A review of experimental methods for the elastic ... - Deverge mickael

University of Maine,. France. Internoise, 22-25 August 2004. M. Deverge, L. Jaouen & S. Sahraoui. Elastic and damping characterization of porous materials ...
514KB taille 0 téléchargements 520 vues
A review of experimental methods for the elastic and damping characterizations of acoustical porous material Mickael Deverge, Luc Jaouen, and Sohbi Sahraoui

Acoustic Laboratory, University of Maine, France Internoise, 22-25 August 2004

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Plan

• What’s a porous acoustical material ? • Theoritical description • Some existing methods • Two non-resonant, quasistatic methods ◦ compression ◦ torsion

• Two resonant recent methods ◦ beam bending ◦ plate bending

• Conclusions • Perspectives

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

What’s a porous acoustical material ? 2 phases: • a solid phase, the skeleton, • a fluid phase, the air.

Electron microscope pictures of a melamine foam on the left and of a polyurethane foam on the right. The solid phases appear in white.

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

What’s a porous acoustical material ?

• 2 distinguished cases for the modelizations: ◦ Motionless skeleton: “equivalent fluid”. ◦ Skeleton in motion: generalized Biot-Allard theory (Biot 56, Johnson et al. 87, Allard et al. 91, Allard 93)

• Usual assumptions: linear elasticity, isotropy, long wave-length.

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Theoritical description

• Generalized Biot-Allard theory: σij,j −φp,i

= ρ11 u¨i + ρ12 U¨i + b(ω)(u˙i − U˙ i ) = ρ12 u¨i + ρ22 U¨i + b(ω)(U˙ i − u˙i )

• Stress-strain relations: σijs

= [(P − 2N)ui,j + QUi,j ] δi,j + 2Nui,j

σijf

= −φpδij = (Qui,j + RUi,j )δi,j

E , ν, G and η are related to coefficients P, Q, N, R.

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Some existing methods A

4 3

4

2

2

3

1

1 B 4

LASER

D

3

2

1 C

1: shaker or rotor 2: sample M. Deverge, L. Jaouen & S. Sahraoui

1

4 2

3

3 and 4: accelerometer or force/torque transducer. Elastic and damping characterization of porous materials

Quasistatic compression test • Frequency range ∼ 5 − 100 Hz. • Fluid-structure interactions neglected. • Cubic sample.

4 LASER

3

2

1 C (1: shaker, 2: sample, 3: accelerometer and 4: force transducer)

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Quasistatic compression test 6

10

Evolutions of Ei (N.m−2)

Real part of E i: Ei’

5

10

Imaginary part of E i: Ei’’

Side 1 Side 2 Side 3

4

10

1

10

2

Frequency (Hz)

10

Estimations of a melamine foam complex Young’s moduli at 18o C. ◦: side 1, 4: side 2, : side 3.

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Quasistatic torsion test • Frequency range ∼ 0.01 − 10 Hz. • Fluid-structure interactions neglected. • Cylindrical sample.

A

2

1

4

3

(1: rotor, 2: sample, 3: torque transducer and 4: accelerometer)

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Quasistatic torsion test

−2

Real part of shear modulus: G13’ (N.m )

2e+04

0°C 10°C 24°C 40°C

1e+04 9e+03 8e+03 7e+03

1e+05 9e+04

6e+03

8e+04

5e+03

7e+04

4e+03

6e+04 5e+04 −2 10

−2

0°C 10°C 24°C 40°C

Imaginary part of shear modulus: G13’’ (N.m )

2e+05

−1

10

0

10 Frequency (Hz)

1

10

3e+03 −2 10

−1

10

0

10 Frequency (Hz)

1

10

Variations of the shear modulus G13 real and imaginary parts with temperature and frequency for a melamine foam. +: 0o C, o: 10o C, ?: 24o C, : 40o C

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Resonant methods • • • •

Frequency range ∼ 10 − 1000 Hz Fluid-structure interactions no more neglected. Beam- or plate-like samples. Acoustic radiation neglected.

Rod ( Line of imposed displacement )

Porous layer

 

Base metal beam

Metal plate 

Porous layer 

Shaker

















Ponctual force

LASER

(1: rotor, 2: sample, 3: torque transducer and 4: accelerometer)

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Resonant methods 6

−1

Plate meas. (23°C) Beam meas. (25°C)

10

Estimations of η1

Estimations of E’1 (N.m−2)

10

5

10 2 10

Plate meas. (23°C) Beam meas. (25°C)

−2

3

Frequency (Hz)

10

10

2

10

3

Frequency (Hz)

10

Comparisons of estimation results for the real Young’s modulus E10 and the structural damping coefficient η1 of the melamine foam. : beam bending - three layers configuration (25o C), o: plate bending (23o C).

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Some comparison points

Compression Torsion

freq. range

+



5−100 Hz

study of anisotropy

fluid−struct. neglected

0.01−10 Hz com. apparatuses constant volume

fluid−struct. neglected isotropy assumed

Beam bending 10−1000 Hz fluid−struct. interact.

heavy computing isotropy assumed

Plate bending

radiation neglected isotropy assumed

10−1000 Hz fluid−struct. interact. configuration of use simplyfied comput.

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Conclusion-Perspectives

Conclusion: No ideal method. Need of a combination of different methods for the complete elastic and damping characterization. Perspectives: • Systematic study of anistropy. • Influence of the acoustic radiation for plate-like sample.

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials

Thanks for your attention [email protected] [email protected] Laboratoire d’Acoustique de l’Universit´e du Maine UMR CNRS 6613 avenue Olivier Messiaen 72085 Le Mans Cedex 9 France Tel : +33 2 43 83 32 50

M. Deverge, L. Jaouen & S. Sahraoui

Elastic and damping characterization of porous materials