Décision et fonction exécutive préfrontale

action A. Mutual Information between. Signal S & action A. Remaining Information for selecting action A unrelated to signal S. Measures Cognitive Control …
1MB taille 1 téléchargements 25 vues
Décision et fonction exécutive préfrontale The Enlightened Brain

Etienne Koechlin Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, Ecole Normale Supérieure, Paris, France.

The prefrontal cortex Prefrontal cortex

Human brain

Prefrontal Executive Function

Sensory signals

Actions

Sensory signal

Sensory signal

Action-2 Action-1

Action

Executive Control in the Human Prefrontal cortex ______________________________

Cognitive « I choose an apple »

Affective « I like apples »

Motivational « I want an apple »

Coronal section Summerfield & Koechlin, in press

How the PFC function achieves action selection? « Cognitive control »

How the engagement of the PFC function is driven? « Motivation »

Hypothesis: the LPFC subserves cognitive control l o tr n o » c e on v i i t t i c n le g Co « Se

PFC coronal section

Cognitive Control and Information Theory Total Information for selecting action A

Q(A) = =

Mutual Information between Signal S & action A

I(S,A) P(S,A) log2 P(S)P(A)

Remaining Information for selecting action A unrelated to signal S

+

Q(A|S)

+ [- log2 P(A|S)] Measures Cognitive Control …

Predictions Reaction Times

• RTs ~ Q(A) = I(S,A) + Q(A|S) fMRI Activations

• LPFC ~ Q(A|S) •PM ~ Q(A) =

I(S,A) + Q(A|S)

Experimental Protocol Instruction cues

S’12

ICi

Q(A|S)

S1 S2 S3 S4 S4 S6 S7 S8 S9 S10 S11 S12

ICj

S2’’

2.4 sec

I(S,A) Left Right Response

Times

Behavioral results Reaction Times ms I(S,A) = 1 bit I(S,A) = 0 bit

Q(A|S) (bit)

Koechlin, Ody, Kouneiher, Science, 2003

fMRI signal changes

fMRI data

Ant. LPFC

Pos. LPFC

I(S,A) = 1

Premotor I(S,A) = 0

Q(A|S) (bit)

Koechlin et al., Science, 2003

The model

LPFC

Cognitive control

Q(A|S) I(A,S)

PM

Sensory control Q(A)= I(A,S) + Q(A|S)

(S)timulus

(A)ction

Is Cognitive Control fractionable?

Back to Information Theory

Cognitive control

Q(A|S) = I(C,A|S) Q(A) =

Episodic control

Contextual control

I(S,A)

+

Q(A|S,C)

+

Q(A|S)

The cascade architecture Q(A|S,C)

Episodic (diachronic)

A. LPFC

Cognitive control

Q(A|S,C) I(C,A|S)

P. LPFC Contextual (synchronic) Q(A|S)

I(A,S)

PM

Sensory control Q(A)= I(A,S) + Q(A|S)

Past events

(S)timulus (C)ontext

Action

Predictions Reaction Times

• RTs ~ I(S,A) + I(C,A|S) +Q(A|S,C) fMRI Activations

•A. LPFC ~ Q(A|S,C) •P. LPFC ~ I(C,A|S) +Q(A|S,C) •PM ~ I(S,A) + I(C,A|S) +Q(A|S,C)

Experimental Protocol Context: I(C,A|S)

Instruction cues: Q(A|S,C)

S’12

ICi

S1 S2 S3 S4 S4 S6 S7 S8 S9 S10 S11 S12

ICj

S2’’

2.4 sec

I(S,A) Left Right Response

Times

Behavioral results RTs ms

Reaction Times Reaction Times I(C,A|S) = 1 bit

I(C,A|S) = 0 bit

Q(A|S,C) (bit) Koechlin, Ody, Kouneiher, Science, 2003

fMRI signal changes

Ant. LPFC

I(C,A|S) = 1 I(C,A|S) = 0

Pos. LPFC

Premotor

Q(A|S,C) (bit)

Koechlin et al., Science, 2003

Contextual vs. episodic control in the LPFC PreMotor Caudal ongoing episode

Rostral

Temporal dimensions of cognitive control Synchronic

Diachronic

Experimental Protocol: cognitive factors

Instruction cues ICi

Context S1 S2 S3

x

S4 S5

x

S6 S7 S8

x

S9

Episodic Left resp.

Left resp.

Right resp.

Context ICi

S1 S2 S3

x

S4 S5

x

S6 S7 S8

x

S9

Contextual Left resp.

ICi

S1 S2 S3

x

S4 S5

Left resp. Right resp.

x

S6 S7 S8

x

S9 Times

Left resp. Distractor

Left resp. Right resp. Task

2.4 sec

Baseline

Contextual vs. Episodic control Episodic control

Contextual control

Trials

Kouneiher, Charron, Koechlin, Nature Neurosci., 2009

Is cognitive control further fractionable ?

Yes …

Episodic vs. branching control PreMotor

pending episode

past episode

ongoing episode

Polar

Rostral

Caudal

Temporal dimensions of cognitive control Synchronic Koechlin et al., 1999: Nature; 2000: PNAS. Koechlin & Hyafil, 2007, Science.

Polychronic

Diachronic

Experimental paradigm Delayed Contextual Episodic Branching performance control control control

TABLET Control

... A ...

B

E

T

Delay

... A

B

L

t

E

e

A

a

L

L

T ...

T ...





"T?"

Dual-task

... A

B

L

t

e

a

L

T ...

e

a

L

T ...









"t?"

Branching

... A

B

L

t





"t?"

...

... Scans 3s

Caudal LPFC

Rostral LPFC

Polar LPFC

Koechlin et al., Nature 1999

Experimental Paradigm Random ... A B L t e a L T b E a b T B t E e l t... t?

t?

t?

t?

t?

TABLET

Predictive ... A l b T e a B a t E t b L e e A t a B ... t?

t?

t?

t?

t?

t?

Scans

Baseline Repetitive Stimulus-Response associations

Koechlin et al., PNAS 2000

Neurocomputational model Active task

Mfc

Fpc

Lpc

Koechlin, Hyafil 2007, Science

Pending task

Expected rewards

ng episode

Contextual control: Hierarchical levels

oing episode

Superordinate chunk Chunk 1

A12

A23 A21

A22

A23 A31

A32

A33

Hierarchical dimensions of cognitive control Synchronic Hierarchical

A11

Chunk 3

Chunk 2

Polychronic

Diachronic

0,4

start

increment

stop

BA 45

0,2

Simple chunk performance

Event-related Signal change fMRIMR signal changes

0 -0,2

Posterior BCA (BA44)

0,6

B

BA 44

0,4 0,2

Chunk

0

BA 6

-0,2

Premotor (BA6)

0,6

C

A11

A12

A23

0,4 0,2 0 0 -0,2

5

10

15 0

5

10

15 0

Time (sec)

5

10

15

Koechlin & Jubault. 2006, Neuron Jubault, Ody & Koechlin, 2007, J.Neurosci.

0,4

start

increment

stop

BA 45

Superordinate chunk performance

0,2

Event-related Signal change fMRIMR signal changes

0 -0,2

Posterior BCA (BA44)

0,6

B

BA 44

0,4

Superordin. chk

0,2 0

BA 6

-0,2

Premotor (BA6)

0,6

C

Chk1 Chk2 Chk3 SA SA SA

SA SA SA

SA SA SA

0,4 0,2 0 0

5

10

15 0

5

10

15 0

Time (sec)

5

10

15

Koechlin & Jubault. 2006, Neuron Jubault, Ody, Koechlin, 2007, J. Neurosci.

Summary: cognitive control • Cognitive control is organized as a cascade of top-down selection processes from posterior to anterior LPFC regions. • Contextual control is implemented in posterior LPFC • Episodic control is implemented in anterior PFC • Both contextual and episodic control are further fractionable into two control levels. • Conditional entropy Q(A/lower level signals) measures selection demands at each control level.

What drives the engagement of cognitive control in the LPFC ? Motivation …?

Psychological theory of motivation (Hull, 1943) Excitatory potential of action i

Ei = Pi x D Frequency of action i

Global incentive factor

Motivation has ambiguous effects on action selection: beneficial or detrimental

Cognitive vs. Motivational Selective information Conditional entropy

Incentive values Free-energy

(Koechlin et al., 2003)

(Friston et al., 2007) 2

2,5

1,8

1,6

2

Ai

low entropy

1,4

large free-energy

1,2

1,5

1

0,8

1

large entropy

0,6

0,4

0,5

low free-energy

0,2

0

0

Distribution of neuronal activity over alternative options

Ai A Entropy = - ∑ log i ∑ Aj ∑ Aj

Free-energy = log ∑Aj

Statistical Physics of executive function Total Energy = Entropy + Free-Energy Lateral prefrontal activations

Cognitive control demands

Motivational control

Hypothesis: The medial PFC subserves motivational control

C

e v i t i n og

l o r t n co

e re F +

gy r e n E

Motivational control

Prefrontal cortex Coronal section

Hypotheses • Medial PFC regulate the engagement (i.e. free-energy) of lateral PFC regions in cognitive control according to rewards/penalty at stake in action, independently of control demands (i.e. conditional entropy).

• The organization of motivation in the medial PFC parallels the architecture of cognitive control in the lateral PFC: To each cognitive control level corresponds a medial region modulating its free-energy

The dual model

Kouneiher, Charron, Koechlin, 2009, Nature Neurosci.

Predictions • Pre-SMA exhibits transient activations varying as the reward/penalty at stake in immediate action (contextual motivation). • dACC exhibits sustained activations representing the reward/penalty at stake in subsequent action (episodic motivation). • Interactions from medial to lateral PFC regions convey contextual and episodic motivation values. • Post-LPFC activations show additive effects of contextual motivation and control, whereas anterior LPFC activations show additive effects of episodic motivation and control. • top-down interactions from anterior to posterior LPFC reflect episodic control and motivation

Experimental Protocol: cognitive factors

Instruction cues ICi

Context S1 S2 S3

x

S4 S5

x

S6 S7 S8

x

S9

Episodic Left resp.

Left resp.

Right resp.

Context ICi

S1 S2 S3

x

S4 S5

x

S6 S7 S8

x

S9

Contextual Left resp.

ICi

S1 S2 S3

x

S4 S5

Left resp. Right resp.

x

S6 S7 S8

x

S9 Times

Left resp. Distractor

Left resp. Right resp. Task

2.4 sec

Baseline

Contextual vs. Episodic control Episodic control

Contextual control

Trials

Kouneiher, Charron, Koechlin, Nature Neurosci., 2009

Experimental Protocol: contextual motivation +200%

ICi

S1 S2 S3

x

Low contextual motivation

+5%

ICi

S1 S2 S3

x

Low contextual motivation

+200%

S4 S5

x

+200% +200%

S6 S7 S8

x

Large extra pay-offs (2 euros)

S9

High contextual motivation +5%

S4 S5

x

+5%

+5%

S6 S7 S8

x

Low contextual motivation

S9

negligible extra pay-offs (5 cents)

Behavioral performances Blocks with large bonus trials Blocks with low bonus trials

Standard Bonus

Standard Bonus

Kouneiher, Charron, Koechlin, Nature Neurosci., 2009

Contextual motivation: fMRI data Medial

Lateral Effective connectivity

Standard Bonus Standard Bonus

Trial type Blocks with large bonus trials Blocks with low bonus trials Kouneiher, Charron & Koechlin, Naturre Neurosci. 2009

Experimental Protocol: episodic motivation +200%

ICi

S1 S2 S3

x

Low contextual motivation

+5%

ICi

S1 S2 S3

x

Low contextual motivation

+200%

S4 S5

x

+200% +200%

S6 S7 S8

x

High episodic motivation

S9

High contextual motivation +5%

S4 S5

x

+5%

+5%

S6 S7 S8

x

Low contextual motivation

Low episodic motivation S9

fMRI data: Episodic motivation Episodic motivation

Contextual motivation

Standard Bonus Standard Bonus

Trial Trialtype type

Kouneiher, Charron, Koechlin, Nature Neurosci., 2009

High incentive blocks Low incentive blocks

Control + Motivation Episodic motivation (sustained effect)

Contextual motivation (transient effect)

Kouneiher, Charron, Koechlin, Nature Neuro 2009

Reaction times (ms)

Control + Motivation

710 700

Episodic blocks

690 680 670 660

710 700

Contextual blocks

690 680 670 660

650

Baseline blocks

640 630 620 610 600

Blocks with large bonus trials Blocks with low bonus trials

Standard Bonus Trials

Motivation and control in the PFC

Standard

Bonus

Standard

Bonus

Standard Bonus

To conclude…

• The prefrontal executive function is organized as two parallel, hierarchical systems from posterior to anterior regions in the medial and lateral PFC .

• Post- and mid- lateral PFC select action sets according to immediate contextual signals (contextual control) and temporally remote events (episodic control) respectively, operating through a cascade of top-down interactions towards premotor cortex.

• Post- and mid-. medial PFC evaluate immediate contextual incentives and temporally remote incentives for weighting through medial-to-lateral interactions the involvment of contextual and episodic control, respectively.

• The dichotomy between control and motivation in prefrontal executive function is captured by the basic distinction between the concept of entropy and free-energy in population of neurons.

• Motivation enhances prefrontal control rather than improving selection!