

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

CoStarOffice: Towards a Flexible Platform

ument [15], and the evolving history of a document has to any participant would like to have free control of the shared is successfully downloaded.

 Télécharger le PDF

 320KB taille
 1 téléchargements
 397 vues

 commentaire

 Report

CoStarOffice: Towards a Flexible Platform-independent Collaborative Office System Haifeng Shen and Chun Ti Cheong

Chengzheng Sun

School of Computer Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798

School of Computing and Information Technology Griffith University Brisbane, QLD 4109, Australia

ABSTRACT SUN StarOffice is an archrival of Microsoft Office. Not only does it have comparable functions and compatible document formats to Microsoft Office, but also can work under multiple platforms including Linux, Solaris, Mac OS X, and Windows. As collaboration support for multiple users to work on the same Office documents becomes more and more desirable, some work has been done to provide real-time collaboration support for Microsoft Office, including transparent application sharing and transparent adaption. These systems use tightly coupled concurrency control mechanisms, which directly determine their collaboration support capabilities and flexibilities as well as implementation complexities. In this project, we choose StarOffice as the platform to drive our research on collaboration support for Office systems, where a flexible concurrency control framework is proposed. In this framework, concurrency control mechanisms are decoupled from the rest of system in such a way that multiple concurrency control mechanisms are offered for users to choose from according to their specific collaboration situations, and that new concurrency control mechanisms can be easily added on to the system without touching the code of existing concurrency control mechanisms. As the system is written in pure Java and by leveraging only UNO (Universal Network Object) API (Application Programming Interface) provided by StarOffice, it can be run across a variety of platforms.

1.

INTRODUCTION

Electronic documentation is one of the most influential results of information revolution. Productivity of documents has been drastically increased by taking advantage of various electronic documentation tools. It was statistically estimated that documents produced in the last two decades have exceeded the total number of documents produced ever since the beginning of human civilization. State-of-the-art elec-

 tronic documentation tools are exemplified by various Office Suites such as Microsoft Office, Sun StarOffice, and Corel WordPerfect, where Microsoft Office is still the predominant one, however, Sun StarOffice is becoming its archrival and gradually taking possession of its market. As electronic documents can be easily produced, they tend to be larger, more complex, and more rapidly changing. Therefore, it becomes really common nowadays that multiple people are involved in the authoring of the same document [15], and the evolving history of a document has to be properly maintained for reference and backtracking. Allowing multiple authors to work on the same document may help reduce authoring time, but coordination complexities may also compromise the productivity [4]. Therefore, to make multi-authoring a positive-sum game for both higher productivity and better quality, significant research on multiauthoring is required to integrate multiple authors into a coherent, structured, and collaborative management process. However, most of mainstream Office suites are primarily single-authoring systems and collaboration between multiple authors is mainly coordinated by social protocols and email [17], which are rather inconvenient, inefficient, and error-prone. Until recent years, Microsoft has started its campaign for collaboration support in its office suite. Office 2000 and Office XP provide collaboration support in the way of change-tracking, and Office 2003 adopts SharePoint service or server to further enhance collaboration support. Nevertheless, some important features like real-time collaboration, unconstrained work, and revision control, are either non-existent or rudimentary. In this project, we choose StarOffice as the platform to drive our research on collaboration support for Office systems for the following reasons: • Since no collaboration support is available in StarOffice, our contributions will not be constrained by any existing framework; • StarOffice provides sophisticated SDK (Standard Development Toolkit) for us to manipulate Office objects; • Unlike Microsoft Office that primarily runs on Windows family, StarOffice can run across multiple platforms such as Solaris, Linux, Mac OS X, and Windows, making our contributions more accessible.

• Collaboration support can be implemented in a CE (Collaboration Engine), which is separated from StarOffice and does not require source code change. As CE can be coded in pure Java and by leveraging only UNO (Universal Network Object) API (Application Programming Interdace) provided by StarOffice, it can be run across a variety of platforms on which StarOffice is running. In this position paper, we will report the progress of providing collaboration support for StarOffice by means of transparent adaption. The current CE only supports real-time collaborative word processing for some of the features in StarOffice Writer. But it serves a good purpose of proving the concept, demonstrating the feasibility, and motivating further research. More features will be added on to the system as the research moves on. The rest of the paper is organized as follows. After introduction, the next section describes some related work. Then, the choice of concurrency control mechanisms is discussed and a flexible concurrency control framework is proposed. The following section presents an optimized implicit turntaking concurrency control mechanism. After that, design and implementation issues of the prototype system are depicted. Finally, the paper is concluded with a summary of contributions and future work.

2.

RELATED WORK

A lot of work has been done to provide collaboration support for editing systems. These work can be generally classified into two groups: collaboration-aware and collaborationtransparent [1]. Collaboration-aware systems were designed with collaboration support in mind. These systems, exemplified by various collaborative editing systems like Prep [14], REDUCE [23], and SEPIA [9], although providing attractive collaboration support, have not attracted much attention from end users because these systems are rather ad hoc and their editing capabilities are not even comparable to text editors, let alone sophisticated Office systems. End users are simply unwilling to obtain collaboration support at the cost of sacrificing their favorite or familiar document authoring systems. Collaboration-transparent systems often uses a central server that runs a single instance of the editing program with a single copy of the document. Inputs from multiple participants are merged and delivered to the editing program and any change to the graphical output of the editing program is broadcast to all sites. Collaboration-transparent systems provide the shared use of existing single-user applications through mechanisms that are transparent to the applications and developers. Typical examples of collaborationtransparent systems are general shared window systems such as VNC [16], Netmeeting [12], and SharedX [7]. There are some dedicated collaboration-transparent collaborative editing systems. One example is Emacs, which has the Make frame on display feature to allow a single Emacs program to talk to multiple frames distributed on multiple X Windows displays [5]. Another example is MMM shared editors [3], which support the sharing of a hierarchy of editors on a single screen among a group of users for conference

applications. Collaboration-transparent systems are simple and easy to implement, and can be used to collaborate in legacy single-user applications that were developed with no support of collaboration in mind. However, they are generally not responsive, particularly in long-latency network environments like the Internet. Moreover, collaboration is supported in a tightly coupled and restricted manner that forces users to take turns to manipulate the shared document and to view the same portion of the shared document all the time. Collaboration-aware editing systems do not meet end users’ requirement for mainstream editors such as Office systems, although their collaboration support is impressive. On the other hand, collaboration-transparent editing system do not meet end users’ requirement for advanced collaboration support, although off-the-shelf mainstream editors can be used as-is. A natural solution is to bring advanced collaboration support from collaboration-aware editing systems into off-the-shelf mainstream editing systems like Office systems. This is the idea of transparent application sharing by means of transparent adaption proposed by Li et al [10]. Transparent adaption allows off-the-shelf single-user editing systems to become collaborative editing systems without source code change. There are two representative work of applying transparent adaption to Office systems, both targeting at Microsoft Office. One is Groove Workspace [13], which makes Microsoft Office support real-time collaborative editing by means of explicit and long-duration turn-taking. More precisely, any user who wants to edit the shared document must explicitly request for a turn. Once the user gets the turn, (s)he is the only one who can modify the document. The user has to voluntarily and explicitly give up her/his turn at the time when (s)he thinks it is appropriate. At that point of time when her/his turn is released, the new version of the shared document made by that user is made available to the rest of the users. This approach is easy to implement because it does not require much knowledge of Office system except how to lock/unlock the whole document. However, the provided collaboration support is limited to situations where having a single active user fits the collaboration requirements, and is ill-suited to situations where concurrent streams of activities from multiple users is needed. Another representative work is CoOffice including CoWord [25] and CoPowerPoint, which provides a Collaboration Engine to make Microsoft Office (particularly Microsoft Word and Microsoft PowerPoint at the moment) support real-time unconstrained collaborative editing by leveraging operational transformation. It is more flexible than Groove Workspace because any user is allowed to edit any part of the shared document at any time without any restrictions to her/his editing activities. Therefore, it supports both concurrent and sequential streams of activities from multiple users who are editing the same shared document. The flexibility comes at the cost of intercepting every event that are relevant to the manipulation of a shared document using Microsoft Office. In other words, events that are related to any editing capabilities provided by Microsoft Office must be intercepted and properly synchronized by means of operational transformation. As a result, compared to

Groove Workspace, design and implementation complexities of CoOffice are tremendous. On the other hand, interception of every relevant event requires profound knowledge from Microsoft Office, which, however, does not provide adequate API for event interception. Therefore, CoOffice heavily relies on intercepting events (messages) generated by the Operating System (Microsoft Windows family in particular) on which Microsoft Office is running, which makes CoOffice hardly portable to other platforms such as Mac OS X on which Microsoft Office can also be run. The motivation of the CoStarOffice project is to design and develop a CE for StarOffice by transparent adaption. It is flexible enough to suit the needs of different collaboration situations and portable to any platforms on which StarOffice can be run with manageable implementation complexities.

3.

A FLEXIBLE CONCURRENCY CONTROL FRAMEWORK

As concurrency control is a key issue for collaborative editing [6], the choice of the concurrency control mechanism directly determines collaboration capabilities provided by a collaborative editing system, and may have a profound impact on the design and implementation complexities of that system. There are many available concurrency control mechanisms such as turn-taking [8], locking [11], serialization [23], transaction [2], and operational transformation [22]. We can generally categorize them into two groups: pessimistic mechanisms including turn-taking, locking, transaction, pessimistic serialization and optimistic mechanisms including optimistic serialization and operational transformation. There have always been controversies about which concurrency control mechanism (pessimistic or optimistic) should be used for collaborative editing systems. Some argue for pessimistic mechanisms because they are well-proven, simple, easy to implement, and have widely been used. Others argue for optimistic mechanisms because they are flexible, sophisticated, and support unconstrained collaboration. Industries particularly like pessimistic mechanisms for the aforementioned reasons, as manifested by the commercial products Groove Workspace for Microsoft Office and SharePoint for Microsoft Office. In contrast, many researchers in this area hold the opposite idea, as they think pessimistic mechanisms restrict collaboration capabilities. They have been advocating flexible, unconstrained collaboration support - any participant is allowed to edit any part of the same shared document at any time - for years, as manifested by some research prototypes REDUCE, JAMM [1], and CoOffice. Another debating point of choosing concurrency control mechanisms lies on the necessity of supporting unconstrained collaboration. While we think pessimistic concurrency control mechanisms make collaboration restricted and inflexible, people often ask for the case in which unconstrained collaboration is actually needed in reality. For example, when we advocate the technique of operational transformation to support unconstrained collaborative editing, a common argument is why multiple participants need to amend the same part (the same sentence, the same word, or even the same character) of the shared document. In a collaborative environment, participants should be properly coordinated

and systematically integrated into a coherent and structured management process according to organization rules or social protocols. Collaboration is to improve productivity and quality of work, however, if activities of participants are all unconstrained, coordination complexities could lead to the opposite effect. For instance, consider a document contains a grammatically problematic sentence “You are student”. If two authors are allowed to amend the same sentence concurrently, one could add an article before “student” and the other could make “student” plural at the same time, resulting in another grammatically problematic sentence “You are a students”! Once discovering this problem, they could both undo their own work in order to keep the other’s work, making the sentence return to its original problematic state “You are student”. Such an iteration could last for ever unless some kind of social protocol is deployed or a pessimistic concurrency control mechanism like locking is used [24]. We acknowledge that different concurrency control mechanisms may suit different collaboration needs under different collaboration circumstances. First, in a collaboration situation where concurrent stream of activities from multiple users are not required, explicit turn-taking (i.e., a participant must explicitly request for the turn in order to have the control of the shared document) will not only be good enough for concurrency control but also serves the purpose of reinforcing the social protocol in order to avoid messing things up. For example, if a document is shared by an author and a reviewer, they would not edit the document concurrently. When the author is editing the document, the reviewer would not edit it because (s)he would like to review and give comments to the final version of the document. Similarly, when the reviewer is reviewing the document, the author would not change it because (s)he would like to amend the document according to final comments given by the reviewer. If explicit turn-taking is not employed, we may have to reinforce some social protocol to prevent them from concurrently amending the document. Explicit turn-taking is used by Groove Workspace to make Microsoft Office support real-time collaborative editing. Second, in a collaboration situation where participants like to collaborate in the manner of WYSIWIS (What You See Is What I See) [20], implicit turn-taking (i.e., a participant gets the turn to modify the shared document implicitly by triggering some event) would be a good choice. Once a participant gets the turn, (s)he will see the work done by another participant who previously possessed the turn, and will be able to amend the document. For example, if two programmers are collaboratively debugging the same piece of code, as coding is very subtle, every character typed by one programmer must be perceived by the other. In this case, implicit turn-taking can be triggered by keystroke events. The two programmers are synchronized to virtually have the same view of the piece of the code at the same time and concurrent stream of activities from the two users are allowed. Third, in a collaboration situation where concurrent stream of activities from multiple users are constantly required and any participant would like to have free control of the shared document without having their activities restricted in any way, operational transformation would be the best choice.

By using operational transformation, unconstrained collaboration is supported in the way that any participant is allowed to amend any part of the document at any time. In particular, two participants could amend the same sentence, the same word, or even the same character. For example, if two authors have been jointly writing a scientific paper, as the deadline approaches shortly, they want to quickly finalize the paper by assigning one author to proofread spelling and grammars and the other author to proofread citations concurrently. Finally, in a collaboration situation where concurrent stream of activities from multiple users are constantly required but participants are usually working on different portions of the shared document, a concurrency control mechanism that is tailored to this situation would be more appropriate. In most cases, when people do collaborative editing of a shared document, they will be assigned with different parts of the shared document according to some social protocols such as organization rules, contracts, private mutual agreements, and will usually work on their own parts without interfering with other people’s work.

• Strict WYSIWIS is relaxed by allowing different users to amend different parts of the shared document. This is done by allowing different users to have different cursor positions in the document. Therefore, cursor movements do not require requesting for the floor and do not need to be propagated either, which eliminates significant number of floor requests and communication messages.

4.1

Floor control

To implement the optimized implicit turn-taking concurrency control mechanism, a session manager is deployed to hold a token accessed by all collaborative sites. Access to the token must be mutually exclusive, that is at one time only one site is allowed to have ownership to it. Editing can only be echoed to the shared document when a token is obtained. Figure 1 illustrates the protocol that was designed to support this mechanism.

Therefore, a flexible concurrency control framework has been proposed and deployed in the CoStarOffice project. In the framework, concurrency control mechanisms are decoupled from the rest of system in such a way that multiple concurrency control mechanisms are offered for users to choose from according to their specific collaboration situations, and that new concurrency control mechanisms can be easily added on to the system without touching the code of existing concurrency control mechanisms. Currently, an optimized implicit turn-taking mechanism and a hybrid mechanism that is suitable for collaboration situations where concurrent stream of activities are required but participants are usually working on different portions of the shared document have been implemented in the system. We are still in the process of adding explicit turn-taking and operational transformation mechanisms to the system.

4.

OPTIMIZED IMPLICIT TURN-TAKING

In this section, we will describe an optimized implicit turntaking concurrency control mechanism that has been implemented in CoStarOffice. Compared with traditional implicit turn-taking, it has been optimized in the following ways: • Floor control is fine-grained in the sense that a keystroke would trigger a request for the floor to manipulate the shared document. Therefore, concurrent collaborative editing is virtually supported; • A user can amend the document before the floor is actually granted. Therefore concurrent collaborative editing is supported and there will be no lost keystrokes if the floor is not yet granted. • The first keystroke by a user will request for the floor. Before the floor is granted, the user might generate more keystrokes. However, these keystrokes would not request for the floor because once the floor is granted, all keystrokes as a whole will be echoed into the document. This essentially eliminates enormous floor requests.

Figure 1: Floor control by the session manager

A token request is generated when there is a keystroke from the user. Changes will not be reflected into the document until the token is obtained from the session manager. Since access to the token is mutually exclusive, it can be ensured that at the moment when a site obtains the token no other changes are made to the other copies of the document. Hence it could be said that all other sites are ”locked out” from updating their respective documents. The token is released back to the session manager only when the changes made by the user is updated in his/her local copy and propagated to the master and remote copy(s). Thus the contents of the documents will be consistent with each other. The message exchange is from the perspective of a singleuser when (s)he generates any input that needs to be updated into the document. One round of successful transaction during an editing process needs the following message exchanges.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Input action generated by user; User agent requesting the token; Token granted by the session manager; Changes of input echoed back to local copy of document; Contents of input sent to the session manager; Session manager updates contents of input into master document; Session manager informs the rest of the user agents to prepare to receive broadcast; Session manager broadcasts contents of input to rest of user agents; Remaining user agents updates contents of input into their documents; Session manager releases token from original user agent.

However, in reality, more than two users can be typing away in real-time simultaneously. Since updates to the document are reflected only when a user has a token, the response time to reflect the changes will vary due to network latency and the number of collaborative sites which are competing for the floor.

the document and subsequently sent to the session manager. However, this choice is unpleasant to users. The second is to generate multiple token requests. Each token request would follow upon a character keyed by the user. However this causes the network to be flooded with a lot of token request messages, possibly slowing it down. Finally, we choose the buffering approach. That is, a buffer is used to store any subsequent characters keyed in by the user into a data structure after the token request and before the token grant message is received. In this way, characters would not be lost and the there is no need to generate a token request for every character keyed in. Figure 2 illustrates the editing process with buffering employed. A user keys in a character ’a’, generating a token request. The character is first stored into a buffer. Before the token message is received, the user keys in another character ’b’. This character is then stored into the buffer as well. Once the token grant message is received the contents of the buffer are updated back into the document. It is then sent over to the session manager for updating into the master copy as well as any possible remote copies in other user agents. The buffer is then emptied and another round of token request can take place.

4.3

Relaxed WYSIWIS

In a traditional turn-taking concurrency control mechanism, there is normally only one cursor in a shared document. Changes only take place at the current cursor position no matter when and who makes the changes. Therefore, all participants have the same view of the document at the same time. However, this strict WYSIWIS is inflexible and unable to support concurrent stream of activities from different users. Since the optimized implicit turn-taking mechanism can support concurrent collaborative editing, strict WYSIWIS must be relaxed to allow different users to have different views of the same document, and to amend different parts of document concurrently.

Figure 2: A real-time editing scenario with buffering

4.2

Flow of editing operations

When the user keys in a character, a token request is generated. What if before the token is granted the user keys in another character? There are a few options that could be implemented to solve this problem. One is to discard the second the character. Before a token is granted, any subsequent characters keyed in by the user after the token request could be discarded. Thus when a token is granted only the character generating the token request would be echoed into

Relaxed WYSIWIS is achieved by allowing different users to have different views of cursor positions in their respective replicas of the shared document. To do that, events of cursor movements are not propagated and synchronized by the token, and consequently cursor movements in different replicas of the shared document are independent of each other. However, this creates a problem, as remote replicas need to know the current cursor position of the local replica where changes are made so that the changes can be replayed at correct positions in the respective replicas. Therefore, there must be some mechanism to keep track of the current position of the cursor and the cursor position will be sent along with the changes. A critical issue here is that inconsistencies may arise due to different cursor positions in different replicas and concurrent changes may be generated at different cursor positions before the token is actually granted. Consider a document initially contains a character a, replicated at two sites Site 1 and Site 2. Suppose the cursor is initially at position 0 (i.e., before character a. The user at Site 1 moves the cursor to position 1 (i.e., after a) and keys in a x. Character x together with its position 1 is stored in the buffer, waiting for the token. At the same time, The user at Site 2 keys in a y,

which should be at position 0. Character y together with its position 0 is stored in the buffer, also waiting for the token. Suppose Site 2 gets the token first, y is then echoed into the document before a, and propagated to Site 1. When it is replayed at Site 1, the document at Site 1 becomes ya. After that, Site 1 gets the token and echoes x at position 1, the document becomes yxa, which is wrong because x should be echoed after a. Therefore, operational transformation is used to tackle this issue but in a different way. When a remote change arrives, it will be replayed as-is. However, local changes stored in the buffer must be transformed against it to adjust their cursor positions correctly. In this example, when y from Site 2 arrives and is replayed, the position of x in the buffer is adjusted from 1 to 2 by transformation.

5.

• File Progress. This field contains a progress bar showing how much of the file is being received when it is being downloaded.

DESIGN AND IMPLEMENTATION OF THE SYSTEM

As shown in Figure 1, multiple collaborative sites User Agents) connect to the same Session Manager.

Figure 4: User Agent GUI upon loading Figure 5 shows the process of connecting to the session manager. An editing session first starts by downloading the file from the session manager. It is invoked by clicking ”Session Manager” on the menu bar followed by selecting ”Connect”. A connection dialog opens up for the user to key in the IP address and port of the session manager.

Figure 5: Connecting to session manager Figure 3: Modules in the User Agent

5.1

User Agent

Figure 3 shows the various software modules in the user agent. The user is able to monitor the status of the editing session from the graphical user interface implemented. Figure 4 shows the screen shot of the GUI upon loading. The user controls the editing session from here. It also provides various details about the editing session. • Client IP Address. This field shows the IP address of the computer belonging to the user. • Session Manager IP Address and Port. These fields show the IP address and port number of the session manager. • File Info. This field describes the details of the file being edited. • Concurrency Control. This field displays the current concurrency control mechanism used. It will be informed by the session manager during connection establishment.

Figure 6 shows the display at the user agent after the file is successfully downloaded. The relevant information is displayed and the user can commence on the editing process.

Figure 6: Connection to session manager successful

The client module in Figure 3 is responsible for maintaining the connection with the session manager as well as handling the concurrency control mechanism. It generates two continuously running java threads named ”input channel thread” and ”output channel thread”. The output channel thread is used to initiate some sort of communication with the session manager (i.e. requesting for a token) upon user editing. The input channel thread is used to monitor any incoming control messages. Both these two threads generate a series of control messages that work in sync with the session manager, establishing a protocol for communicating. The actual flow of operations within the thread depends on which concurrency mechanism is employed.

5.2

Session Manager

Figure 7 shows the various software modules in the session manager. It has a similar structure to the user agent.

Figure 8: Selecting a concurrency control mechanism The server module in Figure 7 is responsible for managing the session among the different users. It holds the token to be mutually shared by the users. It generates a continuously running server thread corresponding to each user connected to the system. When each thread is servicing a client, the other threads are blocked, resuming execution only when the current server thread has finished its execution. The program flow of the thread depends on which concurrency mechanism is used.

Figure 9: Session Status Figure 7: Connection to session manager successful

6. The user in this case does not participate in the editing session. Instead, (s)he is only allowed to load/close the document and select the concurrency control mechanism to be used. Starting a collaborative editing session involves loading a file into the session manager. Only then would the server be started and users can join the system. Figure 8 shows the selection of a concurrency control mechanism. A mechanism must be selected first before the file can be opened. Figure 9 shows the status of the editing session from the session manager’s GUI. It can be seen that at the time of the screen shot two users are currently connected to the system and token-based mechanism is used for concurrency control. The location of the file on the local disk is also displayed.

CONCLUSIONS AND FUTURE WORK

Features of collaboration support are becoming more and more desirable for mainstream office suites, which are very important software systems indispensable for our daily work and life. On the one hand, although collaborative editing systems have been researched for more than a decade and there are some prototypes and commercial products available, their primary objective is restricted only to demonstrate collaborative features. The editors developed were generally poor (most of them are only plain text editors), at least not comparable to sophisticated office systems. On the other hand, collaboration support provided by mainstream Office systems are still limited. Some work has been done by third party to provide realtime collaboration support for Microsoft Office, including transparent application sharing by shared window systems and transparent adaption by integrating real-time collabo-

rative editing techniques into off-the-shelf Microsoft Office system without requiring source code change. These systems use tightly coupled concurrency control mechanisms, which directly determines their collaboration support capabilities and flexibilities as well as implementation complexities. Little collaboration support has been provided by StarOffice suite. In this project, we choose StarOffice as the platform to drive our research on collaboration support for Office systems by leveraging transparent adaption, where a flexible concurrency control framework is proposed and deployed. In this framework, concurrency control mechanisms are decoupled from the rest of system in such a way that multiple concurrency control mechanisms are offered for users to choose from according to their specific collaboration situations, and that new concurrency control mechanisms can be easily added on to the system without touching the code of existing concurrency control mechanisms. During the implementation of the CoStarOffice prototype, we found that some important API is not available in StarOffice SDK. For example, The API for document cursor does not provide an absolute position within the document, which is essential to our implementation. We will continue to design and implement more concurrency control mechanisms for the system and allow users to change among different mechanisms without restarting the whole session. We are also investigating more features like flexible notification [19], undo [21], and revision control [18], which will be added on to the system as research goes on.

7.

ACKNOWLEDGEMENT

This work is supported by a Startup Grant (SUG 7/04), Nanyang Technological University, Singapore. We would like to thank Dr. Suiping Zhou and Dr. Vivekanand Gopalkrishnan for their valuable comments.

8.

REFERENCES

[1] J. Begole, M. B. Rosson, and C. A. Shaffer. Flexible collaboration transparency: supporting worker independence in replicated application-sharing systems. ACM Transactions on Computer-Human Interaction, 6(2):95–132, June 1999. [2] P. Bernstein, N. Goodman, and V. Hadzilacos. Concurrency Control and Recorvery in Database Systems. Addision-Welsley, 1987.

Conference on Management of Data, pages 399–407. ACM Press, May 1989. [7] D. Garfinkel, B. C. Welti, and T. W. Yip. HP SharedX: A Tool for Real-time Collaboration. Hewlett-Packard Journal, pages 23–36, Apr. 1994. [8] S. Greenberg and D. Marwood. Real time groupware as a distributed system: concurrency control and its effect on the interface. In Proc. ACM Conference on Computer Supported Cooperative Work, pages 207–217. ACM Press, Nov. 1994. [9] J. M. Haake and B. Wilson. Supporting collaborative writing of hyperdocuments in SEPIA. In Proc. ACM Conference on Computer Supported Cooperative Work, pages 308–317. ACM Press, Nov. 1992. [10] D. Li and R. Li. Transparent sharing and interoperation of heterogeneous single-user applications. In Proc. of ACM Conference on Computer Supported Cooperative Work, pages 246–255. ACM Press, Nov. 2002. [11] L. McGuffin and G. Olson. ShrEdit: A Shared Electronic Workshpace. CSMIL Technical Report, 13, 1992. [12] Microsoft Corporation. Microsoft NetMeeting 2.0: Overview and frequently asked questions. Technical report, Microsoft Corporation, July 1997. [13] G. Networks. Groove and Small Business, the low-cost, “no IT dept.” solution. http://www.groove.net/. [14] C. Neuwirth, D. Kaufer, R. Chandhok, and J. Morris. Issues in the Design of Computer Support for Co-authoring and Commenting. In Proc. ACM Conference on Computer Supported Cooperative Work, pages 183–195. ACM Press, Oct. 1990. [15] I. R. Posner and R. M. Baecker. How people write together. In Proceedings 25th Hawaii International Conference on System Sciences, volume 4, pages 127–138, 1992. [16] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network computing. IEEE Internet Computing, 2(1):33–38, Jan. 1998.

[3] E. A. Bier and S. Freeman. Mmm: a user interface architecture for shared editors on a single screen. In Proceedings of the 4th annual ACM symposium on User interface software and technology, pages 79–86. ACM Press, Oct. 1991.

[17] M. Sasse, M. Handley, and S. Chuang. Support for collaborative authoring via email: The messie environment. In Proc. Third European Conference on Computer-Supported Cooperative Work, pages 249–264, Sept. 1993.

[4] J. Blackburn, G. Scudder, and L. N. V. Wassenhove. Concurrent software development. Communications of the ACM, 43(11):200–214, Nov. 2000.

[18] H. Shen and C. Sun. Flexible Merging for Asynchronous Collaborative Systems. In Proceedings of Tenth International Conference on Cooperative Information Systems, pages 304–321. Springer Verlag, Nov. 2002.

[5] D. Cameron, B. Rosenblatt, and E. S. Raymond. Leanring GNU Emacs, 2nd Edition. O’Reilly and Associates, 1996. [6] C. Ellis and S. Gibbs. Concurrency control in groupware systems. In Proc. of ACM SIGMOD

[19] H. Shen and C. Sun. Flexible Notification for Collaborative Systems. In Proceedings of ACM Conference on Computer-Supported Cooperative Work, pages 77–86. ACM Press, Nov. 2002.

[20] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS Revised: Early Experiences with Multiuser Interface. In Proceedings of ACM Conference on Computer Supported Cooperative Work, pages 276–290. ACM Press, Dec. 1986. [21] C. Sun. Undo as concurrent inverse in group editors. ACM Transactions on Computer-Human Interaction, 9(4):309–361, Dec. 2002. [22] C. Sun and C. Ellis. Operational transformation in real-time group editors: Issues, algorithms, and achievements. In Proceedings of ACM Conference on Computer Supported Cooperative Work, pages 59–68. ACM Press, Nov. 1998. [23] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality-preservation, and intention-preservation in real-time cooperative editing systems. ACM Transactions on Computer-Human Interaction, 5(1):63 – 108, Mar. 1998. [24] C. Sun and R. Sosic. Optional locking integrated with operational transformation in distributed real-time group editors. In Proceedings of ACM 18th Symposium on Principles of Distributed Computing, pages 43–52. ACM Press, May 1999. [25] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leveraging single-user applications for multi-user collaboration: the coword approach. In Proceedings of ACM Conference on Computer Supported Cooperative Work. ACM Press, Nov. 2004.

des documents recommandant

[image: alt]

CoStarOffice: Towards a Flexible Platform

any change to the graphical output of the editing program is broadcast to all products Groove Workspace for Microsoft Office and Share-. Point for Microsoft ...

[image: alt]

COW, a Flexible Platform for the Enactment of Learning ... - CiteSeerX

ment systems (LMS) can be the use of Educational Modelling Languages. (EML). The next step will be the ... would like to be able to adapt the learning path of a particular student to better fit his needs. This kind ... delivering pedagogical resource

[image: alt]

The effects of platform on low aspect ratio flexible wings

21 Sep 2007 - The effects of platform on low aspect ratio flexible wings ... The hysteresis phenomenon exists in lift and drag coefficient curves when the sweep ...

[image: alt]

Howto: Create a virtual platform Shibboleth .fr

 -->. .

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

should demonstrate a reduced API into the component itself. The technology Specific%20Software%20Architectures%20(DSSA).pdf >. Duffy, R.

[image: alt]

A Flexible Behavioral Planner in Real-Time

Often real-time behavioral planner can not adapt to the change of the ... The author would like to thank designers for their implication in the design of the.

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources B - 1.2.2.2.3.1.1 Game Object Component Exported Classes............. 252 The book uses clear English to explain w connect to unique alter egos, and began the â

[image: alt]

a flexible mediation process for large distributed

1. Introduction. We consider distributed information systems that are open, ... tem because of dissatisfaction (because they never get good answers, never get 1..n. Registration room. Mediation. Bids. TP. Provider repesentative. Cap In FM

[image: alt]

TARDIS - a job interview simulation platform - limsi

The TARDIS3 project, funded by FP7, aims at building a serious game for. NEETs4 and employment/inclusion organisations which supports social training.

[image: alt]

A Robust Linguistic Platform for Efficient and

However, some other queries are more complex, requiring specific knowledge or ... processes the query more accurately, taking into account the topic and the ...

[image: alt]

LeVinQam: A Question Answering Mining platform - Christian

use queries and data mining techniques to retrieve peda- gogically relevant information for both students and teach- ers [2]. Teachers often ask for techniques ...

[image: alt]

A FLEXIBLE BIPOLAR QUERYING APPROACH WITH IMPRECISE

ABSTRACT. In this paper, we propose an approach to query a database when the user preferences are bipolar (i.e., express both constraints and wishes about ...

[image: alt]

Flexible Absperrbarrieren Flexible barrier Barrages flexibles

Die Barrieren müssen völlig locker im Kasten liegen. Der Kasten muss stets flach hingelegt werden. Bitte beachten. Zusammengefaltete Barrieren niemals lange ...

[image: alt]

Flexible Heating Pad Almohadilla Termica Flexible ... - Sunbeam

brouillard d'eau à l'aide d'un flacon pulvérisateur. • Ne mouillez ou n'humectez pas le connecteur de la commande ou le connecteur de l'enveloppe (Figure 2 ...

[image: alt]

A Robotized Positioning Platform Guided by

A Robotized Positioning Platform Guided by Computed. Tomography : Practical Issues and Evaluation. B. Maurin, B. Bayle, J. Gangloff, P. Zanne, M. de Mathelin.

[image: alt]

short communications NORMA: a tool for flexible

Jun 12, 2006 - Acta Cryst. (2006). D62, 1098â€“1100. Acta Crystallographica Section D. Biological. Crystallography. ISSN 0907-4449. NORMA: a tool for flexible ...Missing:

[image: alt]

The hidden cost of a flexible job

Feb 5, 2015 - But such affordances come with strings attached: Employees with this perk often wind up working extra hours at nights or on weekends. Why?

[image: alt]

Towards a classification of Video Games

proposed a first step [2] of the development of a ... The aim of this article is thus to propose a formal ... Ideally, it's about an application to which we could easily.

[image: alt]

Clark (1999) Towards a cognitive robotics

internal representations of salient real-world structures, facts and hypotheses. Cognitive science then earns its status as a special science of the mind by ...

[image: alt]

Towards a Socially Adaptive Virtual Agent

{mathieu.chollet,catherine.pelachaud}@telecom-paristech.fr, . Abstract. This paper presents a socially adaptive virtual agent that can.

[image: alt]

Towards a Socially Adaptive Virtual Agent

A first step in that direction is to build reactive agents that adapt their emotions Extraction of sequences of signals characteristic of attitude changes In order to ...

[image: alt]

Bandura (2006) Towards a psychology of human

laws of chemistry and physics explain how a television set produces images, but building social networks by connecting disparate groups and individuals in ...

[image: alt]

Towards a Multimodal Wireless Video Capsule for

Colorectal cancer (CRC) is the first cause of death by cancer in developed countries, with an estimated incidence of 728.550 cases worldwide in 2008, with fatal ...

[image: alt]

Towards a Computer-aided Pronunciation Training

pronunciation training for teaching Mandarin to Germans. We ... existence of its inaspirated counterpart j as well as a third However, the principle errors and.

×
Report CoStarOffice: Towards a Flexible Platform

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

