 1965.

Fig.26 : Two examples of transform faults: (a) Termination of the mid-Atlantic ridge by two transform faults (De Geer and Wegener faults) and by transformation about a centre of rotation on the north Siberian coast into the Verkhoyansk Mountains. (b) Sketch map showing the sinistral transform faults of type (c) which join the end of the Carlsberg ridge to the Himalaya, and the north-western end of the Red Sea to the Turkish Mountains. Note that the motions depicted must be treated as relative and not absolute. Reproduced from WILSON (1965) Nature, Lond., 207, 344 and 345.

Fig. 25 : Représentation schématique de l'ouverture de l'Atlantique selon l'hypothèse des failles transformantes. D'après Wilson, fig. 6,1965.

The map reveals two kinds of discontinuities: large offsets, about 100 km long, known as transform faults and smaller offsets, about 10 km long, called overlapping spreading centres (detail on the right). www.geosci.usyd.edu.au/.../HTML.Lect2/sld009.htm.

EMSE : Axe Processus Naturels 23/07/13

p. 14

Fig. 27a :

in comprendre et enseigner la Planète Terre, , J.M. Caron, 2° ed, 1992

Fig. 27b :

une simple rotation autour d'un axe passant par le centre de la sphère (fig. 27). L'application de ce théorème à la Terre impose que les blocs (ou plaques) puissent être considérés comme rigides. Morgan divisa la planète en 20 "blocs", grands ou petits, limités par trois types de frontières: dorsales; fosses; failles transformantes. Compte tenu de la faible épaisseur de la croûte (30 Km sous les continents mais 5 Km seulement sous les océans, Morgan considéra que les blocs avaient une épaisseur de 100 Km environ. Il appelait cet ensemble croûte-manteau supérieur "tectosphère", dont le comportement rigide s'opposait au comportement ductile de l'asthénosphère. Depuis, on est revenu à la terminologie de Barrell (lithosphère, Asthénosphère). Pour une calotte en rotation animée d'une vitesse angulaire donnée, la vitesse tangentielle est nulle sur l'axe de rotation, et maximum sur l'équateur de rotation (fig. 27a). L'application de ce théorème au déplacement relatif de deux plaques, dont l'axe de rotation est donné par le mouvement le long des failles transformantes, permit à Morgan en 1967 de vérifier le comportement rigide des plaques en montrant que les bords d'une plaque voisins de son axe de rotation se déplacent moins vite que les bords qui en sont le plus éloignés (fig. 27b), ce qui revient à dire que la Fig. 28 : The main plates forming the Earth's surface, showing the computed relative vitesse d'expansion le long d'une ride est movements across the circum-Pacific belt, the Alpine-Himalayan belt, the southern Indian maximum à l'équateur eulérien. Ocean ridges and the Scotia arc (shown in cm/y, positive signs indicate extension and negative signs indicate shortening), based on the observed spreading rates across the other ridges. Dans les mois qui suivirent, en 1968, Redrawn from LEPICHON (1968), J. geophys. Res., 73,3675 X. Le Pichon publia un modèle à 6 plaques principales négligeant les petites plaques secondaires de Morgan (fig. 28). Il démontra comment à partir des mouvements des 6 plaques principales, on pouvait reconstituer les ouvertures océaniques Atlantique, Arctique, Pacifique et Indienne. Il démontra aussi comment les mouvements des plaques sur une sphère sont interdépendants. Par exemple l'Atlantique ne peut s'ouvrir que parce que la vitesse de résorption de la plaque pacifique est supérieure au taux d'expansion de la ride Pacifique, ce qui revient à dire que l'Atlantique ne peut s'agrandir que parce que le Pacifique rétrécit. On dispose de nos jours d’un modèle à 12 plaques (fig. 28), hérité de celui de De Mets et al (1990), suffisant à expliquer l’ensemble des déplacements des plaques. Les vitesses de l’expansion ou de la résorption des plaques mesurées à leurs frontières ont été reportées EMSE : Axe Processus Naturels 23/07/13

p. 15

dans la figure 29 à partir des données de C. De Mets et al, afin de montrer les mouvements relatifs de ces 12 plaques. Mais quel peut être le mouvement absolu des pièces de ce puzzle ? Cette question n’à de sens que si on définit un référentiel fixe pour décrire ces mouvements sur la sphère terrestre. La terre nous offre un tel repère grâce au volcanisme intraplaque, dit de point chaud de nature très profondément enracinée dans le manteau (dont l’archétype est Hawaii), et qui semble quasi immobile durant des dizaines de Ma, alors que le volcanisme de frontière des plaques se déplace avec elles. Les cartes telles que celle de la figure 29.sont construire à partir de ce référentiel. De nos jours, la mesure de variations de distance par interférométrie, Very Long Base Interferometry met en évidence ce déplacement continu, comme dans la figure 30 entre Westford, Ma et Wetzell en Allemagne En cette fin de décennie encore, B. Isacks, J. Oliver et Sykes reprennent à leur tour ce "New Global Tectonics" modèle dans un article faisant le point d’une part sur la répartition des séismes dans le monde, et d’autre part sur le type de séisme en rapport avec sa situation géotectonique. Ils observent que les régions de dorsales sont le lieu de séismes systématiquement peu profonds ( 3 cm/year) and slow• spreading ridges using profondeur mesurée dans le Pacifique Nord, l'observation a data from Sclater et al. (1971). The experimental relations were montré que les « dorsales à expansion rapide » sont toujours fitted by least squares, assuming a depth limit of 7,100 m. The first exponential term is the saine for both sets of data. v is moins élevées que les « dorsales à expansion lente » (fig. 47). standard deviation En outre le rift est plus profond et la fracturation d'extension EMSE : Axe Processus Naturels 23/07/13 p. 24

semble plus accusée sur les rides lentes (fig. 48). Ces caractères résultent de paramètres non pris en compte dans les modèles précédents. On sait que les séismes sont très peu profonds sous les rides océaniques, ils ne dépassent jamais 70 Km, et la grande majorité ne dépasse pas 20 à 30 Km, témoignant de la remontée (adiabatique) importante de l'asthénosphère chaude et ductile. Cette remontée se ferait sur une largeur plus importante sous les dorsales "rapides" que sous les rides lentes. Il en résulterait par contraste un refroidissement plus brutal et donc une pente plus forte des flancs des dorsales lentes. Le Pichon suggère par ailleurs que parce que le refroidissement (et la contraction) sur l'axe d'une ride lente qui dure plus longtemps et avec un gradient de température horizontal plus accusé, il pourrait se produire une fracturation distensive de la partie supérieure de la lithosphère plus marquée, et donc un rift plus profond. Si les forces d'extension qui règnent aux limites de plaques divergentes à vitesse rapide (> 5 cm/an), ouvrent de larges fissures dans la croûte océaniques et permettent l'éruption de laves basaltiques très abondantes à faible viscosité

Fig. 48 : Profils topographiques transversaux par rapport aux dorsale : a) dorsale Atlantique (1à2 cm/an) ; b) dorsale Est Pacifique, vers 21°N (5à9 cm/an) ; c) dorsale Est Pacifique vers l’équateur (> 9cm/an). Noter l’étroitesse du domaine volcanique actif (VV, # 1km) et du domaine de fracturation ouverte 5FF, 0.1%) que les basaltes alcalins des points chauds et les tholéiites des rides proviennent de la fusion partielle d'un même manteau chimiquement homogène. Ils auraient pu ne différer que par les conditions physiques différentes dans lesquelles se produit la fusion partielle (profondeur en particulier). Mais l’accès à leurs compositions en éléments en traces et à leurs compositions isotopiques suggéra très vite que cette hypothèse est simpliste. Les isotopes d'un élément présentent des propriétés chimiques identiques et donc doivent avoir le même comportement durant les processus géologiques. Le rapport de 2 isotopes stables ne doit pas être modifié par ces processus. Par contre, si l'un au moins des isotopes est radioactif, il donne naissance à des isotopes d'autres éléments. Si le processus géologique est susceptible de fractionner les éléments considérés, l'évolution des rapports isotopiques et les rapports isotopiques eux-mêmes en seront le reflet. C'est en particulier le cas du rapport 87Sr/86Sr, dans lequel le 87 Rb, radioactif intervient en se désintégrant en 87Sr au rythme de sa période (48 Ga). Le processus de cristallisation fractionnée (cf. "TD axe GP") a pour effet de "distiller" des liquides de plus en plus pauvres en Mg, métaux de transition (Cr, Fe, Co, Ni), aclalino-terreux (Ca, Sr), et de plus en plus riches en Si, alcalins (Na, K, Rb), et d'une façon générale en éléments à gros rayon ionique. Les liquides fils présentent deux caractères essentiels. Ils ont nécessairement un point de fusion plus bas que le liquide qui leur donne naissance, mais surtout, l'enrichissement en l'élément léger qu'est le Silicium leur confère une densité plus faible que celle du liquide parent. Comparés aux basaltes, de densité 3 environ, les granites, de densité 2.7, flottent. A l'échelle de la planète, si l'on considère comme on l'a montré plus avant que les processus volcaniques sont initiés par une fusion partielle du manteau, suivie d'une cristallisation fractionnée, on comprend aisément que ces processus sont à la base de la ségrégation de la croûte continentale granitique (non recyclée).Revenons à l'évolution du rapport 87Sr/86Sr. Au temps origine, le rapport a une valeur définie. L'estimation de ce rapport n'est pas aisée. Les valeurs admises actuellement résultent pour l'essentiel de l'étude des chondrites carbonées, dont je rappellerai simplement qu'on a lieu de penser qu'elles sont très comparables au manteau terrestre (cf. "La Terre est Ronde"). Avec le temps, ce rapport croît avec la désintégration du 87Rb en 87Sr, et devient donc une fonction de la teneur en Rb. Puisque le rubidium tend à se concentrer dans la croûte continentale, le rapport 87Sr/86Sr évolue plus vite dans la croûte continentale que dans la croûte océanique, et inversement la source mantellique qui donne naissance à ces liquides se trouve appauvrie. Le même raisonnement est applicable à d'autres rapports isotopiques, tel que 1" Nd/1 Nd. L'étude de ces rapports dans les roches volcaniques permet ainsi de retrouver la signature du processus qui est à l'origine de ce volcanisme. Avec ces "traceurs" géochimiques, on a pu par exemple mettre en évidence des contaminations crustales dans le volcanisme des arcs ou des marges actives, qui démontre que ce volcanisme ne résulte pas seulement de processus mantelliques, mais aussi d’une fusion partielle qui à lieu dans la croûte continentale de l'arc. Nous avons dit que la pétrographie et la géochimie du volcanisme océanique suggèrent que l'on soit en présence de deux sources physiquement distinctes. L'une, à faible profondeur dans le manteau alimenterait le volcanisme tholéiitique des dorsales, l'autre, beaucoup plus profonde, alimenterait un volcanisme alcalin indépendant des plaques. Les rapports isotopiques des basaltes tholéiitiques des rides montrent tous, et de façon frappante, un appauvrissement important. Il faut donc que le manteau qui leur donne naissance soit lui même appauvri. On est donc non seulement en présence d'une source qui a déjà donné naissance à du matériel crustal continental, mais en plus, cette source est remarquablement homogène. On peut donc voir ici la marque de la convection thermique. N. Hoffman a montré vers 1980 qu’elle était susceptible d'homogénéiser des rapports isotopiques dans le manteau en 1 Ga environ. De ce point de vue, le manteau inférieur semble pus hétérogène, car les rapports isotopiques des roches issues des points chauds sont complexes. A Hawaï par exemple ils sont intermédiaires entre ceux des dorsales et ce que l'on pense être le rapport caractéristique du manteau terrestre. Aux îles Kerguelen (océan Indien), on observe un enrichissement particulier en Rb et Sm. Il devient donc nécessaire d'imaginer que le manteau inférieur a été découplé du manteau supérieur depuis au moins 1 Ga, et qu’il n'a plus alimenté depuis que le volcanisme de type point chaud. Pendant ce temps le manteau supérieur a été homogénéisé régulièrement. Le modèle de convection à 2 niveaux apparaît donc plus satisfaisant, et fonctionnerait depuis 1 Ga au moins. La toute dernière confirmation d’ indépendance du volcanisme des points chauds vis à vis des plaques nous vient des résultats les plus récents de la tomographie sismique, qui mettent en évidence à l’aplomb les points chauds des boyaux étroits de manteau à vitesse sismique très lente. La tomographie permet de les suivre jusqu’à plus de 2500 km, c'est-à-dire en gros la profondeur de l’interface noyau manteau (Fig.67), et confirme donc la grande profondeur de la source des magmas des points chauds.

EMSE : Axe Processus Naturels 23/07/13

p. 35

Faut-il considérer ces deux réservoirs comme complètement isolés ? Certes le manteau supérieur (les ~ 700 premiers Km) a été considérablement appauvri par la différentiation de la croûte continentale initiale et l’est encore un peu dans les marges actives et les arcs volcaniques des zones de subduction actuelles. Certes il apparaît en outre avoir été fortement homogénéisé en 1 Ga par la convection dont il est le siège. Mais l’on sait aussi aujourd’hui que la subduction renvoie dans le manteau inférieur une partie au moins des plaques lithosphériques océaniques, fabriqués à partir dans manteau supérieur. On sait enfin que les panaches mantelliques des points chauds sont issus de la base du manteau inférieur, qu’ils traversent au moins en partie la discontinuité à 670 km, et qu’ils viennent heurter la plaque lithosphérique et s’étaler sous elle (Fig. 68, suivre le lien pour l’animation). La géochimie et les modèles convectifs nous enseignent que la tête de ces panaches s’étale alors sous la lithosphère, est entraînée avec elle, et que leur périphérie se mélange au manteau supérieur environnant, donnant localement des suites de magmas dont la composition évolue en continu depuis des basaltes alcalins au cœur du panache, jusqu’à des de Morbs (Mid Ocean Ridge Basalts) en périphérie, Mais ce schéma commence à son tour à apparaître simpliste aux géophysiciens et aux géochimistes. Le manteau inférieur est chimiquement hétérogène du point de vue isotopique et de certains des éléments en traces. Les modèles de convection purement thermale montrent leurs limites à rendre compte de ces distinctions et suggèrent au contraire que le manteau inférieur ait été homogénéisé lui aussi à l’échelle de temps considérée. La

Fig. 67 : Noter que les résultats de la tomographie sismique des point chaud du Pacifique, pour Samoa, Tahiti sont en tout point comparable à ceux-ci http://www.palmod.unibremen.de/FB5/Ozeankruste/Teaching/Geochem_Tectonics/Materi al_GCPT.htm

tomographie met en évidence de vastes domaines d’anomalies négatives de vitesse sismique (lenteur) qui échappent à ces modèles. Dans les laboratoires de dynamique des fluides, on expérimente à l’heure actuelle le comportement de fluides visqueux de densités différentes et largement miscibles. Ces modèles suggèrent que dans des régions chimiquement hétérogènes comme la base du manteau (couche D”, encore dénommée CMB, Core-Mantle Boundary ou ULVZ, Ultra Low Velocity Zone), la convection engendre la formation de vastes dômes oscillants (identifiés par la tomographie qui nous enseigne qu’ils peuvent atteindre 300km de hauteur dans le manteau) qui en retour affectent la convection. La Fig. 68: http://www.gps.caltech.edu/~gurnis/Movies/Animated_GIFs/Pyre_global-plume.gif réponse à l’origine des diverses signatures géochimiques mesurées dans les produits de la fusion partielle du matériel mantellique profond des points chauds réside probablement dans l’approche de ce milieu profond complexe, constitué d’un matériau très proche d manteau initial (avant différentiation de la croûte et le dégazage du manteau, au moins supérieur), et de matériel issu de la subduction des plaques lithosphériques océaniques.

EMSE : Axe Processus Naturels 23/07/13

p. 36

EPILOGUE

Il est très frappant de constater que dans la littérature des années 60, et dans les manuels français en particulier, la dérive des continents n'avait encore souvent droit qu'à quelques pages ou quelques lignes dans un cours d'enseignement général de la Géologie. A. Hallam, comme X le Pichon insiste sur le fait que l'évolution des idées n'est pas continue mais que la communauté scientifique passe d'un paradigme à un autre. Etait-il évident d’admettre la dérive des continents quand les mesures des odes sismiques confirment la nature solide du manteau ? Il est vrai que la remise en question des idées reçues est toujours inconfortable, et que l'on ne: quitte volontiers une position stable que lorsqu'il devient évident que la situation nouvelle envisagée sera stable elle aussi. L’évidence de cette dérive nous aura été fournie par le développement de la tectonique des plaques. D'un creux de potentiel à un autre, d'une vision du monde à une autre, le temps de transit est toujours long, car on a toujours 70 ans d'enseignement à oublier! Cela apparaît souvent comme une conception obsolète, et l'on tend généralement à considérer qu'en ce début de millénaire la pensée cartésienne, scientifique et objective a triomphé dans nos esprits. Evidence trompeuse, faut-il rappeler la peur du bug de l’an 2000 ? Faut-il rappeler que "l'évolution des espèces" de C. Darwin et n'a toujours pas droit de cité dans tous les enseignements, faut-il parler du dogmatisme scientifique lui aussi capable de s’ériger en censeur ? Jean-Luc Bouchardon Eté 2010

EMSE : Axe Processus Naturels 23/07/13

p. 37