

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

A Basic Infrastructure for Dynamic Code Generation - Henri-Pierre

In this paper I will try to show where are actual bottleneck in general compiler and in tools for ... Unfortunately the main programming languages (green box 3) was fixed in the 80's. ... This kind compiled language contain only operator for basic data type (inte- ger and variable width and variable number of elements.

 Télécharger le PDF

 347KB taille
 15 téléchargements
 318 vues

 commentaire

 Report

A Basic Infrastructure for Dynamic Code Generation Henri-Pierre Charles, CEA-LIST

In this workshop paper I will try to present the bottleneck of actual compilers implementations which make difficults to generate good quality code for modern application which require dynamic reconfiguration and can be “power bounded” . Based on that bottleneck informations I’ll show what could be a new compiler organization, and actual experimentations based on a new tool deGoal . Categories and Subject Descriptors: C.1.4 [Dynamic code generation]: Parallel Architectures General Terms: Runtime code generation, Compiler, Optimization Additional Key Words and Phrases: Runtime code generation, Compiler, Optimization ACM Reference Format: DCE 2012 V, N, Article A (January 2012), 6 pages. DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Compiler are a complex piece of software which translate high level program to low level binary program that a processor can run. The main evolution of compilers are focused to produce the better possible code. “Better” is generally defined as “semantically equivalent” and “as fast as possible”. In this paper I will try to show where are actual bottleneck in general compiler and in tools for dynamic compilation and what should be provided by new generation tools. Then, I propose new binary code generator organization which allow to write code generator based on algorithmic optimization. 2. SEMANTIC BOTTLENECK

In the first figure 1, I present a view of the computer evolution. In the left hand block is the “application domain” evolution which drive the computer evolution. At the beginning the main use was integer computation. The actual main “hot” applications can be physic simulation, video compression or high level telecommunication algorithms such as 3GPP-LTE. When a new application domain arise (red box 1 on the left), two or three years later the processor architects build a new hardware answer to solve the computing problems of the new domain (red box 2 on the right). The answer can be a new hardware operator and/or a new instruction set able to drive this operator. It was floating point vector operations for linear algebra (MMX and SSE), multimedia instructions set with very specialized instruction such as SAD (Sum of Absolute Differences) for video compression, etc. Unfortunately the main programming languages (green box 3) was fixed in the 80’s. As example, the C language reference has been submitted in October, 31 1988 to the ANSI. This kind compiled language contain only operator for basic data type (integer and floating point) and all useful construction such as vector, matrix, RGB pixels, pixels blocks should be constructed using arrays and structures. Compilers (orange box 4 in 1) are always in late in this race because they are the last to be build in this chain. They try to reconstruct missing informations such as low level parallelism (ILP), data dependencies, parallel constructions. A lot of work has This work is partially supported by the European ITEA2 project H4H http://www.h4h-itea2.org/ and Smecy http://www.smecy.eu/ Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:2

Fig. 1. Semantic bottleneck between application level and low level architecture

been done in this area but theses works are generally not available accross multiple compilers or multiple architectures. This lead programmers to “write” explicitly optimizations in source code. A lot of multimedia applications contain this kind of optimization hardly written because of the lack of the compiler (1) multimedia datatype support and (2) optimize efficiently on all platforms (hardware and compilers). An other way to observe this evolution is to look at the complexity included into compilers. It’s quite difficult to get a real idea of the complexity of a compiler, we choose to report in the left part of the figure 2 the size of the files included in the backend directory of gcc. The Y axis represent the size (in Kbyte) of the files of the config/ directory of two ARCHitectures : i386 and ARM. Theses directory contain all files related to the description of an architecture : architecture variant, pipeline descriptions, low level optimization, etc. Theses informations are mainly described in “md” files (md stand for Machine Description). The x axis represent the different version of the compiler (63 releases from 2.95 up to 4.6.2). We can see in this figure that the size of the X86 part grow from 1.3 Mb to 3.5 MB. The size of the ARM configuration file follow the same evolution with a major increase between the 4.2 and 4.3 release. As the size grows, it become more and more difficult to start to modify a compiler. The right part of the figure 2 show the evolution of the total size of the gcc compiler during time (only the gcc-core version without all frontend). Each dot correspond to a release version, each color line correspond to a release branch. Between the release 2.95.0 36 Mbytes large up to 4.6.2 with 162 Mbytes. During this period the gcc-core grow 4.4 times. One can see that during a release the size does not evolve a lot. Between major releases new features are added which increase the size of the distribution. My claim in this article is to show that although research must continue in classical compiler optimization, it is necessary to build new kind of optimization able to link hardware capabilities directly to the algorithmic level of application domain (higher grey path on figure 1) without using the classical path from algorithm to execution (lower grey path of the figure 1). Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:3 4000

1.8e+08

x86 conﬁg size Arm conﬁg size

3500

1.6e+08

2.95 3.0 3.1

3.2 3.3 3.4.0

4.0.0 4.1.0 4.2.0

4.3.0 4.4.0 4.5.0

4.6.0

1.4e+08

3000

1.2e+08

2500

1e+08

2000

8e+07

1500

6e+07

1000

4e+07

500

2e+07

0

0 c-

gc

c-

gc

c-

gc

0

0

6.

5.

4.

4.

0

4.

4.

0

0.

4.

4.

0

4.

3.

95

3.

2.

0 3. 4. cgc 0 2. 4. c- 1.0

gc

c-

gc

c-

gc

c-

gc

3 3. cgc .2 3 c- .1 gcc-3 gc 0

c-

c-

gc

gc

01

01 /

/0 1/

01

19

98

01 /

/2

00 0

01

/2

00 2

01 /0 1/

20

04

01 /0 1/

01 20 06

Fig. 2. Evolution in Kilo bytes of the I386 and ARM machine description of gcc-core across releases

3. NEW INFRASTRUCTURE FOR CODE GENERATOR

Based on the previously described observations, I propose a new tool called deGoal which help to build “compilettes” code generators. A compilette is a small code generator included in applications which allow to generate at run time efficient code based on run-time informations. The global scheme is showed in figure 3. This figure show the classical flow from an idea to an algorithm which implement this idea, then a program in a specific language ant the classical compilation flow up to the runnable code. A classic strategy called iterative compilation [Barreteau et al. 1999] is showed in the top of figure 3. Based on profile informations gathered on one dataset, the compiler optimize the code on this profile. This is a very efficient process but it can not be used at run-time because it need a full compiler which is either too slow and difficult to use in some context such as embedded systems. This is why iterative compilation is not used In the lower part of the figure is described a compilette which act at run time based on information given by the user. It need a inspection of the algorithm to select which optimization is the most efficient to implement at run-time. But when in use, the code generation is fast enough to allow code generation just before a function call. The iterative loop on the right is short enough to be run during application execution. Of course, write this kind of code generator is painful to write without support and unfortunately there is no so many tool allowing to generate binary at run-time. In the following sections I’ll describe the main characteristics of the deGoal tool which is actually developed in order to ease the development of such code generator and help to experiment in code generation and optimization. 3.1. Neutral but rich instruction set

Like LLVM deGoal use a neutral RISC instruction set which allow to write optimization at assembly level but without being specific to only one architecture. Our goal is to go farther than LLVM with a richer instruction set focussed on vectorial and multimedia instruction set. Our instruction set contain the following characteristics : classical arithmetic instructions. (add, sub, mul, div) but also instructions specific to multimedia domain such as sad (Sum of absolute differences), mma (Matrix multiply and add) and FFT butterfly. load and store. with stride description which permit to describe load and store operation for complex memory access patterns. Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

/0

01

1/

/0

20

08

01

1/

/0

20

10

1/

20

12

A:4

Compiler

Idea

Algorithm

Programmer

Programmer

Idea

Source code

Intermediate code

Assembler

Assembly code

Source code

Compiler

Loader

Binary code

System

Runnable code

Intermediate code

Assembler

Algorithm

Assembly code

Loader

Binary code

System

User

Data

Iterative compiler

Runnable code

User

Data

Parameter

Code generation

Algorithmic optimizer

Fig. 3. Dynamic compilation versus iterative optimization

variable length register set. the instruction set use virtual vectorial register with variable width and variable number of elements. i.e. the programmer could use VectorType f float 64 8 which allows to use any f register as a vector of 8 elements of 64 bits floating point values. Supported datatype are integer, floating point and complex numbers. Supported arithmetics are signed, unsigned, saturated. Thanks to this high level instruction set deGoal can generate corresponding instruction for processors which support it directly or generate optimized code for processor without support. In both case code generation is fast and produce efficient code. This allow to write multimedia kernels easily at assembly level but with the feature of mix runtime data informations (values, alignments, data size, etc) and assembly code. 3.2. Assembly and expressions interleaving

Thanks to the run-time code generation scheme, deGoal can easily take advantage of run-time data informations to produce efficient code. An expression or a C variable included in the instruction flow will be included in the binary generated code and become a constant. For example in the following instruction declaration :

mul in0, in0, #(multiplyValue) multiplyValue is a variable of the embedding program, it’s value is only known at run-time. This scheme can also be used to drive register usage. The following instruction : case '+': --Top; #[add a(Top), a(Top), a(Top+1)]# break; use the a virtual register file as a stack. 3.3. Instructions Meta Information and Fast Code Generation

Previous work in this domain with code generator such as ccg [Piumarta et al. 2001] or HPBCG [Sajjad 2011] was painful because a lot of effort should be done to extract information from databook. By example the ARM instruction set contains 4 distinct ISA (8 bits jazelle, thumb 16 bits, ARM 32bits and NEON extension). Each of them contains encoding variants (4 for the THUMB, 3 for ARM, etc). deGoal has automated Instruction Set Architecture (ISA) extraction from PDF databooks. Each databook has an ISA extractor which extract the instruction encoding and classify the instruction into a category. The following encoding is automatically extracted from the ISA ARM databook : Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

Compilette

A:5

q1_4 0010100 i1_22-22 r2_4 r1_4 i1_11-0 | i_1_32 add r1,r2,i1 The left part contain the binary instruction encoding the right part the assembly description and a description of the used datatype (i_1_32) which mean “Integer, 1x32 bits value”. From this compact description automated tool can automatically generate macro instructions allowing to produce binary code very efficiently (around 30 clock cycles per instruction). 4. RELATED WORK

Of course, dynamic compilation and dynamic code generation is not a new subject, the article [Aycock 2003] give an overview of previous work in this domain starting from early fortran interpreters. But new SOC architecture and compiler embedded into web browser give new runtime models. Architecture details are not known at static compile time, data set are not know, etc. In the following paragraphs I give only related work pointers (recent and maintained) and differences. The following works are related to ours but with some differences : LLVM. is a Low Level Virtual Machine which contain an infrastructure for runtime code generation and a neutral instruction set similar to ours. The main differences relies from the ability to interleave run-time values and instructions which is not possible in LLVM and from the size and the speed of the code generator. Our code generator can easily fit in small memory footprint used in embedded systems. MiniIR & Tirex. [Pietrek et al. 2011] [Guen et al. 2011] are related tools which allows to simplify the intermediate representation handling for compilers developpers such as GCC or LLVM. These tools are not used standalone and are used in compiler generation. LTO. Link Time Optimization is a new technique used in GCC and LLVM allowing to generate the binary code at link time. The neutral intermediate representation is kept up to the run-time. It allows to make interprocedural optimization more efficently. This technique is not used at run time and can not take advantage of run-time values. Spiral and FFTW. [Püschel et al. 2005] [Frigo and Johnson 1998] are tools where the source code is generated and profiled at an installation pass. Then FFTW choose the fastest version according to the datasize. In this case, binary code is only selected not produced at run-time. HPBCG & ccg. [Piumarta et al. 2001] [Sajjad 2011] are previous tools used used in our team. HPBCG, the latest tool is outperformed by the use of a neutral instruction set which allow to write compilette only once for multiple architectures. 5. CONCLUSION

We have described in this paper deGoal a new infrastructure for binary code generation which start from the databook of hardware provider up to dynamic code generation. This tools is actually under heavy development but is used to produce code for multiple platforms : ARM, XP70, NVIDIA GPU. More processors and DSP used in embedded systems have been also developed. Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:6

Two experimentations, published in [Couroussé et al. 2011], has shown interesting results in two different domains : hash function specialization and matrix multiply. Theses results has been obtained on P2012 platform. Similar work are under development for NVIDIA GPU REFERENCES AYCOCK , J. 2003. A brief history of just-in-time. ACM Comput. Surv. 35, 97–113. B ARRETEAU, M., B ODIN, F., C HAMSKI , Z., C HARLES, H.-P., E ISENBEIS, C., G URD, J. R., H OOGERBRUGGE , J., H U, P., J ALBY, W., K ISUKI , T., K NIJNENBURG, P. M. W., VAN DER M ARK , P., N ISBET, A., O’B OYLE , M. F. P., R OHOU, E., S EZNEC, A., S TOHR , E., T REFFERS, M., AND W IJSHOFF , H. A. G. 1999. Oceans optimising compilers for embedded applications. In European Conference on Parallel Processing. 1171– 1175. C OUROUSSÉ , D., C HARLES, H.-P., AND L HUILLIER , Y. 2011. Flexible and performing kernels dynamically generated with degoal for embedded systems. P2012 developers’ conference, Grenoble. F RIGO, M. AND J OHNSON, S. G. 1998. Fftw: An adaptive software architecture for the FFT. In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing. Vol. 3. Seattle, WA, 1381–1384. G UEN, J. L., G UILLON, C., AND R ASTELLO, F. 2011. Minir: a minimalistic intermediate representation. In Workshop on Intermediate Representations. P IETREK , A., B OUCHEZ , F., AND DE D INECHIN, B. D. 2011. Tirex: A textual target-level intermediate representation for compiler exchange. In Workshop on Intermediate Representations (WIR’11). P IUMARTA , I., O GEL , F., AND F OLLIOT, B. 2001. Ynvm: dynamic compilation in support of software evolution. P ÜSCHEL , M., M OURA , J. M. F., J OHNSON, J., PADUA , D., V ELOSO, M., S INGER , B. W., X IONG, J., ˇ C ´ , A., V ORONENKO, Y., C HEN, K., J OHNSON, R. W., AND R IZZOLO, N. 2005. F RANCHETTI , F., G A CI Spiral: Code generation for dsp transforms. Proceedings of the IEEE, special issue on "Program Generation, Optimization, and Adaptation" 93, 2, 232–275. S AJJAD, K. 2011. Porting different compilation phases to runtime. Ph.D. thesis, Université de Versailles Saint-Quentin en Yvelines.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

des documents recommandant

DYNOC: A DYNAMIC INFRASTRUCTURE FOR COMMUNICATION IN

1. INTRODUCTION. On-line placement methods on reconfigurable device like that described in [1] ure 4 in which a â€œping-pongâ€� reflect results between router.

Managing next-generation IT infrastructure

In recent years, companies have worked hard to reduce the cost of the IT infrastructureâ€”the data centers, networks, databases, and software tools that.

Dynamic Pattern Generation in

58. For review see, forecampk, A. C. Scott, Newuphysic (Wiley-Interscience, Ncw. York, 1977); R. J. MacGregor and E. R. Lewis, Neural Modling (Pknum, New.

Dynamic Pattern Generation in

information about the emerging spatial structure, its form, size, and ... present context and perhaps for biology in general, is the limit cycle, ... exist (note that Tr -Tr); in the lower right only one fixed point speeds has three peaks that r

Dynamic Pattern Generation in - Research

principles ofneural and behavioral function remain few (3, 4). The time may be ripe, therefore information about the emerging spatial structure, its form, size, and so forth]. ... present context and perhaps for biology in general, is the limit

APEL: A CPU Accounting Infrastructure for Grids

APEL: A CPU Accounting. Infrastructure for Grids. Presented by Will Rogers. Ming Jiang, Cristina Del Cano Novales, Gilles Mathieu,. John Casson, Will Rogers, ...

GOCDB, a Topology Repository for a Worldwide Grid Infrastructure

EGEE Production Service infrastructure is a large multi-science Grid ... while dynamic data providers used by Grid middleware â€“ such as BDII [5] or MDS [6] ... We describe later in this paper some answers to that problem, both in current.

DYNAMIC GENERATION OF PROPER NAME PRONUNCIATIONS

a class of distortions of the canonical form is used as knowledge ... INTRODUCTION ... transcription probabilities for different word contexts [9]. The lex- The training of the insertion model by mean of a de- ... some probabilities exhibit a t

A New Method for Interoperability Test Generation

methods derived from global criterion iopG, not in methods using bilateral criterion iopB. â‡’The idea: interoperability test generation based on bilateral criterion ...

Dynamic On-Mesh Procedural Generation - HAL-Inria

Apr 22, 2015 - synthesis methods [3, 4, 26] strive to automatically cover a given surface by stitching form the terminal shapes in parallel. 4073 of Lecture Notes in Computer Science, pages 138â€“146. ... Biology, 18(3):280 â€“ 299, 1968.

A genetic code for genius?

Feb 15, 2013 - case in China," where IQ studies are regarded more as a scientific ... But while scientists have identified some genes that can significantly lower ...

A dynamic network in a dynamic population

Apr 1, 2011 - referred to as the Uniform (U) version and the Preferential (P) version. In what follows 1 then Ï�Îº(x)=0 for every x, and (12) has only the zero solution. [8] Malyshev, V. A. (1998) Random graphs and grammars on graphs.

A Dependability Framework for building secure Dynamic

Remoting. Code. Level. (Inside the platform). System. Level. (local to the host; outside the platform). Component. Repository deploy. Component. Downloader ...

A Dynamic Approach for Characterizing Collusion ... - users.cs

... be effective if the answer space is extremely large making the probability ... attacks, and buggy software distributions, to name a few. We believe has several elements. We first present a of the algorithm. The key idea is to favor ear

A Dynamic CGE Model for Jordan

May 1, 2002 - Macroeconomicsâ€�, Universite des Sciences Sociales - Toulouse 1 [3] Blanchard, O.J. and Fischer, S., 1998, Lectures on Macroeconomics,.

A dynamic model for ornithopter and identification

(RR)(). W W W. B. T. W. TO. TO G a a a g. W XYZ. iW x y z. W. W d. m r F. F. F F r r dm dt xx ... x x aerodynamic forces gravitational forces w w w. W. W. W. W. G. A G a. G G g. A. M r. F ... qtddt C qtddt. -Average values of the aerodynamic force

Implementing a Domino Infrastructure .fr

Admin Apps02/PT/World. Admin Apps03/PT/World. Admin Mail01/PT/World. Admin Mail02/PT/World. Admin Mail03/PT/World. Hub server: Replicates databases,.

Using a privilege management infrastructure for secure web-based e

Within the European HARP project, the HARP Cross Security Platform (HCSP) has been ... Keywords: Privilege Management Infrastructure; e-Health; Attribute certificates; X.509. 1. ... fragmented system, which lacks some interoperability, The web

Authentication and Secured Execution for the Infrastructure-as-a

2) Download a blank virtual machine memory image from the cloud. KV M = 69 3c a2 11 70 55 93 f3 fd fe 45 76 9b 11 51 21. With this data, we were able to ...

Using a Multimedia Ontology Infrastructure for Semantic ... - MKLab

however the semantic annotation community has only recently worked towards this di- These subclasses, that describe specific types of multimedia segments.

A Peer-to-Peer Infrastructure for Autonomous Grid Monitoring

TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, ... 2 Context. Autonomic computing and peer-to-peer overlay network.

A transport simulation code for inertial confinement

Computer Physics Communications 168 (2005) 141â€“158 Let Ï†(x) be a function on Ï‰i+1/2, then we define its kth moment as: (6). Mk,Ï† = xi+1. âˆ« xi Ïƒ. (K).

Infrastructure, Routing for Connected Objects - Eugen Dedu

up connections with healthcare providers, a range of home automation and Everything is at http://eugen.dedu.free.fr/publi/nca18.pdf we will use the â€œstableâ€� version from Oracle, v1.1, specification (2002, 125 pages) and tutorial ...

ExpeER Distributed Infrastructure for EXPErimentation infr

of the report consists of information provided by site managers through (Management of the calls for Access), since it forms a first basis for selecting sites and classification criteria used in other projects. (Seventh edition)

×
Report A Basic Infrastructure for Dynamic Code Generation - Henri-Pierre

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

