Contributions to multiple testing theory for high ... - Etienne Roquain's

BIOTECHNOLOGY APPLIED MICROBIOLOGY. NEUROSCIENCES NEUROLOGY ... ENVIRONMENTAL SCIENCES ECOLOGY. COMPUTER SCIENCE.
9MB taille 4 téléchargements 271 vues
Contributions to multiple testing theory for high dimensional data Etienne Roquain1 1

Laboratory LPMA, Université Pierre et Marie Curie (Paris 6), France

HdR defense, 21-th september 2015

Etienne Roquain

Contributions to multiple testing theory

1 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

2 / 37

Single testing I Data: X = (X1 , . . . , Xn ) i.i.d. N (µ, 1), µ ∈ R unknown I Null hypothesis H0 : “µ ≤ 0" against alt. H1 : “µ > 0" Pn I Test statistic: T (X ) = n−1/2 i=1 Xi , p-value p(X ) = Φ(T (X )) T=0.5 p=0.31

−4

−2

0

2

4

T=2 p=0.023

−4

−2

0

2

4

Test of level α: reject H0 if p(X ) ≤ α Risk under H0 : P(p(X ) ≤ α) ≤ α Etienne Roquain

Contributions to multiple testing theory

Introduction

3 / 37

Massive and complex data I Microarray interesting genes?

I Neuroimaging (FMRI) activated regions?

Etienne Roquain

I Astronomy directions with stars?

Contributions to multiple testing theory

Introduction

4 / 37

Multiple testing Pure noise, m = 48 indep. tests:

At least one false positive: with prob. 1 − (1 − 0.05)48 ≥ 0.91 Etienne Roquain

Contributions to multiple testing theory

Introduction

5 / 37

Multiple testing Pure noise, m = 192 indep. tests:

At least one false positive: with prob. 1 − (1 − 0.05)192 ≥ 1 − 6 × 10−5 Etienne Roquain

Contributions to multiple testing theory

Introduction

5 / 37

Young’s false positive rules

(i) With enough testing, false positives will occur. (ii) Internal evidence will not contradict a false positive result. (iii) Good investigators will come up with a possible explanation. (iv) It only happens to the other persons.

Etienne Roquain

Contributions to multiple testing theory

Introduction

6 / 37

General setting I Data X ∈ (X , X) with X ∼ P ∈ P (model) I H0,i : “P ∈ P0,i ", 1 ≤ i ≤ m, null hypotheses for P I true/false label θ = θ(P) ∈ {0, 1}m such that θi = 0 if and only if H0,i is true for P I Assume p-values (pi (X ), 1 ≤ i ≤ m) such that if θi = 0, pi (X )  U(0, 1) if θi = 1, pi (X ) ∼ let arbitrary (typically "small")

Goal Recover θ from (pi (X ), 1 ≤ i ≤ m)

Etienne Roquain

Contributions to multiple testing theory

Introduction

7 / 37

1.0

Thresholding

0

0.8

0 0

0

0 0

0

0

0 0 0

0

0

0 0

0.6

0 0

0

0

0

0.4

pi

0 0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0.2

0 0 0

0.0

0

0

0

0

0

0

0

0

0 0

20

40

60

80

0

0

100

i

I Rejection set R = {1 ≤ i ≤ m : pi (X ) ≤ bt} I Some false positives Etienne Roquain

Contributions to multiple testing theory

Introduction

8 / 37

1.0

Thresholding

0

0.8

0 0

0

0 0

0

0

0 0 0

0

0

0 0

0.6

0 0

0

0

0

0.4

pi

0 0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0.2

0 0 0

0.0

0

0

0

0

0

0

0

0

0 0

20

40

60

80

0

0

100

i

I Rejection set R = {1 ≤ i ≤ m : pi (X ) ≤ bt} I Some false positives Etienne Roquain

Contributions to multiple testing theory

Introduction

8 / 37

1.0

Thresholding

0

0.8

0 0

0

0 0

0

0

0 0 0

0

0

0 0

0.6

0 0

0

0

0

0.4

pi

0 0

0

0

0

0 0

0

0

0

0

0

0.2

0 0 ●

0.0

0 ●

0 ●

0 ●

20

0

0 ●

0 ●

0 ●

0 ●

0 ●

0

0

0

0

40

60

0 ●

80

0 ●

0 ● ● 0

100

i

I Rejection set R = {1 ≤ i ≤ m : pi (X ) ≤ bt} I Some false positives Etienne Roquain

Contributions to multiple testing theory

Introduction

8 / 37

1.0

Ordering p-values

0

0.8

0 0

0

0 0

0

0

0 0 0

0

0

0 0

0.6

0 0

0

0

0

0.4

pi

0 0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0.2

0 0 0

0.0

0

0

0

0

0

0

0

0

0 0

20

40

60

80

0

0

100

i

I Stopping rule I Reject `b smallest p-values Etienne Roquain

Contributions to multiple testing theory

Introduction

9 / 37

1.0

Ordering p-values

0.8

00 0 0000

0.6

000 0

00 0 00

00 00

0.4

p(l)

0

00

000 0 0 00 00

0 0

00

0.2

0 0 0000

0.0

0

0

0 00

20

00

00

40

60

80

100

l

I Stopping rule I Reject `b smallest p-values Etienne Roquain

Contributions to multiple testing theory

Introduction

9 / 37

1.0

Ordering p-values

0.8

00 0 0000

0.6

000 0

00 0 00

00 00

0.4

p(l)

0

00

000 0 0 00 00

0 0

00

0.2

0 0 0000

0.0

0

0

0 00

20

00

00

40

60

80

100

l

I Stopping rule I Reject `b smallest p-values Etienne Roquain

Contributions to multiple testing theory

Introduction

9 / 37

1.0

Ordering p-values

0.8

00 0 0000

0.6

000 0

00 0 00

00 00

0.4

p(ell)

0

00

000 0 0 00 00

0 0

00

0.2

0

0.0

0 ●

0

0 0● 0● 0 ● 000 ●●● ●

20

0 0● ●

● 00 ●

0 ●

40

60

80

100

l

I Stopping rule I Reject `b smallest p-values Etienne Roquain

Contributions to multiple testing theory

Introduction

9 / 37

1.0

Choosing procedure?

0.6

0.8

0 00 000 0 000 00000 0 000

000

0.4

00 0

000 000

000 0 0

0.0

0.2

0 00

0

0

0

00

0

20

00 00 0

0

40

60

80

100

I "Quality" criterion? Etienne Roquain

Contributions to multiple testing theory

Introduction

10 / 37

Family-wise error rate (FWER) For a threshold bt, FWER(bt, P) = P(∃i ∈ {1, . . . , m} : θi = 0, pi ≤ bt)   = P inf {pi } ≤ bt i:θi =0

FWER control α given, find bt = btα with ∀P ∈ P, FWER(bt, P) ≤ α,

I Clear interpretation I Bonferroni bt = α/m (union bound) I Refinements [Holm, 1979], [Romano and Wolf, 2005], ... Etienne Roquain

Contributions to multiple testing theory

Introduction

11 / 37

Family-wise error rate (FWER) For a threshold bt, FWER(bt, P) = P(∃i ∈ {1, . . . , m} : θi = 0, pi ≤ bt)   = P inf {pi } ≤ bt i:θi =0

FWER control α given, find bt = btα with ∀P ∈ P, FWER(bt, P) ≤ α,

I Clear interpretation I Bonferroni bt = α/m (union bound) I Refinements [Holm, 1979], [Romano and Wolf, 2005], ... Etienne Roquain

Contributions to multiple testing theory

Introduction

11 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100 00 0000

0.6

0.8

0 0 0 000 0 0

0

0

00

0

0.2

0.4

0

0.0

0

0

0

0

0

20

Etienne Roquain

0

0 00

0 00 0000 0

0 00 00 0 00 00

000 0 0

0

Noncorrected

00 Bonferroni

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0.8

0 00 000 0 0 0 000 00 00 00 0

0.4

0.6

0 0

0.2

00

0 00

0

0 00 000 00

00 0 0 0 0 0 0

00 00 0 00

0.0

0 0

0

20

Etienne Roquain

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0

0.6

0.8

00

000

0.4

0

00 0000 00 0

0 0 000

00 00 00 0

00

0 00 0 00 0 00 0

0.2

0 00 0 0 0

0.0

0 0

0

000

20

Etienne Roquain

0 0

0

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

0.6

0.8

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0 000

0

0

000

0 0000 0 0

0.4

0

0 00

00 0 0000 00 000 0

000 000

0.2

0

0.0

0 00 00 0

0

0

0

20

Etienne Roquain

00

0 00

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0.6

0.8

00 000 0 0

0 00

0

0 0.4

0 000

0.2

0 000 0 00 0

0

000 000 0 000 0 0 0 00 0 000

00 0

0.0

000 0

0

0 00

20

Etienne Roquain

0

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0

0.6

0.8

000 0 0000

0

0

00

00 00 00 0 0

0.0

0.2

0.4

0 0

0 0

00

0

0

20

Etienne Roquain

0 0

0 0

0 00 00 0 0 00

0

40

0

0

0 0 00

00 0 0

60

Contributions to multiple testing theory

0000

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0.8

0 0 00 0 00 00 0

0.6

00 00000 0 0000 0 000 0 0 00 0

0.4

00 000

0.2

000 0 0 0

0

00 0

0 0

0

0.0

0 00

0

20

Etienne Roquain

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

0.8

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0.6

0

0

00 0 0 00000

0 0.4

0000 0 0 0 0

0.2

00 0000 0

00 0 0 0 000

0 0

0

00

00 00

0

00 0 00

0.0

00 0

0

20

Etienne Roquain

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0.8

00 000000 0 0 0 000

0 00

0.6

0 0 00

00

0 0.4

00 00 000

0 0 0 00

00 0

0.2

0 0

0.0

0 0

0

0

0

00

20

Etienne Roquain

0 0

0

00

0

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

1.0

FWER(Bonf.) illustration, α = 0.2, m = 100

0.8

000 00 000

0.6

00000 00 0 000

0.4

0

0.2

0000 0 00

0.0

0

0

0 00

00 000

0 0

00 0000 0 00 0

0

0

0

20

Etienne Roquain

40

60

Contributions to multiple testing theory

80

100

Introduction

12 / 37

False discovery rate (FDR) What should we choose? I 4 false positives out of 10 positives? I 7 false positives out of 100 positives? For a threshold bt, FDR(bt, P) = E[FDP(bt, P)],

#{i : θi = 0, pi ≤ bt} FDP(bt, P) = #{i : pi ≤ bt}



 0 =0 0

FDR control α given, find bt = btα with ∀P ∈ P, FDR(bt, P) ≤ α, If FDR ≤ 0.05: I if 20 rejections, allow at most 1 false discovery (on average) I if 1000 rejections, allow at most 50 false discoveries (on average) Etienne Roquain

Contributions to multiple testing theory

Introduction

13 / 37

False discovery rate (FDR) What should we choose? I 4 false positives out of 10 positives? I 7 false positives out of 100 positives? For a threshold bt, FDR(bt, P) = E[FDP(bt, P)],

#{i : θi = 0, pi ≤ bt} FDP(bt, P) = #{i : pi ≤ bt}



 0 =0 0

FDR control α given, find bt = btα with ∀P ∈ P, FDR(bt, P) ≤ α, If FDR ≤ 0.05: I if 20 rejections, allow at most 1 false discovery (on average) I if 1000 rejections, allow at most 50 false discoveries (on average) Etienne Roquain

Contributions to multiple testing theory

Introduction

13 / 37

False discovery rate (FDR) What should we choose? I 4 false positives out of 10 positives? I 7 false positives out of 100 positives? For a threshold bt, FDR(bt, P) = E[FDP(bt, P)],

#{i : θi = 0, pi ≤ bt} FDP(bt, P) = #{i : pi ≤ bt}



 0 =0 0

FDR control α given, find bt = btα with ∀P ∈ P, FDR(bt, P) ≤ α, If FDR ≤ 0.05: I if 20 rejections, allow at most 1 false discovery (on average) I if 1000 rejections, allow at most 50 false discoveries (on average) Etienne Roquain

Contributions to multiple testing theory

Introduction

13 / 37

False discovery rate (FDR) What should we choose? I 4 false positives out of 10 positives? I 7 false positives out of 100 positives? For a threshold bt, FDR(bt, P) = E[FDP(bt, P)],

#{i : θi = 0, pi ≤ bt} FDP(bt, P) = #{i : pi ≤ bt}



 0 =0 0

FDR control α given, find bt = btα with ∀P ∈ P, FDR(bt, P) ≤ α, If FDR ≤ 0.05: I if 20 rejections, allow at most 1 false discovery (on average) I if 1000 rejections, allow at most 50 false discoveries (on average) Etienne Roquain

Contributions to multiple testing theory

Introduction

13 / 37

BH procedure

[Benjamini and Hochberg, 1995]

`b = max{0 ≤ ` ≤ m : p(`) ≤ α`/m}

with

1.0

bt = α(`b ∨ 1)/m

● ● ● ● ●

● ●

● ●

0.8

● ● ●

● ●

0.6









0.4

● ● ● ● ● ● ● ● ● ●

● ●

● ●

Noncorrected

0.2

● ● ● ● ● ● ●

0.0

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

● ●

20

Etienne Roquain

● ● ● ● ● ● ● ● ● ● ● ● ● ●



● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

BH

● ● ● ●

Bonferroni

40

60

Contributions to multiple testing theory

80

100

Introduction

14 / 37

1.0

FDR(BH) illustration, α = 0.2, m = 100 FDP = 0.14

00 0000

0.8

0 0 0 000 0 0

0.2

0.4

0.6

00

0.0

0

0

0

0

0

20

Etienne Roquain

0

0 00

0 00 0000 0

0 00 00 0 00 00

000 0 0

0

00

40

60

Contributions to multiple testing theory

80

100

Introduction

15 / 37

1.0

FDR(BH) illustration, α = 0.2, m = 100 FDP = 0

0.8

0 00 000

0 00 000 00

0.4

0.6

0 0 0 000 00 00 00 0

0.2

00

0 00

0

00 0 0 0 0 0 0

00 00 0 00

0.0

0 0

0

20

Etienne Roquain

40

60

Contributions to multiple testing theory

80

100

Introduction

15 / 37

1.0

FDR(BH) illustration, α = 0.2, m = 100 FDP = 0.19

0

0.4

0.6

0.8

00

00 0000 00 0

0 0 000

00 00 00 0

00

0 00 0 00 0 00 0

0.2

0 00 0 0 0

0.0

0 0

0

000

20

Etienne Roquain

0 0

0

40

60

Contributions to multiple testing theory

80

100

Introduction

15 / 37

1.0

FDR(BH) illustration, α = 0.2, m = 100

0.6

0.8

FDP = 0.094

0 000

0 00

000

00 0 0000 00 000 0

0.4

0 0000 0 0 000 000

0.2

0

0.0

0 00 00 0

0

0

0

20

Etienne Roquain

00

0 00

40

60

Contributions to multiple testing theory

80

100

Introduction

15 / 37

1.0

FDR(BH) illustration, α = 0.2, m = 100 FDP = 0.18

0.6

0.8

00 000 0 0

0.4

0 000

0.2

0 000 0 00 0

0

000 000 0 000 0 0 0 00 0 000

00 0

0.0

000 0

0

0 00

20

Etienne Roquain

0

40

60

Contributions to multiple testing theory

80

100

Introduction

15 / 37

FDR control for BH Theorem [Benjamini and Hochberg (1995)] [Benjamini and Yekutieli (2001)] Assume I pi ∼ U(0, 1) for θi = 0 I (pi , 1 ≤ i ≤ m) are mutually indep for any P ∈ P. Then for all P ∈ P, FDR(BHα , P) = π0 α ≤ α for π0 proportion of zeros in θ(P). Many extensions (weighting, step-up-down, PRDS) with devoted proofs Blanchard and R. (2008). Two simple sufficient conditions for FDR control. EJS. Blanchard, Delattre and R. (2014). Testing over a continuum of null hypotheses[...]. Bernoulli. Picard, R., Fougeres, Reynaud-Bouret. Comparing Poisson Proc. intensities by continuous testing. Soon.

Etienne Roquain

Contributions to multiple testing theory

Introduction

16 / 37

FDR control for BH Theorem [Benjamini and Hochberg (1995)] [Benjamini and Yekutieli (2001)] Assume I pi ∼ U(0, 1) for θi = 0 I (pi , 1 ≤ i ≤ m) are mutually indep for any P ∈ P. Then for all P ∈ P, FDR(BHα , P) = π0 α ≤ α for π0 proportion of zeros in θ(P). Many extensions (weighting, step-up-down, PRDS) with devoted proofs Blanchard and R. (2008). Two simple sufficient conditions for FDR control. EJS. Blanchard, Delattre and R. (2014). Testing over a continuum of null hypotheses[...]. Bernoulli. Picard, R., Fougeres, Reynaud-Bouret. Comparing Poisson Proc. intensities by continuous testing. Soon.

Etienne Roquain

Contributions to multiple testing theory

Introduction

16 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

17 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

18 / 37

Adaptation to π0 FDR(BHα ) = π0 α ≤ α If π0 is known: for ϑ = (π0 )

gap if π0 not close to 1

−1

FDR(BHϑα ) = π0 (ϑα) = α but ϑ = (π0 )−1 often unknown. b If π0 is unknown: data-driven procedure BHϑα b for ϑ “estimating" ϑ such that I FDR(BHϑα b )≤α I BHϑα b making more discoveries Many work [Schweder and Spjøtvoll (1982)], [...], [Benjamini et al. (2006)] Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR.

(1 − α)m ϑb = Pm i=1 1{pi > α} + 1 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

19 / 37

Adaptation to π0 FDR(BHα ) = π0 α ≤ α

gap if π0 not close to 1

−1

If π0 is known: for ϑ = (π0 )

FDR(BHϑα ) = π0 (ϑα) = α but ϑ = (π0 )−1 often unknown. b If π0 is unknown: data-driven procedure BHϑα b for ϑ “estimating" ϑ such that I FDR(BHϑα b )≤α I BHϑα b making more discoveries Many work [Schweder and Spjøtvoll (1982)], [...], [Benjamini et al. (2006)] Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR.

(1 − α)m ϑb = Pm i=1 1{pi > α} + 1 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

19 / 37

Adaptation to π0 FDR(BHα ) = π0 α ≤ α

gap if π0 not close to 1

−1

If π0 is known: for ϑ = (π0 )

FDR(BHϑα ) = π0 (ϑα) = α but ϑ = (π0 )−1 often unknown. b If π0 is unknown: data-driven procedure BHϑα b for ϑ “estimating" ϑ such that I FDR(BHϑα b )≤α I BHϑα b making more discoveries Many work [Schweder and Spjøtvoll (1982)], [...], [Benjamini et al. (2006)] Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR.

(1 − α)m ϑb = Pm i=1 1{pi > α} + 1 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

19 / 37

Adaptation to π0 FDR(BHα ) = π0 α ≤ α

gap if π0 not close to 1

−1

If π0 is known: for ϑ = (π0 )

FDR(BHϑα ) = π0 (ϑα) = α but ϑ = (π0 )−1 often unknown. b If π0 is unknown: data-driven procedure BHϑα b for ϑ “estimating" ϑ such that I FDR(BHϑα b )≤α I BHϑα b making more discoveries Many work [Schweder and Spjøtvoll (1982)], [...], [Benjamini et al. (2006)] Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR.

(1 − α)m ϑb = Pm i=1 1{pi > α} + 1 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

19 / 37

Some contributions for adaptive control Gaussian model: X ∼ P = N (µ, Γ), testing µi = 0 (≤ 0) against µi 6= 0 (> 0) I Adapt. to unknown ϑ = π0−1 for FDR and Γ = Im or equi Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR. ⇒ Control

I Adapt. to unknown ϑ = Γ for FWER Arlot et al. (2010a), (2010b). AoS. ⇒ Control; gap

I Adapt. to known ϑ = Γ for quantile of FDP Delattre and R. (2015). New procedures controlling FDP [...]. AoS. ⇒ Control; gap

I Adapt. to known ϑ = µ for FDR and Γ = Im R. and van de Wiel (2009). Optimal weighting for FDR control. EJS. ⇒ Control and optimality Perf(Rϑ , P) ' maxR∈WBH {Perf(R, P)}

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

20 / 37

Some contributions for adaptive control Gaussian model: X ∼ P = N (µ, Γ), testing µi = 0 (≤ 0) against µi 6= 0 (> 0) I Adapt. to unknown ϑ = π0−1 for FDR and Γ = Im or equi Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR. ⇒ Control

I Adapt. to unknown ϑ = Γ for FWER Arlot et al. (2010a), (2010b). AoS. ⇒ Control; gap

I Adapt. to known ϑ = Γ for quantile of FDP Delattre and R. (2015). New procedures controlling FDP [...]. AoS. ⇒ Control; gap

I Adapt. to known ϑ = µ for FDR and Γ = Im R. and van de Wiel (2009). Optimal weighting for FDR control. EJS. ⇒ Control and optimality Perf(Rϑ , P) ' maxR∈WBH {Perf(R, P)}

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

20 / 37

Some contributions for adaptive control Gaussian model: X ∼ P = N (µ, Γ), testing µi = 0 (≤ 0) against µi 6= 0 (> 0) I Adapt. to unknown ϑ = π0−1 for FDR and Γ = Im or equi Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR. ⇒ Control

I Adapt. to unknown ϑ = Γ for FWER Arlot et al. (2010a), (2010b). AoS. ⇒ Control; gap

I Adapt. to known ϑ = Γ for quantile of FDP Delattre and R. (2015). New procedures controlling FDP [...]. AoS. ⇒ Control; gap

I Adapt. to known ϑ = µ for FDR and Γ = Im R. and van de Wiel (2009). Optimal weighting for FDR control. EJS. ⇒ Control and optimality Perf(Rϑ , P) ' maxR∈WBH {Perf(R, P)}

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

20 / 37

Some contributions for adaptive control Gaussian model: X ∼ P = N (µ, Γ), testing µi = 0 (≤ 0) against µi 6= 0 (> 0) I Adapt. to unknown ϑ = π0−1 for FDR and Γ = Im or equi Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR. ⇒ Control

I Adapt. to unknown ϑ = Γ for FWER Arlot et al. (2010a), (2010b). AoS. ⇒ Control; gap

I Adapt. to known ϑ = Γ for quantile of FDP Delattre and R. (2015). New procedures controlling FDP [...]. AoS. ⇒ Control; gap

I Adapt. to known ϑ = µ for FDR and Γ = Im R. and van de Wiel (2009). Optimal weighting for FDR control. EJS. ⇒ Control and optimality Perf(Rϑ , P) ' maxR∈WBH {Perf(R, P)}

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

20 / 37

Some contributions for adaptive control Gaussian model: X ∼ P = N (µ, Γ), testing µi = 0 (≤ 0) against µi 6= 0 (> 0) I Adapt. to unknown ϑ = π0−1 for FDR and Γ = Im or equi Blanchard and R. (2008). Adaptive FDR control under indep. and dep. JMLR. ⇒ Control

I Adapt. to unknown ϑ = Γ for FWER Arlot et al. (2010a), (2010b). AoS. ⇒ Control; gap

I Adapt. to known ϑ = Γ for quantile of FDP Delattre and R. (2015). New procedures controlling FDP [...]. AoS. ⇒ Control; gap

I Adapt. to known ϑ = µ for FDR and Γ = Im R. and van de Wiel (2009). Optimal weighting for FDR control. EJS. ⇒ Control and optimality Perf(Rϑ , P) ' maxR∈WBH {Perf(R, P)}

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

20 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

21 / 37

Copy number alterations (CNA) in cancer cells

Normal cells

Tumour cells

CNA is useful to study various type of cancers

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

22 / 37

Data: [Chin et al. (2006)] I Preprocessing: 0 normal ; −1 deletion ; 1 amplification Tissue 1 (ER-)

Tissue 2 (ER+)

region1 region2 region3 region4 region5 region6 region7 region8 region9

0 1 -1 0 0 0 0 0 1 -1 0 0 0 0

0 -1 0 0 -1 -1 0 0 -1 0 0 1 -1 0

1 0 1 0 0 0 0 1 1 1 0 0 0 -1

1 0 0 0 0 1 1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 0 -1 1 1

1 0 1 0 0 0 0 1 0 1 1 0 0 0

-1 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 1

0 -1 0 0 -1 -1 -1 0 -1 0 0 -1 -1 -1

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 -1 -1 0 0 0 0 -1 -1 -1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 -1 1

0 1 0 0 0 0 0 0 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 -1 1

-1 -1 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1

0 0 1 1 1 0 0 0 0 1 1 1 0 0

0 -1 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 -1 -1 -1 0 0 0 0 -1 -1 -1 0 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

regionm

-1 -1

1 0

1 0

1 1

1 1

1 1

-1 -1

-1 -1

0 0

0 0

0 0

0 0

0 0

1 1

0 -1

0 0

0 0

0 0

I Finding regions that are different between samples?

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

23 / 37

Data: [Chin et al. (2006)] I Correlations:

I Entities to be tested? Clusters or regions ? Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

23 / 37

New approach I Clustering algorithm region1 region2

0 1

0 -1

1 0

1 0

1 1

1 0

-1 1

0 -1

0 0

0 0

0 0

0 0

0 1

1 1

-1 -1

0 0

0 -1

0 0

region3 region4 region5

-1 0 0

0 0 -1

1 0 0

0 0 0

1 1 1

1 0 0

-1 -1 1

0 0 -1

1 0 0

0 0 0

-1 -1 -1

0 0 0

0 0 0

1 1 1

0 0 0

1 1 1

0 0 0

-1 -1 -1

region6

0

-1

0

1

1

0

1

-1

0

0

0

0

0

1

-1

0

0

0

region7 region8 region9

0 0 1 -1 0

0 0 -1 0 0

0 1 1 1 0

1 1 0 0 0

1 1 1 1 0

0 1 0 1 1

1 -1 1 -1 -1

-1 0 -1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 -1 -1

0 0 0 0 0

0 0 1 0 0

1 1 1 1 1

-1 -1 -1 0 0

0 0 0 1 1

0 0 -1 0 0

0 0 0 -1 -1

0 0 0

1 -1 0

0 0 -1

0 1 1

-1 1 1

0 0 0

1 1 1

-1 -1 -1

0 0 0

0 0 0

-1 0 1

0 -1 1

0 0 0

1 -1 1

0 -1 -1

1 0 0

0 0 0

-1 0 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

regionm

-1 -1

1 0

1 0

1 1

1 1

1 1

-1 -1

-1 -1

0 0

0 0

0 0

0 0

0 0

1 1

0 -1

0 0

0 0

0 -1

I FWER for regions ∪ clusters Kim, R., van de Wiel (2010). Spatial clustering of array CGH features [...]. SAGMB.

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

24 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

25 / 37

Data: [Hedenfalk et al. (2001)]

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

26 / 37

Data: [Hedenfalk et al. (2001)] Factor model

Etienne Roquain

Xi = µi +

P

h

Wh ci,h + ξi

[Friguet et al. (2009)]

Contributions to multiple testing theory

Adaptive procedures

26 / 37

Data: [Hedenfalk et al. (2001)] Known equi-correlation

Etienne Roquain

Xi = µi + W + ξi

Contributions to multiple testing theory

Adaptive procedures

26 / 37

p-values under Gaussian equi-correlation

0 00 0 00000

000000000000000000000

000 0000000 000 000 00000

W = −1

0.8

0.8

1.0

000

0000 0 0 000 0 00

000 00

00

00 00 000

0.6

00

0.4

0

0.2

0.8

000 0 000 00

W = −2

0.6

0

0.4

W= 0

0.2

1.0

1.0

Xi = µi + W + ξi ,

0 0 00

0 000 0000

00

1.0

0.4

20

40

60

80

100

0

1.0

0

000

00 0

0.0

0.0

0.6

00 0 00 0000 00

W= 1

20

40

60

80

100

W= 2

20

60

80

100

0.4

0

0000 0 00 00 0 000 0000

0

20

40

00 0000000

60

0.2

0.2

40

0.6

0.8 0.6 0.4

00 00 00 00 0 00000 000 000

0.0

0

0

0 00

0.0

0.2 0.0

00 0 00

0000 00 0 00 0 00

0.8

00 00 00 000

80

100

0 00 00 0 000 00000000 0000000 00 000

0

20

40

60

0 00 0000 00 000 00000000

80

100

c = X(1) − E(ξ(1) ) I W c is ≤ C/(log m) I Max risk W I Minimax risk ≥ c/(log m)5 Etienne Roquain

Contributions to multiple testing theory

Delattre and R. Soon. Adaptive procedures

27 / 37

p-values under Gaussian equi-correlation

100

60

0.0

60

80

100

80

100

0 000 0000 00 000 00 0000 00

W= 2

000 00 00 00 000 0 000 000 00 0 00

0

40

40

0.4

00

What = 1.6 20

20

0.2

0 000 000 00 0 00

0

What = −0.41 0

0.6

000 00

00

00

00

00

What = 2.6

0.0

80

100

0 000 0000 00 000 00 0000 00

0.0

60

0.6 80

00 00 000

0.2

0.0

40

0.4

60

W= 1

0

20

40

1.0

20

0.6

00

0 0 00 00

0 000 0000

0.8

0.0 1.0

0 000 0000

000 00 00 00 000

0

What = −1.4 0

What = 0.59 0

00

0.4

0.2

00

0 000 0000

0.8

0.4

00 00 000

0

00

000 00 0000 00

0.2

0 0 00

0

00

0 000 0000 00

W = −1

0.8

0.8

000 00 00 00 000

0.2

000

0.6

000 00 0000 00

0.4

0.8

000 00 0000 00

0 0 00

0 000 0000 00

W = −2

0.6

1.0

0 000 0000 00

W= 0

1.0

c = µi + W − W c + ξi , Xi − W 1.0

Xi = µi + W + ξi ,

0

20

40

60

80

100

c = X(1) − E(ξ(1) ) I W c is ≤ C/(log m) I Max risk W I Minimax risk ≥ c/(log m)5 Etienne Roquain

Contributions to multiple testing theory

Delattre and R. Soon. Adaptive procedures

27 / 37

p-values under Gaussian equi-correlation

100

60

0.0

60

80

100

80

100

0 000 0000 00 000 00 0000 00

W= 2

000 00 00 00 000 0 000 000 00 0 00

0

40

40

0.4

00

What = 1.6 20

20

0.2

0 000 000 00 0 00

0

What = −0.41 0

0.6

000 00

00

00

00

00

What = 2.6

0.0

80

100

0 000 0000 00 000 00 0000 00

0.0

60

0.6 80

00 00 000

0.2

0.0

40

0.4

60

W= 1

0

20

40

1.0

20

0.6

00

0 0 00 00

0 000 0000

0.8

0.0 1.0

0 000 0000

000 00 00 00 000

0

What = −1.4 0

What = 0.59 0

00

0.4

0.2

00

0 000 0000

0.8

0.4

00 00 000

0

00

000 00 0000 00

0.2

0 0 00

0

00

0 000 0000 00

W = −1

0.8

0.8

000 00 00 00 000

0.2

000

0.6

000 00 0000 00

0.4

0.8

000 00 0000 00

0 0 00

0 000 0000 00

W = −2

0.6

1.0

0 000 0000 00

W= 0

1.0

c = µi + W − W c + ξi , Xi − W 1.0

Xi = µi + W + ξi ,

0

20

40

60

80

100

c = X(1) − E(ξ(1) ) I W c is ≤ C/(log m) I Max risk W I Minimax risk ≥ c/(log m)5 Etienne Roquain

Contributions to multiple testing theory

Delattre and R. Soon. Adaptive procedures

27 / 37

p-values under Gaussian equi-correlation

100

60

0.0

60

80

100

80

100

0 000 0000 00 000 00 0000 00

W= 2

000 00 00 00 000 0 000 000 00 0 00

0

40

40

0.4

00

What = 1.6 20

20

0.2

0 000 000 00 0 00

0

What = −0.41 0

0.6

000 00

00

00

00

00

What = 2.6

0.0

80

100

0 000 0000 00 000 00 0000 00

0.0

60

0.6 80

00 00 000

0.2

0.0

40

0.4

60

W= 1

0

20

40

1.0

20

0.6

00

0 0 00 00

0 000 0000

0.8

0.0 1.0

0 000 0000

000 00 00 00 000

0

What = −1.4 0

What = 0.59 0

00

0.4

0.2

00

0 000 0000

0.8

0.4

00 00 000

0

00

000 00 0000 00

0.2

0 0 00

0

00

0 000 0000 00

W = −1

0.8

0.8

000 00 00 00 000

0.2

000

0.6

000 00 0000 00

0.4

0.8

000 00 0000 00

0 0 00

0 000 0000 00

W = −2

0.6

1.0

0 000 0000 00

W= 0

1.0

c = µi + W − W c + ξi , Xi − W 1.0

Xi = µi + W + ξi ,

0

20

40

60

80

100

c = X(1) − E(ξ(1) ) I W c is ≤ C/(log m) I Max risk W I Minimax risk ≥ c/(log m)5 Etienne Roquain

Contributions to multiple testing theory

Delattre and R. Soon. Adaptive procedures

27 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

28 / 37

BHα adapts to the signal X ∼ N (µ, Im ) Strong signal strength

X

µ

Low signal strength

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

29 / 37

BHα adapts to the signal Low signal strength

Bonf. Etienne Roquain

BH

Uncorr.

Strong signal strength

Bonf.

Contributions to multiple testing theory

BH

Uncorr. Adaptive procedures

29 / 37

BHα useful outside multiple testing? I X ∼ N (µ, Im ) ˆ θ) I Inference on θ = ψ(µ), for some risk R(θ,

1

Estimation: θ = µ,

θbBH = Xi 1{pi ≤ bt}

[Abramovich et al. (2006)], [Donoho and Jin (2006)] 2

Classification. θi = 1{µi 6= 0}, θˆiBH = 1{pi ≤ bt} [Bogdan et al. (2011)] Neuvial and R. (2012). On FDR thresholding for classification under sparsity. AoS.

ˆ θ) as m → ∞ R(θˆBH , θ) ' infθˆ R(θ, for all θ ∈ Θsparse,m ensuring π0 ∼ 1 − m−β

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

30 / 37

BHα useful outside multiple testing? I X ∼ N (µ, Im ) ˆ θ) I Inference on θ = ψ(µ), for some risk R(θ,

1

Estimation: θ = µ,

θbBH = Xi 1{pi ≤ bt}

[Abramovich et al. (2006)], [Donoho and Jin (2006)] 2

Classification. θi = 1{µi 6= 0}, θˆiBH = 1{pi ≤ bt} [Bogdan et al. (2011)] Neuvial and R. (2012). On FDR thresholding for classification under sparsity. AoS.

ˆ θ) as m → ∞ R(θˆBH , θ) ' infθˆ R(θ, for all θ ∈ Θsparse,m ensuring π0 ∼ 1 − m−β

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

30 / 37

BHα useful outside multiple testing? I X ∼ N (µ, Im ) ˆ θ) I Inference on θ = ψ(µ), for some risk R(θ,

1

Estimation: θ = µ,

θbBH = Xi 1{pi ≤ bt}

[Abramovich et al. (2006)], [Donoho and Jin (2006)] 2

Classification. θi = 1{µi 6= 0}, θˆiBH = 1{pi ≤ bt} [Bogdan et al. (2011)] Neuvial and R. (2012). On FDR thresholding for classification under sparsity. AoS.

ˆ θ) as m → ∞ R(θˆBH , θ) ' infθˆ R(θ, for all θ ∈ Θsparse,m ensuring π0 ∼ 1 − m−β

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

30 / 37

BHα useful outside multiple testing? I X ∼ N (µ, Im ) ˆ θ) I Inference on θ = ψ(µ), for some risk R(θ,

1

Estimation: θ = µ,

θbBH = Xi 1{pi ≤ bt}

[Abramovich et al. (2006)], [Donoho and Jin (2006)] 2

Classification. θi = 1{µi 6= 0}, θˆiBH = 1{pi ≤ bt} [Bogdan et al. (2011)] Neuvial and R. (2012). On FDR thresholding for classification under sparsity. AoS.

ˆ θ) as m → ∞ R(θˆBH , θ) ' infθˆ R(θ, for all θ ∈ Θsparse,m ensuring π0 ∼ 1 − m−β

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

30 / 37

BHα as a classifier: setting Model: (Xi , θi ) ∈ R × {0, 1}, m i.i.d. random pairs (i) we observe X1 , . . . , Xm and not the “labels” θ1 , . . . , θm ; (ii) D(X1 | θ1 = 0) = N (0, 1), D(X1 | θ1 = 1) = N (∆, 1) Risk for a classifier θb ∈ {0, 1}m ,   m X b θ) = E m−1 R(θ, 1{θbi 6= θi } /(1 − π0 ) i=1

Procedures: I Bayes rule θb? (β, ∆) that minimizes R I BH rules θˆBH decides 1 if rejected 0 otherwise Assumptions: I (Sparsity) π0 = P(θ1 = 0) ∼ 1 − m−β , β ∈ (0, 1) I (Bayes pow) power of θb? (β, ∆) non trivial ⇒ ∆ ∼ (2β log m)1/2 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

31 / 37

BHα as a classifier: setting Model: (Xi , θi ) ∈ R × {0, 1}, m i.i.d. random pairs (i) we observe X1 , . . . , Xm and not the “labels” θ1 , . . . , θm ; (ii) D(X1 | θ1 = 0) = N (0, 1), D(X1 | θ1 = 1) = N (∆, 1) Risk for a classifier θb ∈ {0, 1}m ,   m X b θ) = E m−1 R(θ, 1{θbi 6= θi } /(1 − π0 ) i=1

Procedures: I Bayes rule θb? (β, ∆) that minimizes R I BH rules θˆBH decides 1 if rejected 0 otherwise Assumptions: I (Sparsity) π0 = P(θ1 = 0) ∼ 1 − m−β , β ∈ (0, 1) I (Bayes pow) power of θb? (β, ∆) non trivial ⇒ ∆ ∼ (2β log m)1/2 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

31 / 37

BHα as a classifier: setting Model: (Xi , θi ) ∈ R × {0, 1}, m i.i.d. random pairs (i) we observe X1 , . . . , Xm and not the “labels” θ1 , . . . , θm ; (ii) D(X1 | θ1 = 0) = N (0, 1), D(X1 | θ1 = 1) = N (∆, 1) Risk for a classifier θb ∈ {0, 1}m ,   m X b θ) = E m−1 R(θ, 1{θbi 6= θi } /(1 − π0 ) i=1

Procedures: I Bayes rule θb? (β, ∆) that minimizes R I BH rules θˆBH decides 1 if rejected 0 otherwise Assumptions: I (Sparsity) π0 = P(θ1 = 0) ∼ 1 − m−β , β ∈ (0, 1) I (Bayes pow) power of θb? (β, ∆) non trivial ⇒ ∆ ∼ (2β log m)1/2 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

31 / 37

BHα as a classifier: setting Model: (Xi , θi ) ∈ R × {0, 1}, m i.i.d. random pairs (i) we observe X1 , . . . , Xm and not the “labels” θ1 , . . . , θm ; (ii) D(X1 | θ1 = 0) = N (0, 1), D(X1 | θ1 = 1) = N (∆, 1) Risk for a classifier θb ∈ {0, 1}m ,   m X b θ) = E m−1 R(θ, 1{θbi 6= θi } /(1 − π0 ) i=1

Procedures: I Bayes rule θb? (β, ∆) that minimizes R I BH rules θˆBH decides 1 if rejected 0 otherwise Assumptions: I (Sparsity) π0 = P(θ1 = 0) ∼ 1 − m−β , β ∈ (0, 1) I (Bayes pow) power of θb? (β, ∆) non trivial ⇒ ∆ ∼ (2β log m)1/2 Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

31 / 37

BHα as a classifier: result Theorem (non-asymptotic)

[Neuvial and R. (2012)]

d(0) −1 opt For αm ∈ (0, 1/2), for any m ≥ 2 such that (2 log τm )1/2 ≥ (log(αm /qm ) − log(νπ0,m (1 − ε))), we have Cm (1−ν) 0 BH ? R(θˆm , θ) − R(θˆm , θ) ≤ @

+

αm

+ d(0)

1 − αm αm /(mπ1,m ) (1 − αm )2

1 −1 opt (log(αm /qm ) − log(νπ0,m (1 − ε)))+ A (2 log τm )1/2

+e

−mπ1,m νε2 Cm /4

,

opt opt where qm = 1/αm − 1 > 1, τm = π0,m /π1,m > 1, ε, ν ∈ (0, 1).

Corollary (asymptotic)

[Neuvial and R. (2012)]

For θ satisfying (Sparsity) (Bayes pow), choosing αm ∝ 1/(log m)1/2 ensures    1 BH ? ˆ ˆ R(θ , θ) = R(θ , θ) 1 + O . (log m)1/2

Etienne Roquain

Contributions to multiple testing theory

Adaptive procedures

32 / 37

BHα as a classifier: illustration m = 1282 , π0 = 1 − m−β , ∆ = (log m)1/2 , α = 0.2 MISCEr= 0.358

MISCEr= 0.354

MISCEr= 3.53

MISCEr= 0.871

MISCEr= 0.531

MISCEr= 0.543

MISCEr= 9.24

MISCEr= 0.876

MISCEr= 0.636

MISCEr= 0.636

MISCEr= 24.3

MISCEr= 0.8

MISCEr= 0.711

MISCEr= 0.689

MISCEr= 74.1

β = 0.6

β = 0.5

β = 0.4

β = 0.3

MISCEr= 0.869

Bonf. Etienne Roquain

BH

Bayes

Contributions to multiple testing theory

Uncorr. Adaptive procedures

33 / 37

1 Introduction

Motivation Setting Classical results

2 Adaptive procedures

Adaptive control Adaptive error rate Adaptive p-values Adaptive classification

3 Outlook

Etienne Roquain

Contributions to multiple testing theory

Outlook

34 / 37

FDR revolution Benjamini and Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to

2000

2500

multiple testing

1500

GENETICS HEREDITY

1000

BIOTECHNOLOGY APPLIED MICROBIOLOGY

NEUROSCIENCES NEUROLOGY

BIOCHEMISTRY MOLECULAR BIOLOGY

OTHERS

500

COMPUTER SCIENCE MATHEMATICS

ENVIRONMENTAL SCIENCES ECOLOGY ONCOLOGY MATHEMATICAL COMPUTATIONAL BIOLOGY

0

SCIENCE TECHNOLOGY OTHER TOPICS

1996

1999

2002

2005

2008

2011

Figure: 13,427 papers citing this work (1996-2013) according to "the web of science".

Etienne Roquain

Contributions to multiple testing theory

Outlook

35 / 37

Future research Co-supervising: I Marine Roux: FDR control for two-sided test statistics I Guillermo Durand: data driven weighting Other ’hot’ topics: I Correcting p-values in factor model I False positive number in a user-designed set I Bayesian multiple testing procedures

Etienne Roquain

Contributions to multiple testing theory

Outlook

36 / 37

Thank you!

Etienne Roquain

Contributions to multiple testing theory

Outlook

37 / 37