A Pseudo Random Postfix OFDM (PRP-OFDM) - Markus Mu(e)

Dec 3, 2003 - Д Contribute to PHY of IST BroadWay proposing a hybrid 5/60GHz WLAN. Make mobility at high carrier frequencies possible where Doppler is ...
425KB taille 0 téléchargements 382 vues
Presentation Globecom 2003

A Pseudo Random Postfix OFDM (PRP-OFDM) modulator and inherent channel estimation techniques Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel Motorola Labs, Eurecom, Supelec [email protected] 3 December 2003

Overview

Overview

❶ Background and evolution of Orthogonal Frequency Division Multiplexing ❷ Target of Pseudo Random Postfix OFDM (PRP-OFDM) and inherent advantages ❸ The PRP-OFDM modulator and a channel model ❹ Channel estimation and tracking based on 1st order statistics in the receiver ❺ Receiver architectures ➀ based on diagonalisation of pseudo circulant matrices ➁ transformation to Zero Padded OFDM ❻ Simulation results ❼ Conclusion

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 1

State of the art and future of OFDM

State of the art and future of OFDM ❶ Existing coherent OFDM with cyclic prefix (CP-OFDM) : A simple way to convert frequency selective FIR channels into flat faded sub-channels ✔ Simple equalization ✔ No noise correlation over sub-carriers and thus simple decoding for COFDM ✘ Sensibility to channel impulse response (CIR) estimation ✘ Sensibility to channel zero locations ✘ Sensibility to time synchronization ❷ Zero Padded OFDM (ZP-OFDM) [Giannakis97,Scaglione99] : Replacing the CP by zeros allows to choose among complexity/performance trade-offs ✔ ZP-OFDM guarantees symbol recovery even if channel zeros are located on carriers (at a moderate performance increase) ✔ CP-OFDM-like receiver complexity/performance possible based on overlap-add architecture ✘ Unresolved sensibility to CIR estimation and time synchronization

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 2

PRP-OFDM : Advantages and targeted applications

PRP-OFDM : Advantages and targeted applications ❶ Pseudo-Random-Postfix OFDM (PRP-OFDM) The CP is replaced by a pseudo-randomly weighted sequence known to TX and RX ✔ Low-complexity channel estimation and tracking (based on 1st order statistics) ✔ Constant refinement of time synchronization ✔ Keep all advantages of ZP-OFDM (including choice among receivers of different complexity/performance tradeoffs) ✘ Very slight receiver complexity increase (some additions) compared to ZP-OFDM ❷ Application targeted by Pseudo-Random-Postfix OFDM (PRP-OFDM) ✔ WLANs with increased mobility : Reach high throughput at 36m/s and more ✔ WLANs of low mobility : Increase system performance through better CIR estimation ✔ Any OFDM system requiring mobility increase ❸ Contribute to PHY of IST BroadWay proposing a hybrid 5/60GHz WLAN ✔ Make mobility at high carrier frequencies possible where Doppler is an issue

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 3

PRP-OFDM modulator and channel model

PRP-OFDM modulator and channel model ❶ A Pseudo-Random-Postfix OFDM (PRP-OFDM) modulator s˜(i)

s(i)

s˜0(i) s˜1(i)

s0 (i)

sig (i)

P/S

s1 (i)

S/P

r0 (i)

Demodulation & Equalization

s2 (i)

r˜ (i)

r(i)

FH N n(t) sn

s(t)

s˜N−1(i)

constant postfix



❷ Channel model : rP (k) = HISI (P) 



sN (k)



 + HIBI (P) 

α(k)cD

rN+D−1 (i)

sN (k − 1)

α(k − 1)cD

r˜N−1 (i)

, channel size ≤ D *

* &

$

$



)

)

(' &

%





 

.

! )

(' & ,

, $

,

/ / / / / / / /

- - -

,

,

,





 

+

+ + + + " " " " " " " "

  









 

       





 

,





 



 %

%

%

%

$



0



$ #









Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 4



sP (k − 1)

     



HIBI (P)



  

  

z−P



*

rP (k)



HISI (P)

sampling rate T

c 0 · αi cD−1 · αi

sP (k)

ADC

sampling rate T

sN−1 (i)

rn

r(t)

H(i)

DAC

r˜0 (i)

PRP-OFDM channel estimation and tracking

PRP-OFDM channel estimation and tracking ❶ Illustration of a received PRP-OFDM symbol α(k−1) α(k) H1

hD−1 h1 H1

r0(k) r1(k) r2(k)

h0

s0(k − 1)

hD−1

s1(k − 1) =

s2(k − 1)

r3(k)

s3(k − 1)

r4(k)

α(k − 1)cD

h0

s0(k)

H0 H1

s1(k)

H0 H1

+

hD−1

s2(k)

H0 H1

=

βi · H 1

H0 H1

H1

hD−1 h0 sN (k − 1) HIBI · α(k − 1)cD 

sN (k) HISI · α(k)cD 



s2(k)

H0

s3(k)

H0 H1

α(k)cD

H0

s1(k) H1

s3(k)

H0

s0(k)

H0 H1

α(k)cD

H0

hD−1 h0 sN (k) H · α(k)cD



βi





❷ Channel estimation based on 1st order statistics E0

E4

=

=

h

r0 α(k−1)

E

h

E

r4 α(k)

i

i



 1 = E H0 s0 (k) +E [H1 cD ] = α(k − 1) | {z } =0   1 H1 s3 (k) +E [H0 cD ] = E = α(k) | {z }

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 5

=0

H1 cD (1) H0 cD

= β i · H1

PRP-OFDM channel estimation and tracking

❸ Find channel convolved by postfix

E 0 + E 1 = H1 c D + H0 c D



   =     

   =     |

h0

hD−1

hD−2

h1 .. .

h0 .. .

hD−1 .. .

hD−1

hD−2

c0

···

h1

··· .. .

h2 .. .

hD−3

···

h0

cD−1

cD−2

c1

c1 .. .

c0 .. .

cD−1 .. .

···

cD−1

cD−2

cD−3 {z

··· .. .

c2 .. .

···

c0

CircularDiagonal on Fourier basis

❹ Extract channel impulse response hD by standard equalization schemes



    cD   



    hD    }

✔ Zero-Forcing (ZF) equalization ✔ Minimum-Mean-Square-Error (MMSE) equalization (if noise contributions relevant)

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 6

(2)

(3)

Receiver architectures

Receiver architectures ❶ Equalization based on transformation of PRP-OFDM ➫ZP-OFDM

rPRP

rZP

=



Hβi 

sN (k)

 

α(k)cD     sN (k) α(k−1)   = HISI + α(k) HIBI α(k)cD     sN (k) 0N  − Hβi   = Hβi  α(k)cD α(k)cD

(4)

Now, all existing ZP-based equalization schemes apply :

✔ Overlap-Add based equalization (low complexity/medium performance) ✔ Pseudo-Inverse based equalization (increased complexity/high performance) ✔ Minimum-Mean-Square-Error (MMSE) based equalization (increased complexity/high performance)

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 7

Receiver architectures

❷ Equalization based on diagonalisation of pseudo-circulant matrices   α(k−1) β i ➀ It can be shown that the pseudo-circulant matrix H = HISI + α(k) HIBI is diagonalised as follows : Hβ i Di

= V−1 P (i)Di VP (i),   P−1 − P1 − P1 j2π P−1 P ) = diag H(βi ), · · · , H(βi e where H(z) = ∑ z−n · hn

VP (i) =

(5) (6)

n=0

"

P−1

2n 1 P |β | i ∑ P n=0

#− 1 2

1 P

P−1 P

FP diag{1, βi , . . . , βi

(7)

}

➁ The following equalization schemes are derived GPRP ZF GPRP MMSE Q ˆ Q

=

FN [IN 0N,D ] Hβi

−1

=

H

= FN [IN 0N,D ] RsP ,sP Hβi Q−1 = =

H

RnP ,nP + Hβi RsP ,sP Hβi , ˆ s ,s DH Rn ,n + Di R P

P

P P

i

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 8

=

−1 FN [IN 0N,D ] VH P (i)Di VP (i), ˆ −1 VP (i), FN [IN 0N,D ] Rs ,s VH (i)DH Q P P

P

i

(8)

Low complexity receiver architecture

Low complexity receiver architecture r˜ (i)

r(i) r0 (i)

CP-OFDM identical treatment

S/P

rD−1 (i) rD (i)

rn

r(t)

ADC

rN−1 (i)

sampling rate T

rN (i)

r˜0 (i)

r˜N−1 (i)

rN+D−1 (i)

α(i − 1)HIBI (D)cD +HISI sN,0 (i)

α(i)HISI (D)cD +HIBI sN,1 (i) analog to digital converter

serial to parallel conversion

1 α(i−1)

E[·]

α(i − 1)

1 α(i)

E[·]

α(i)

undo pseudo random weighting

expectation calculation

do pseudo random weighting

demodulation and equalization

✔ Slight complexity increase (≈ 6D additions per symbol) compared to ZP-OFDM

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel 9

PRP-OFDM simulation results in IEEE802.11a context

PRP-OFDM simulation results in IEEE802.11a context Comparison CP−OFDM vs PRP−OFDM (BPSK, R=1/2, BRAN−A)

0

10

−1

BER

BER

10

−2

10

−3

−4

−2

10

−3

10

PRP, ZF80 (10symb) IEEE802.11a Preamble CIR−est PRP MMSE (20symb) PRP MMSE (40symb) PRP ZF−OLA (40symb) IEEE802.11a CIR known

−4

10

PRP, ZF80 (20symb) PRP ZF−OLA (72 symb) IEEE802.11a Preamble CIR−est PRP MMSE (72symb) IEEE802.11a CIR known

−1

10

10

Comparison CP−OFDM vs PRP−OFDM (QPSK, R=1/2, BRAN−A)

0

10

−4

−3

−2

−1

0

1

C/I (dB)

2

3

4

5

6

7

F IG . 1 – BPSK constellations, static case.

10

−2

0

2

4 C/I (dB)

6

8

10

F IG . 2 – QPSK constellations, static case.

✔ Parameters : N = 64 carriers, 20MHz bandwidth in the 5.2GHz band using a 16 sample prefix or postfix. A rate R = 12 , constraint length K = 7 Convolutional Code (CC) (o171/o133) is used before bit interleaving followed by QPSK/BPSK mapping. ✔ BPSK, static case : > 2dB gain is possible by PRP-OFDM for a BER of 10−3 ✔ QPSK, static case : A 1.5dB gain is achieved by PRP-OFDM for a BER of 10−3 ✘ As expected poor performances for ZF based equalization due to noise spreading

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel10

PRP-OFDM simulation results in IEEE802.11a context (High Mobility)

PRP-OFDM simulation results in IEEE802.11a context (High Mobility) 0

10

Comparison CP−OFDM vs PRP−OFDM (BPSK, R=1/2, BRAN−A, 432 Bytes/frame)

−1

BER

BER

10

−2

10

−3

−2

10

−3

10

10

−4

−4

PRP, ZF80 IEEE802.11a Preamble CIR−est PRP MMSE 72m/s, MMSE CIR estimation PRP MMSE 36m/s, MMSE CIR estimation IEEE802.11a CIR known

−1

10

10

Comparison CP−OFDM vs PRP−OFDM (QPSK, R=1/2, BRAN−A)

0

10

HL2 Preamble CIR−est, speed 20m/s HL2 Preamble CIR−est, speed 10m/s HL2 Preamble CIR−est, speed 0m/s PRP Doppler Separated−MA−MMSE (40symb), speed 72m/s PRP Doppler Separated−MA−MMSE (40symb), speed 36m/s HL2 CIR known, speed 0m/s

−4

−3

−2

−1

0

1

C/I (dB)

2

3

4

5

6

7

F IG . 3 – BPSK constellations, high mobility.

10

−2

0

2

4 C/I (dB)

6

8

10

F IG . 4 – QPSK constellations, high moblity.

✔ BPSK mobility vs static case : 1dB gain @ 36m/s and 0dB gain @ 72m/s for a BER of 10−3 ✔ QPSK mobility vs static case : 0.8dB gain @ 36m/s for a BER of 10−3 , poor perf. @ 72m/s ✘ As expected poor performances for ZF based equalization due to noise spreading

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel11

Conclusion

Conclusion ❶ A new Pseudo-Random-Postfix OFDM (PRP-OFDM) modulator is proposed ❷ We capitalize on the study results from Zero-Padded OFDM (ZP-OFDM) ❸ Low-complexity channel estimation and tracking based on 1st order statistics is possible ❹ Several decoding schemes with different complexity/performance trade-offs are proposed ❺ Slight complexity increase compared to CP-OFDM must be tolerated ❻ Performance increase by approx. 1.5dB in typical IEEE802.11a scenario due to CIR estimation improvement ❼ Make mobility at high carrier frequencies possible : IST BroadWay ❽ Outlook : Doppler environment, combination of different CIR estimations, unbiased equalizers, etc.

Markus Muck, Marc de Courville, Mérouane Debbah, Pierre Duhamel12