Concentration Dependence of the Viscosity of Dilute Polymer ... .fr

7.91. Sodium polystyrene-. Z= 10"4M. 4480. 22.9. 233 sulfonate)-diallyldimethyl. Z=IO-3M. 2750. 2.51 ammonium chloride. Z= 10"2M. 1150. 0.39. Z = 0.5 M. 202.
1MB taille 152 téléchargements 410 vues
Concentration Dependence of the Viscosity of Dilute Polymer Solutions: Huggins and Schulz-Blaschke Constants Cl i f o rd K . S c h o f PPG Industre is, Inc. Asilon Park, PA, USA A. Introduction VII-265 B. Tables VII-266 Table 1. Huggins Constants VII-266 1.1. Poly(dienes) and Poly(alkenes) VII-266 1.2. Poly(acrylic acid) and Poly(methacrylic acid) Derivatives VII-268 1.3. Vinyl Polymers VII-272 1.4. Poly(oxides) VII-277 1.5. Poly(esters) VII-278 1.6. Polyamides VII-279 1.7. Other Compounds VII-280 1.8. Cellulose, Cellulose Derivatives, and Polysaccharides VII-282 Table 2. Schulz-Blaschke Constants VII-284 C. References VII-285 A.

INTRODUCTION

The dependence of the viscosity of dilute polymer solutions on concentration can be described by a power series: (Al) where 77 is the viscosity of the solution and 770 is the viscosity of the solvent. This equation is usually presented in another form:

(specific viscosity), can be put in the form (A4) which becomes the Huggins equation (1) (A5) where k^ is the Huggins viscosity constant that is the most commonly used dilute solution viscosity number or index. It is easily determined from the slope of a plot of 77sp/c versus c. The Huggins constant can be thought of as a measure of the "goodness" of the solvent for the polymer with values around 0.3 in good solvents and 0.5-1 in theta solvents. It should be noted that these generalizations break down with extremely dilute solutions (2) and with chain aggregation (3). In both cases, values tend to be higher. The Huggins constant is independent of molecular weight for many polymers, but is dependent on molecular weight for polymers that associate easily in solution (3). The Huggins equation and Huggins constants can be used to determine values for the limiting viscosity number, [77]. For extrapolation procedures related to [77] and k^, see (Ref. 4). Applications of the Huggins equation to measure [77] are given in Refs. (5,6). The latter gives an equation for [T?]: (A6)

(A2) where [77] is the limiting viscosity number and ki(k\,k2) • • •) is a dimensionless constant. If terms with the third and higher powers of concentration are neglected, then Eq. (A2) becomes (A3) which, since 77/770 = rjTG\ (viscosity ratio) and 77rei — 1 == Vsp

which can be used for single point determinations, i.e., calculating [77] from a single viscosity measurement at a known concentration. Computer programs relating solution viscosity and molecular parameters are found in Refs. (7,8). Other semiempirical equations, such as those of Kraemer and Schulz and Blaschke, also are used for processing viscosity data. The Kraemer equation (Ref. 9) is (A7)

where kk is the Kraemer constant. Sometimes, the term k^ [rj] c is written as positive and the constants are listed as negative numbers. The result is the same. The SchulzBlaschke equation (10) is (A8) Although few Schulz-Blaschke constants have been published, some investigators contend that the SchulzBlaschke equation is superior because it works with a wider range of concentrations and is not bound to a constant specific viscosity region (11). On the other hand, it is not recommended for single point determinations because of large errors (6). Huggins' and Kraemer's equations, used singly or in combined form, are better (6). In addition to the polymer-solvent system, Jc^ and ksb depend on concentration (whether semidilute, dilute, or extremely dilute), molecular weight, degree of branching, shear rate of measurement, and whether there can be preferential solvation (copolymers and mixed solvents). With polymers in good solvents, measured values for the Huggins constant are between 0.3 and 0.4. In some cases, they are even lower (2). With decreasing goodness of the solvent, the Huggins constant increases steadily, reaching 0.55 or more for theta conditions. Regarding concentration, deGennes (12) has defined a critical concentration, c*, above which solutions are semidilute and below which they are dilute. Most k^ and A:sb values have been measured in the dilute region. Dondos (2) has defined another critical concentration, c**, below which the solution is called extremely dilute. Values for &h measured below c** tend to be higher than those measured between c* and c**. It is interesting that Peterson and Fixman (13) predicted higher values for Huggins constants except for those below c**. It may be that the low values in the dilute region are due to polymer coil compression because of lack of sufficient volume (2). The Huggins constant is not supposed to be dependent on the molecular weight of the polymer. In many cases, it is not (14-18), or the dependence is small (14,19,20), but other results show definite molecular weight dependence

(3,21). It appears that the Huggins constant is related to molecular weight in polymers that associate in solution, either by the effect of strong ionic or polar interactions, or by the effect of hydrogen bonds (3). There is a relationship between fch and the coil expansion factor or coefficient of expansion, a, which is a measure of the extent of the expansion of the polymer coil in a particular solvent. In good solvents, the coil is more extended than in poor solvents and a is correspondingly larger. The Huggins constant seems to vary with a3 (3,14,22,23). One expression for this is (Ref. 23) (A9) Although there is no agreement in the literature as regards the influence of branching on viscosity constants, most results indicate that k^ and /csb increase with higher degrees of branching (24-26). There is no agreement on the effect of shearing on viscosity constants either, the literature indicating both increases (27) and decreases (28) with increasing shear rate. Shearing that produced chain scission lowered the limiting viscosity number [77] and raised >th, and did so more at higher shear rates, although there was a tendency toward stabilization at the highest shear rates (29). The influence of shear rate is usually neglected below 1500 sec ~J (H). Huggins constants also can be determined for dilute suspensions. The £h value for such a suspension is sensitive to the degree and nature of the polydispersity of the specimen (30). The following tables contain Huggins and SchulzBlaschke constants taken from the literature, along with the relevant references. The values are listed by limiting viscosity number [77], the units of which are ml/g. Values marked with an asterisk (*) are interpolated values from the literature (mostly mean values calculated by Stickler and Sutterlin (H)). For information on molecular weight and other factors, as well as conditions of measurement not given in the tables, the reader may refer to the original publications.

B. TABLES TABLE 1. HUGGINS CONSTANTS Polymer

Solvent

T( 0 C)

Remarks

[tj]

kh

Refs.

1.1. POLY(DIENES) AND POLY(ALKENES) Poly(l,3-butadiene), cis

Toluene Phenyloctane Dioctyl phthalate

Poly(isoprene) cis Poly(isoprene) stars

Toluene Cyclohexane

25 25 50 16.5 21.5 25 25

Three-armed stars Four-armed stars Three-armed stars Four-armed stars

451 447 147 162

0.46 0.46 0.95 0.77

35.4 37.6 185 195

0.33 0.35 0.4 0.46

31 32

31 33

TABLE 1. cont'd Solvent

T( 0 C)

Toluene 1,4-Dioxane Toluene 1,4-Dioxane Benzene n-Hexane Tetrahydrofuran

34 34 34 34 30 30 25?

Gutta percha Poly(chloroprene)

Toluene Benzene

25 25

Poly(ethylene)

Tetralin /7-Xylene

80 100

Low pressure

Tetralin p-Xylene

80 81

Low pressure Low pressure

p-Xylene Benzene

81 105 20

High pressure High pressure

Polymer

Natural rubber Natural rubber (epoxidized)

Poly(isobutene)

Remarks Chlorosilane-linked stars Divinylbenzene-linked stars

1% Epoxy 9.5% Epoxy 18% Epoxy

24 25 30

Poly(isobutene)

Carbon tetrachloride Chlorobenzene Cyclohexane

40 30 25 25

Cyclohexane

30

Cyclohexane

30

Dibutyl ether Diisobutylene Heptane Isooctane

25 25 25 30

30

Poly(propylene)

Ref. also includes data for 10 20, 40, 50C

Mv - (16-926) x 103 Ref. also includes data for 10, 20, 40, 50C; only small variation in k across range Ref. also includes data for 20, 40 C; only small variation in k across range

Tetrachioroethane Tetradecane Toluene Benzene

25 25 25 30

Atactic

Carbon tetrachloride Chlorobenzene Chloroform

50 30 30

Atactic Atactic Atactic

fa]

kh

Refs.

14-780 14-164 82-195 30-70.5 354 170 415 218 30

0.35-0.88 0.63-9.2 0.50-1.02 0.71-1.19 0.32 0.35 0.84 0.43 4.27

10 30-120 150 200

0.58* 0.34 ±0.06* 0.43 0.52*

38 97 327

0.71 0.45 0.69

35 71 141 153 159

0.38 0.27 0.39 0.65 0.89

24 107 128 27 100 183 30 100 240 30-320 14-42 155 19 54 384 309 484 29 84 261 389 165

0.54 0.87 0.49* 0.49 0.59 0.7 0.49* 0.57* 0.70* 0.42 * db 0.02 0.36 0.36 0.38 ± 0.02 0.35 ±0.04 0.30 ±0.01 0.32 0.19 0.41 0.34 0.33 0.31 0.33 0.40 ±0.05 0.3 0.57 0.43 0.37 0.42 0.94 0.58 0.47 0.27 0.33 0.36 0.43 0.42 0.42 0.25 0.33 0.31

185 22 56 157 219 8.4 16.7 35.7 276 189 171 30 95 150 253 165 196

33 33 34 34 35 31 36

37 38,39 40 38,39

38,39 39,41 14 42 14 14 14 43 14 44 45 46

14 47 14 46

48 14 14 14 49 50 49 50 50 50

References page VII - 285

TABLE 1. cont'd Polymer

Solvent a-Chloronaphthalene Cyclohexane

T (0C)

Remarks

139 30

Atactic Atactic

60-70 30 135 30 30 34

Isotactic Atactic Isotactic Atactic Atactic Atactic

Toluene

30 30 30 130 30

Atactic Atactic Atactic Atactic Atactic

p-Xylene

125

Atactic

Decalin 2-Ethyl hexyl acetate n-Heptane Isoamyl acetate Isopropyl ether Tetrahydrofuran Tetralin

[i/]

kh

Refs.

45-330 276 277

0.27 db 0.02 0.24 0.36 0.25

120 205 26 65 98 156 176 155

0.38 0.34 0.45 0.65 0.83 0.36 0.32 0.36

30-120 190-220 180

0.36* ±0.02 0.40* ±0.03 0.35

20 150 240

0.35 0.25 0.25

70-190 157 106 134-296 170-245 309-342 239-711 117

0.3 0.4 0.28 0.31 0.31* 0.34 ±0.1 0.33 0.35

46-177

0.35

34 36 38 40 145 148 145 47 55 64 72 160 149 159 166 142 144 147 16-50

0.55 0.45 0.35 0.25 0.29 0.29 0.36 0.7 0.54 0.45 0.4 0.24 0.4 0.3 0.25 0.32 0.3 0.26 ~0.5to~~0.3

133 120-970 134

0.31 0.25-0.27 0.28

51 49 50 52 50 51 50 50 49 50 50 50 51 49 51 51

1.2. POLY(ACRYLIC ACID) AND POLY(METHACRYLIC ACID) DERIVATIVES Poly(acrylic acid)

Poly(acrylonitrile)

Poly(ethyl acrylate)

Water (0.1M NaCl) Water (0.25 M NaCl)

25 25

Dimethyl formamide

25 30

Acetone

Poly(decyl methacrylate)

Isooctane

Poly(ethyl methacrylate)

Benzene /i-Butanol

n-Butyl bromide

n-Butyl chloride Methyl acetate Ethyl acetate

40, 50, 60, 70 60 30 30 25

35 52 60 45 52 60 70 42 50 58 65 40 47 61 20-53 35 45 55 65

Degree of Degree of Degree of also for

neutr. = 0 neutr. = 0.3 neutr. = 0.76; data 5, 15, 35, 45 C

Telomers Ref. also includes data for 50, 75, 100 C

Conformational changes occurred in this range

53 54

55 56,57 55,58 59 60 59 56 61 60 62 63,64 65 66

67 67

67

67 68 67 69 67

TABLE 1. cont'd Polymer

Solvent

T(0C) 20-65

Isobutyl acetate

20-65

Isoamyl acetate

50 70 80 37 44 51 60 23-45 40 50-70 47

Isopropanol

Methyl ethyl ketone Methyl n-propyl ketone m-Xylene

Remarks Conformational changes occurred in this range Conformational changes occurred in this range

Water (0.1 M NaCl) Water (0.25 M NaCl)

25 25

Poly(methacrylonitrile)

Dimethyl formamide

29

Poly(methyl acrylate)

Acetone

30

Benzene

Carbon tetrachloride/ methanol Chlorobenzene Chloroform Ethyl acetate Methyl ethyl ketone

40 25 30 35 40 45, 55 35 25 30 35 40 30,35,40 25 30

Toluene

Poly (methyl methacrylate)

Acetone Benzene

35, 40 25 30 35 40 45 55 25 25? 20 25

Degree of neutr. = 0 Degree of neutr. = 0.1 Degree of neutr. = 0.3 Degree of neutr. = 0.81; also data for 5, 15, 35, 45 C Anionic

Vol. fraction of methanol: 0.33 ([77] maximum, k minimum)

kh

Refs.

12-48 ~ 0 . 4 5 t o ~ - 0 . 1 13-45 ~ 0.5 to ^ — 0.15 145 152 156 88 129 151 183 157-158 196 183-189 131

54 61 70 Poly(methacrylic acid)

[tj]

0.39 0.37 0.32 1.06 0.27 0.39 0.43 0.34-0.35 0.2 0.33 ±0.01 0.39

134 137 139

0.33 0.33 0.29

30 35 240 575

2.33 0.65 0.33 0.3

26 60-143 95-298 333 314 52-343 383 50-335 382 48-330 25-214

0.4 0.34* ±0.03 0.38 0.37 0.38 0.37 0.31 0.38 0.38 0.38 2.94 ±0.06

53-305 220 215 222 115-120 45 85 116 108 302 104 34-147 61 201 34-160 69 35-169 35-175

0.4 0.41 0.39 0.36 0.50 ±0.01 0.65 0.56 0.39 0.45 0.43 0.44 0.59 0.59 0.33 0.52

85 4 9.5 14 22 26-40 68-331 667

0.35 0.25 1.65* 0.69* 0.5 0.35 0.30* 0.25 ±0.01 0.18

68 68 67 67

67 67 67

53 54

70 71 72 72 71 72 71 72 71 73 71 74 74 75 73 72 73 71 73 72 71 73 71 71 7 ^ 82 77 78

References page VII - 285

TABLE 1. cont'd Polymer

Solvent

T( 0 C)

Remarks 90% Isotactic

Butyl acetate

25

90% Isotactic n-Butyl bromide Chloroform

Cyclohexanone Dimethyl formamide Ethyl acetate Isoamyl acetate Methyl ethyl ketone

Di-n-propyl ketone Tetrachloroethane Tetrahydrofuran Toluene

35 50 58 25

30,60 40, 60 50 70 25 25 50 65 80 25

30, 60 33.8 35-50 25 30 25

30 0-Xylene

m-Xylene

p-Xylene

Poly(hexyl methacrylate) Poly(heptyl methacrylate) Poly(octyl methacrylate) Poly(tetradecyl methacrylate)

w-Heptane rc-Heptane n-Heptane n-Heptane

60 40 50 60 70 40 50 60 70 40 50 60 70 30 30 30 30

Star-branched polymer

Star-branched polymer

[iy]

kh

Refs.

41 49-61 73-125 7 29 64 110 22 39 52 47 63 70 19 146 223-275 390 870 138, 152 146 136 56 53 36 44 47 7 27 56 137 151 172

0.39 0.33 0.3* ±0.03 0.9 0.67 0.58 0.47 0.67 0.61 0.57 0.5 0.41 0.35 0.32 0.25 0.38 0.22* 0.18 0.44 0.45 0.4 0.48 0.38 0.41 0.71 0.63 0.5 0.9 0.49 0.4 0.33 0.4 0.49

11.4 17

1.66* 1.48

101 24 40 9 24 55 83 229 414 37 80

0.29 0.161* 0.49* 0.63 0.46 0.41 0.33 0.25 0.23 0.43 ±0.04 0.41 ±0.03

68 72 76 81 55 62 71 80 42 48 59 64 31 45 64 58

0.34 0.21 0.32 0.27 0.48 0.67 0.55 0.35 1.31 1.26 0.93 0.47 0.5 0.44 0.45 0.32

14 78

14 67

79 80 67 14 82 14 67 78 14 78 75 80 81 78 14 81 78 14 78 44,80 80 67

67

67

83 83 83 83

TABLE 1. cont'd Polymer Poly(cyclobutyl methyl methacrylate)

Poly(cyclohexyl methyl methacrylate)

Poly(cyclooctyl methacrylate)

Solvent 1-Butanol

T( 0 C)

Remarks

40

Tetrahydrofuran

30

1-Butanol

45

Cyclohexane

30

Tetrahydrofuran

30

1-Hexanol

38

Cyclohexane

30

Tetrahydrofuran

30

Cyclohexane

30

Tetrahydrofuran

30

Toluene

25

M

kh

Refs.

13

1.49

20 36 22 57 142 10

1.16 1.33 0.36 0.31 0.3 0.74

17 41 17 54 91 16 35 105 10 16 23 17 38 25 76

0.81 0.62 0.18 0.43 0.31 0.52 0.35 0.36 0.94 1.46 1.77 0.26 0.39 0.4 0.37

9 18 36 9 17 36 19

0.69 0.49 0.38 0.7 0.55 0.37 0.4

95 230 13 39 73 22.6-98.0 34.0-88.4 33.9-54.1

0.34 0.35 0.76 0.73 0.61 0.42 0.41 0.61

11.6 24.7 28.2 13.5 16.5 18.5 23 62.7 13-42 22-87 14-23 29-155 29-148 33-178 11-111 11.0-99 11.0-98 10.0-91 11-133 11-111 9.0-64 10.0-87

0.79 0.47 0.52 0.32 0.55 0.45 0.41 0.37 1.25 0.48 1.17 0.42 0.43 0.36 0.34 0.33 0.35 0.35 0.29 0.3 0.4 0.33

84

84 84

84 84 84 84 84

Poly(cycloundecyl methacrylate)

Poly(diphenyl methyl methacrylate)

Poly(2,6-diisopropyl phenyl methacrylate) Poly(2,3-epoxypropyl methacrylate)

Poly(pentachlorophenyl methacrylate)

Poly(2-biphenyl methacrylate) Poly(4-biphenyl methacrylate)

3-Heptanone

45

Tetrahydrofuran Toluene Tetrahydrofuran/water (90.9/9.1, v/v) Tetrahydrofuran

25 25 25

1,4-Dioxane

25

Benzene Toluene Ethyl benzene oXylene Chlorobenzene 0-Dichlorobenzene Chloroform Tetrahydrofuran Benzene 1,4-Dioxane Chloroform Tetrahydrofuran Benzene 1,4-Dioxane

40 25 25 25 25 25 25 25 25 25 25 25 25 25

25

Theta solvent

84 84 85

85 224

86 86

87

88

89

References page VII - 285

TABLE 1. cont'd Solvent

T(0C)

Poly(di-isobornyl methacrylate)

Tetrahydrofuran 1-Octanol

30 39.6

Poly(acrylamide)

Water

25

Water (1M NaCl) Water (pH 7)

25 30

Poly(4-isopropyl styrene) Poly(4-isopropyl a-methyl styrene)

Toluene Toluene

25 21.5

Poly(styrene)

Benzene

25 25 25

Polymer

Remarks

[tj]

kh

25.3-104 13.1 23 1300-1700 274 1353 1200-1900 21

0.23 ±0.01 1.29 1.13 0.35 av. 0.16 0.5 0.33 av. 0.46

44-139 16.5 25.5 44 60 105 73.5 1.7 5.5 10.2 40.4 43 126 150 7, 13.7 82.9, 132 187,432

0.34 ±0.04 0.52 0.3 0.42 0.33 0.37 0.36 0.79 0.71 0.54 0.54 0.38 0.35 0.33 0.57 0.38 0.36

14.5 43 180 386

0.55 0.41 0.33 0.29

10.7-60.7 10.8-114 42 16 48 178

0.84 ±0.03 0.77±0.06 0.6 0.5 0.52 0.48 0.78 0.61

1.5 2.5 3.7 5.4 6.6 9 29-31 43,44 97

1.3 0.91 0.96 0.93 0.81 0.67 0.86* ±0.02 0.59 0.59

152 174 47

0.51 0.49 0.53 1.28 0.50 ±0.005 0.41* ±0.02 0.43* ±0.02 0.45* ±0.02 0.6 0.71

Refs. 90

6 91 6 92

1.3. VINYL POLYMERS

Atactic Atactic

Benzene/isopropanol Butyl acetate

25 25

Theta temperature, atactic

4-terf-Butyltoluene

50

Atactic

Carbon tetrachloride

25 30

Chloroform Cyclohexane

30, 60 30 34.5 = 6> 31, 95 34 34.5 34.5 34.5

Ref. also includes data for 10,20,40, 50C

Ref. also includes data for 15, 20, 25, 32, 40, 50C Trifunctional star molecule Oc** c 2.1x10*; k > 0.5 for MW < 2.1 x 105

34.5

cw-Decaline franj-Decaline

34 34.3, 34.8 34.5 35 36 40 40, 22 45 50 20 20

Branched Trifunctional star molecule Atactic

Trifunctional star c100 L0 0.29* ±0.02

170

32.4 46.7 51.9 52.7 58.6 45.1 51.4 68 218 178 480 44-555 51-755 32 37 39 40 50 55 54 386 243 224 170 280 253 243 247 49 55 62 74 80 93 57 68 74 80 98 106 77 43 37 25 23

1.87 0.95 0.87 0.41 0.54 0.95 0.91 0.53 0.27 0.31 0.25 0.36* ±0.03 0.36* ±0.01 0.9 0.29 0.16 0.15 0.45 0.48 0.53 0.21 0.23 0.25 0.28 0.11 0.21 0.23 0.5 0.7 0.55 0.41 0.41 0.34 0.29 0.56 0.5

171

OTHERCOMPOUNDS

Al-isopropoxypoly( vinyl butyral)

Methanol Ethanol /2-Propanol Isopropanol n-Butanol Isobutanol Cyclohexanone Water Water Water Water Tetrahydrofuran Cyclohexanone Water (0.5 M salt)

25 25 25 25 25 25 25 25

Poly(dimethylaminoethyl methacrylate dimethyl sulfate)

Water (0.1M salt)

30

Poly[3-dimethyl(methacryl oyloxyethyl)ammonium propane sulfonate]

Water (KCl)

30

Water (0.5 M)

30

Poly(2-acrylamido-2-methyl propanesulfonic acid) Poly(2-acrylamido-2-methyl propane sulfonamide Poly(epichlorohydrin) Poly(/Vyv'-dimethyl(acryl amidopropyl) ammomium propane sulfonate

25 25 25 30

NH4Cl LiCl NaCl KCl MgCl2 CaCl2 SrCl2 KF KCl KBr KI LiCl NaCl KCl CsCl 0.25 M 0.30M 0.40M 0.50M 0.8 M 1.50M LiCl NaCl KCl KBr 10

KClO4 CaCl2 Poly(ether imide)

Dichloromethane

10 25

Pyridine

10 ^ 10

2

N-Methyl pyrollidone

51

25

NMP/water (96/9)

Polyethylene imine) Polyethylene oxide)urethanes

Water (1M NaCl) Tetrahydrofuran

10 25 50 25 50 35 25

Na-polyphosphate

Water (NaBr)

25

NMP/water (95/5)

Different hydrophobic end caps

135

228 228 229 172 173

174

175

175

041

0.39 0.38 0.37 0.37 043

1?6

0.66 2.13 2.44

176

0 48

45 33 34 29 25 23 10.4-64.4 19, 18.5,24

0.59 \ 0.8 1.16 1.93 2.23 0.76 * ± 0.02 0.4

50-276

0.29* ±0.04

176

vi*> 176 230 177 178

TABLE 1. cont'd Polymer

Solvent

T( 0 C)

Poly(di-n-hexylsilane)

Tetrahydrofuran

25

Poly(oxydimethylsilylene)

Benzene Carbon tetrachloride Chlorobenzene Cyclohexane n-Heptane Methyl ethyl ketone Tetrahydrofuran Toluene

25 25 25 25 25 25 25 25

Poly(methylene Af, Af-dimethy lpiperidinium chloride) Poly[bis(2-phenylethoxy) phosphazene]

Water (NaCl) Tetrahydrofuran

25

Phenolphthalein poly(aryl ether sulfone)

Dimethyl formamide

25

Chloroform

25

Poly(phenyl quinoxaline)

Poly(sodium acrylate)

Poly(styrene sulfonic acid), potassium salt

Sodium polystyrenesulfonate)-diallyldimethyl ammonium chloride

20-60

Chloroform 25? Chloroform/toluene (98/2) Chloroform/toluene (95/5) Chloroform/ethanol (95/5) Water (NaCl) 25

Water (0.4% NaCl) 10% NaCl 0.40% NaCl 1.30% NaCl 5.00% NaCl 10.00% NaCl Water (KCl)

25

Remarks

kh

Refs.

58 87 133 143 192 515 831 251 312 219 324 305 151 319 62-241 146 577-727 10-210

0.33 0.36 0.34 0.4 0.44 0.38 0.66 0.44 0.51 0.61 0.37 0.45 0.8 0.39 0.55* ±0.02 0.51 0.46* ±0.01 0.35-0.50

179

0.42 0.62 0.32 0.49 0.62 0.51 0.74 0.89 0.78 0.53 0.33 0.31 0.06 0.38 0.42 0.51 0.65 0.34 0.48 0.37 0.6 2.2 6.3 0.75 1.14 3.73 12.4 20 0.76 0.49 2.93 6.62 18.7 4.92 0.37 0.26 0.73 1.28 7.91 22.9 2.51 0.39 0.29

231

Ionic strengths ranging 0.1-0.5M

MW = O.8xlO 5 MW = 2.20 x 105 MW = 4.90 xlO 5 Reference includes data from additional solvents, molecular weights

0.4% NaCl 1.30% 5.00% 10.00% 3% C8 substitution 3% C12 substitution

25

[if]

Ionic str., Z= LOOM / = 4.0 x 10"1 M, MW 41.5 /=1.0 x 10" 2 M ^3.OxIO-1M Z=LOxIO- 1 M / = LOOM, MW 109.5 Z=LOxIO- 1 M Z = 7.0 XlO- 1 M Z = 3.0 XlO- 1 M Z=LOxIO- 1 M Z = 3.1 M, MW 1170 Z=LOM Z=LOxIO- 1 M Z=LOxIO- 3 M Z = 3.0 x 10" 4 M Z = 3.0 x 10' 5 M Z= 10" 4 M Z=IO - 3 M Z= 10" 2 M Z = 0.5 M

8.4 11.7 12.9 29 53.6 89.3 28.5 50.5 82.7 65 75 62 78 256 153 77 59 276 78 278 165 64 34 8.2 15.7 27.5 39 65.7 15.7 39.9 83.5 105 148 16.6 115 361 3353 5786 9661 4480 2750 1150 202

180 180 180 180 180 180 180 180 181 182 182 183

Bo Bo 184

185

186,187

233

References page VII - 285

TABLE 1. cont'd Polymer

Solvent

T( 0 C)

Remarks

M

kh

Refs.

Ref. also gives data for copolymers with acrylamide Poly(thiopropylene) 1.8.

Benzene

20

188

CELLULOSE, CELLULOSE DERIVATIVES, AND POLYSACCHARIDES

Alginate(sodium) Amylose

Arabinoglucuronoxylan Cellulose

Cellulose acetate

Water Water Water Water Water

(NaCl/CuCl2) (KOH) (NaOH) (KOH-NaCl) (IN KOH)

Water Cd-ethylenediamine (Cadoxen) Cu-ethylenediamine (Cuoxen) Zn-ethylenediamine (Zincoxen) LiCl/dimethylacetamide Acetone Formic acid Pyridine

Cellulose diacetate

Dimethyl formamide

30 25 25 25 25 30 35 40 25 20 25 25

Near gelation point

25 30 30 30 30 25

30 25?

MW = 4.2 to 4.5 x 105

Subst. = 2.34 as-is reprecipitated Subst. = 2.34 as-is reprecipitated Subst. = 2.55 as-is reprecipitated

Cellulose triacetate

Acetic acid

25

Chloroform

25

Methylene chloride Tetrachloroethane

15-30 25

Cellulose acetate phthalate

Water (NaCl solns.)

35

Cellulose nitrate

Acetone Diethyl adipate Isoamyl acetate Water Ethyl acetate Water

20 25 25 20 20 20

Methyl cellulose Ethyl cellulose Ethyl hydroxyethyl cellulose

Water

0

15

0.27

139 129 121 107 41.6 ±2.2 339-1395 426-510 440 466 510 248-383

0.19 0.2 0.48 0.88 3.6 ±0.6 0.50 ±0.01 0.46* ±0.01 0.54* ±0.02 0.59 0.65 0.47* ±0.09

641-682

0.43-0.59

295 196 185 155

0.56 0.8 1.3 1

158 145 230 200 199 195 72 117 43 72

0.48 0.87 0.32 0.72 0.29 0.35 0.42 0.57 0.45 0.43

50 82 90 71 68 695-1195

0.34 0.38 8.64 3.36 1.69 0.53* ±0.08

400 41-188 440 175 135 125 140 423 845 1052 1218 402 794 977 1130

1.2 0.65 ±0.15 1 11.3 18 13 7.5 0.57 0.74 0.8 0.87 0.43 0.59 0.68 0.75

Q temp. = 27°C Salt cone. = 0.002 M Salt cone. = 0.006 M Salt cone. =0.0. IM

0.5mM/gSDS l.OmM/g 2.0mM/g 5.0mM/g Hydroxyethyl cellulose

180

234 189 189 189 190 190 190 190 235 191 192 192 192 236 193 193 193 194

195

196 196 197 196 198 191 199 200 237 191 238

201

201

TABLE 1. cont'd Polymer

Solvent

T( 0 C)

Remarks

20 25 25

35

40 60 25

Water

Degraded hydroxyethyl cellulose Hydrophobically modified hydroxyethyl cellulose

Water Water Water Water Water

(LiCl) (KCl (CuCl2) (MnCl2)

Water

Hydroxypropyl cellulose Water Hydroxy propylrnethyl cellulose Water Na-carboxymethyl cellulose Water (NaCl)

Lyzozyme

Water (1M NaCl) Water (1N NaOH) Water (NaCl) 0.5 M NaCl/10% cadox. 0.5 M K, NaH phosphates Water 10% Cadoxen Water 10% Cadoxen 88% Formic acid Water

Microbial polysaccharide

Water (NaCl)

Acidic hetero polysaccharides p-D-Glucan

25 25 25 25 25 25 40 60 20 20 25 25 25 25 30 30

5 15 25 40 55 25?

pH 2.2 pH 3.0 pH 5.0 pH7.0 pH 9.0 pHll.O pH 12.0 1 x 10 "* to 1 x 10 ~3 M

Water (NaCl)

25?

Water (0.1 M NaCl)

25

Refs.

273 128 381 754 895 1062 370 725 875 1010 100 86 622 624 610 600 674 740 792 900* ±42 928 * ± 14 951 * ± 1 930* ±15

1.22 0.31 0.3 0.47 0.62 0.67 0.22 0.4 0.49 0.57 0.75 0.85 4.04 3.09 2.94 3.1 2.39 1.48 1.23 0.98* ±0.16 0.90 * ± 0.03 0.86* ±0.01 0.98* ±0.08

237 239 201

110 91 69 134 740

1.45 2.22 3.75 0.83 0.54

239

Subst. 0.75; 0.01, 0.1, and 0.2MNaCl Subst. 0.5-2.5 Subst. 0.5-2.5 from Auricularia auricula judae from Auricularia auricula judae

Enzyme from egg-whites (glycoside hydrolase)

Kelco S-657; 0.001 M NaCl

Kelco S-130; 0.001 M NaCl

0.1 M NaCl

Xanthan gum

kh

Thermal degradation in water or salt soln. at 60, 80, 1000C

0.1 M NaCl

Welan gum

[tj]

Native Renatured

201

239 202

202 202 202 202 202

237 198

72 101 4900 4050 265 353 750 3.05 2.83 2.66 2.49 2.41 752 838 1452 2194 680 750 1380 2097 738 1078 1537 2471 641 984 1510 2370 10300 13200

0.2 0.36 0.49 0.41 0.21 0.23 0.49 1.35 1.42 1.48 1.54 1.58 0.99 0.62 0.73 0.81 0.7 0.43 0.59 0.6 0.94 0.99 1 0.86 0.46 0.55 0.51 0.62 0.45 0.46

203 203 204 205 205 205 205 205 205 240

206

206

206

206

207

References page VII - 285

TABLE 2. SCHULZ-BLASCHKE CONSTANTS Polymer Poly(isoprene) Guttapercha Poly(chloroprene) Poly(methylene) Poly(ethylene) PoIy(I -butene) Poly(isobutene) Poly(acrylonitrile) Poly(methyl methacrylate)

Solvent

Toluene0 Benzene m-Xylene° Decalin Decalin Diisobutylene Dimethyl formamide Acetone

PoIy(I-ethylbutyl methacrylate Poly(n-hexyl methacrylate) Poly(n-octyl methacrylate) Poly(n-lauryl methacrylate) Poly(acrylamide) Poly(vinyl alcohol) Poly(vinyl chloride)

Methyl ethyl ketone Toluene0 Methyl ethyl ketone Isopropanol Methyl ethyl ketone Isopropanol Methyl ethyl ketone Isopropanol Methyl ethyl ketone n-Butanol Methyl ethyl ketone n-Butyl acetate Isopropyl acetate Water Water (IM NaCl) Water Cyclohexanone

25 32.6 23 16.8 23 23 13 25 25 30 25

Cyclohexanone0 Poly(vinyl acetate) Poly(styrene)

Benzene Toluene Benzene Butanone0 Chloroform Cyclohexane Ethyl acetate Methyl ethyl ketone Toluene0

Poly(a-methyl styrene)

Poly(2-methyl-5-vinyl tetrazole)

25 25 120 135 115 20 25 25 32 25 25 20 25 27.3 32 25 25 23 21.5 23 27.4

Benzene0 Butyl acetate Chloroform Chloroform0

Poly(ethyl methacrylate) Poly(n-butyl methacrylate)

T( 0 C)

m-Xylenefl Cyclohexane

25 20-60 30 25 25 30 25 25 34 25 30 25 30 25 30

Cyclohexane/ ethylacetate (50/50)

30

Chloroform

20

Remarks

[17]

ksh

Refs.

19-208

0.32

121-1535 ??sP