1 Black holes do not exist Jean-Pierre Petit1 Key words

which transform the object into a space bridge linking two folds of the ... Introducing the same coordinate change (2) we can imbed ..... occurs in the bulk. Fusion ...
2MB taille 2 téléchargements 209 vues
 

1   Black holes do not exist Jean-Pierre Petit1

Key  words  :  black  hole,  space  bridge,  giant  black  hole,  neutron  star,  Kerr  metric   ____________________________________________________________________________________________________   Abstract   We   reconsider   classical   features   of   Schwarzschild   and   Kerr   metrics,   which   are   the   fundamental   basis   of   the   black   hole   model,   through   new   space   and   time   coordinates   which   transform   the   object   into   a   space   bridge   linking   two   folds   of   the   universe,   PT   symmetrical.  In  addition,  such  change  gives  a  fast  mass  transfer  through  such  spheroidal   throat,   one   way   membrane,   which   makes   the   black   hole   model   questionable.   Back   to   TOV   model   we   assume   that   the   physical   criticity   at   r   =   0,942   Rs,   occuring   before   geometrical   criticity,   corresponds   to   real   physical   phenomenon.   We   associate   this   to   the   fast  establishment  of  a  small  space  bridge  between  the  two  folds,  through  which  matter   in   excess   would   be   immediatly   transfered,   transformed   into   negative   mass,   and   consquently   spread   away.   So   that   such   space   bridge   would   correspond   to   an   instant   picture   of   a   fast   transient   phenomenon,   that   would   keep   neutron   stars’mass   above   3   solar  masses.  The  discussion  is  extended  to  so-­‐called  «  giant  black  holes  ».     ____________________________________________________________________________________________________     Introduction       Consider  the  metric  :     (1)   dr 2 d Σ2 = + r 2 dϕ 2   Rs 1− r   Its   signature   is   (   +   ,   +   ).   It   tends   to   euclidian   metric   when   r   tends   to   infinite.   This   signature  is  modified  if  r  <  Rs    and  becomes  (  -­‐  ,  +  ).  Consider  lenght  measured  along  a     radial  path  ( ϕ = 0  ).  If  r  >  Rs   this  last  is  real.  If    r  <  Rs   it  becomes  imaginary.  Let  us  show   that  we  are  out  of  the  surface.  Introduce  the  change  of  coordinates  :     (2)   r = Rs ( 1+ Log ch ρ )     The  metric  becomes  :     (3)     ⎡ ( 1 + Log ch ρ ) 2 ⎤ d Σ 2 = Rs2 ⎢ th ρ d ρ 2 + ( 1 + Log ch ρ ) 2 dϕ 2 ⎥   Log ch ρ ⎣ ⎦  

                                                                                                                1  Former  Research  Director  at  the  french  CNRS.  Private  mail  :  [email protected]  

 

2  

r = Rs   corresponds   to   ρ = 0 .   At   the   point   the   determinant   of   the   metric   is   no   longer   zero  :     (4)   2 4 ( 1 + Log ch ρ ) det g = Rs th 2 ρ   Log ch ρ   The   metric   is   well   defined   for   all   values   of ρ   .   The   determinant   does   not   tend   to   zero   when   ρ → ± 0 .   If   we   imbed   the   surface   in   a   3d   eucliean   space   we   can   define   the   meridian,  corresponding  to  :   (5)   dr 2 2 dΣ = + d z 2   Rs 1− r we  immediatly  get  the  meridian  :     (4)   r z2 2   z = ± 2 Rs −1 r = Rs + Rs 4 Rs     The  surface  is  a    space  bridge,  linking  two  2D  euclidean  surfaces.      

   

Fig.1  :  The  surface,  imbedded  in    3  

 

3  

Everything   becomes   real.   From   Lagrange   equations   we   may   compute   the   geodesics   in   [ ρ , ϕ ] coordinate   system.   If   imbedded   in   3 ,   the   surface   holds   a   throat   circle   whose   perimeter  is   2 π Rs .  We  can  extend  this  in  3D,  introducing  the  metric  :     (5)   dr 2 d Σ2 = + r 2 ( d θ 2 + sin 2 θ dϕ 2 )   Rs 1− r   which  is  enclidean  at  infinite.  Introducing  the  same  coordinate  change  (2)  we  can  imbed   this  3D  hypersurface  into  a  4D  euclidean  space.  Then  it  becomes  a  space  bridge  linking   two   3D   eucliean   hypersurfaces   through   a   throat   sphere   whose   area   is   4 π Rs2 .   If   we   think  about  this  surface  throught   [ r , θ , ϕ ]  coordinates  ,  when  r  >  Rs   the  length  is  real,   but   when       r   <   Rs   this   length   becomes   imaginary.   It   just   means   that   we   are   out   of   the   hypersurface.   The   question     «  what   is   inside   a   sphere   whose   radius   is     Rs »   has   no   physical   meaning.   The   radial   coordinate   r   just   corresponds   to   a   wrong   choice,   which   does  not  fit  the  real  nature  of  the  hypersurface.         The  topology  associated  to  the  Schwarschild  solution     Consider  now  the  Schwarzschild  metric  [1]  :     (6)   R dr 2 d s 2 = ( 1 − s )(d x°)2 − − r 2 ( d θ 2 + sin 2 θ dϕ 2 )   Rs r 1− r It  is  similar  to  the  metric  (5).  Introduce  the  change  of  coordinate  (2),  we  get  :     (7)     Log ch ρ d s2 = (d x°)2 1 + Log ch ρ  

⎡ ( 1 + Log ch ρ ) 2 − Rs2 ⎢ th ρ d ρ 2 + ( 1 + Log ch ρ ⎣

⎤ Log ch ρ ) 2 ( dθ 2 + sin 2 dϕ 2 ) ⎥ ⎦

  The  metric  is  still  Lorentian  at  infinite.  It  is  well  defined  for  all  values  of  the  variable   ρ .   The  structure  is  similar  and  evokes  some  sort  of  space  bridge  linking  two  4D  Lorentian   spaces.     Classically,  the  concept  of  black  holes  appears  when  we  write  :     (8)   x°  =  c  t     c  being  a  constant.  Then  if  we  compute  the  free  fall  times  we  find  distinct  values  if  we   express   it   in   term   of   proper   time   s   of   in   term   of   time   t   ,   associated   to   «  an   external   observer  ».  We  refind  all  these  features  with  the  Kerr  metric  [2].        

 

4  

(9)     2mρ ρ 2 + a 2 cos 2 θ 2 ds = (1 − 2 )(dx°) − 2 d ρ 2 − ( ρ 2 + a 2 cos 2 θ ) dθ 2 2 2 2 ρ + a cos θ ρ + a − 2mρ 2

  ⎡ 2 m a 2 sin 4 θ ⎤ 2 4mρa − ⎢ ( ρ 2 + a 2 )sin 2 θ + 2 dϕ − 2 d x°dϕ ⎥ 2 2 ρ + a cos θ ⎦ ρ + a 2 cos 2 θ ⎣

  The   presence   of   a   crossed   term   d x°dϕ   introduces   an   azimutal   frame   dragging.   As   a   consequence,  when  computing  the  speed  of  light  along  a  circle  whose  axis  is  the  one  of   the   system   one   finds   two   different   values   if   the   test   photon   circles   with   this   rotating   object  or  against  this  movement.     Back  to  the  Schwarzschild  metric,  introduce  the  Eddington  time-­‐marker  change  [4]  :     (10)   r x° = x − Rs Log − 1   Rs and  write  :     (11)   x  =  c  t     with  c  constant.  In   [ x , r , θ , ϕ ]  the  line  element  becomes  :      (12)   R R R d s 2 = ( 1 − s ) c 2 dt 2 − ( 1 + s ) dt 2 − 2 s c d t d r − r 2 ( d θ 2 + sin 2 θ dϕ 2 )   r r r   When   r = Rs the  determinant  of  the  metric  no  longer  vanishes.  When  r  tends  to  infinite   this  metrics  tends  to  Lorentzian.  If  we  compute  the  geodesics,  due  to  the  crossed  term    dx   dt   we   find   a   radial   frame-­dragging   effect.   The   speed   of   light   along   radial   paths   has   distinct   values,   depending   if   the   movement   is   directed   inwards   or   outwards.   For   an   extermal   observer   the   free   fall   time   becomes   finite,   while   it   takes   an   infinite   time   to   escape  from  what  still  behaves  like  a  one-­‐way  membrane.     Each   metric   solution   goes   with   an   isometry   group.   Classically   SO3   x   R   is   the   isometry   group   associated   to   Schwarzschild   metric.   It   corresponds   to   isotropy   and   time-­‐ independance  conditions.  Similar  conditions  for  axisymmetric  Kerr  solution.     Now   we   can   extend   this   solution   to   the   two   folds   cover   of   a   manifold   M4,   with   two   (+ ) (− ) metrics   that   we   call   gµν and   gµν ,   corresponding,   after   A.Sakharov   [3], to   two   «  twin   universes  »,   enantiomorphic,   with   opposite   arrows   of   time   (   PT   symmetric   ).   Then   we   can  link  the  two  folds  through  a  throat  sphere,  using  the  coordinate  changes  :    (13)   ⎡ ch ρ ⎤ r = Rs ( 1+ Log ch ρ ) x° = ct + δ Log ⎢ Log with δ = ± 1   Rs ⎥⎦ ⎣   where   δ =  -­‐1  corresponds  to  the  fold  (  or  «  sector  »  )   F (+ ) (ours)  and   δ =  +1  to  the  «  twin   fold  »  (or  «  sector  »)   F (− ) .  Then  the  metrics  become  :    

 

5  

(14)     ds 2 =

Log ch ρ 2 2 2 + Log ch ρ 2 c dt − th ρ d ρ 2 1 + Log ch ρ 1 + Log ch ρ

  +

2 δ c dt d ρ − Rs2 ( 1 + Log ch ρ )2 ( dθ 2 + sin 2 θ dϕ 2 ) with δ = ± 1 1 + Log ch ρ

  We   can   express   the   geodesics   in   different   coordinate   sets.   It   is   easier   to   keep   the   variable  r,  and  write  :     (15)   r x° = c t + δ Rs Log ( −1) with δ = ± 1 and r > Rs   Rs Then  the  coupled  Schwarzschild  metrics  are  :     (16)   R R R d s 2 = (1 − s ) c 2 dt 2 − (1 + s ) r 2 + 2 δ s c dt dr − r 2 ( d θ 2 + sin 2 d ϕ 2 )   r r r   For   r > Rs   we   refind   the   classical   pattern   of   quasi-­‐Keplerian   paths   with   associated   parameters  :     (17)   dr   dϕ = ± 2 λ − 1 Rs 1 Rs 2 r + 2 − 2+ 3 h2 hr r r     Questionable  black  hole     Let’s   focus   on   radial   paths.   The   value   ν   =   +   1   corresponds   to   centrifugal   paths,   while     ν   =   -­‐   1   corresponds   to   centripetal   paths.     δ   =   +   1   corresponds   to   «  our   fold   of   our   universe  »   F (+ ) ,  and   δ  =  -­‐  1  to  the  «  twin  fold  »   F (− )  :     (18)   R λ r − δ ν Rs λ 2 − 1 + s r dr   dt = R c ν ( r − Rs ) λ 2 − 1 + s r   The   Schwarzschild   sphere   behaves   like   a   one-­‐way   membrane.   Il   our   fold   a   test   particule     following   a   centrifugal   path     paths,   needs   a   infinite   time   to   escape.   Conversely,   the   centripetal  free  fall  time  is  finite  (and  short).  The  situation  is  reversed  in  the  twin  fold.   So  that  such  hypertoric  space  bridge  may  swallow  matter  from  our  fold,  and  send  it  to   the  twin  fold  (or  «  sector  »)  in  a  finite  and  short  time.  There  is  no  more  time  freezing  for   an  external  observer,  so  that  the  classical  interpretation  of  the  Schwarzschild  metric  as  a   «  black   hole  »   becomes   questionable.   By   the   way,   while   a   little   bit   more   complicated,  

 

6  

similar   results   can   be   obtained   from   Kerr   metric.   This   asymmetry   is   easy   to   see,   considering  the  situation  close  to  the  one-­‐way  membrane  (   r  Rs )  :   (19)   λ ν r − δ ν Rs dt  dr   c ( r − Rs )   This  justifies  the  forms  of  the  metrics  (14),  to  ensure  the  continuity  of  movements.     We   have   considered   a   space   bridge   linking   two   PT-­‐symmetrical   hypersurfaces.   This   corresponds  to  joint  bimetric  geometries,  derived  from  the  action    :     (20)   J = ∫ ( R(+ ) + R(− ) )d 4 x δ J = 0   D4

satisfied  for  :     (21)   R(+ ) = − R(− )

(+ ) (− ) Rµν = Rµν = 0  

  A   positive   mass   test-­‐particule,   if   located   in   , F (+ ) is   attracted   by   the   space   bridge,   and   repelled   if   located   in   F (− ) .   Following   Jean-­‐Marie   Souriau   [5],   time-­‐inversion   goes   with   energy  and  mass  inversion.       The  fate  of  a  neutron  star  that  overcomes  its  limit  of  stability.       If   we   couple   the   external   Schwarzschild   metric   solution   (6)   to   the   following   internal   Scharzschild  metric  solution  :     (22)  

we  get  a  geometrical  representation  of  a  sphere,  whose  radius  is   rn ,  filled  by  constant   density   ρ material  ,  and  surrounded  by  void.  The  stability  condition  is  :   (23)     8π G ρ 3 3 Rs = rn < rn < = Rˆ   2 3c 8π G ρ   corresponding  to  figure  2.      

 

7  

    Fig.2  :  Subcritical  neutron  star,  schematical     In   constant   density   growth   the   two   radius   becomes   equal   to   the   radius   of   the   star,   so   that  we  have  a  double  geometrical  criticity.  See  figure  3.    

Fig.3 : Double geometrical criticity. The famous TOV equation [6] gives the pressure versus radius in such object. (24) ⎛ ⎛ p⎞ ⎛ 4π G p r3⎞ p ⎞ ⎛ Rs 4 π G p r 3 ⎞ ρ + m + ρ + + ⎜⎝ ⎟⎠ ⎜⎝ ⎟⎠ c 2 ⎟⎠ ⎜⎝ c4 c 2 ⎟⎠ ⎜⎝ 2 c4 dp =− =− dr r ( r − 2m ) r ( r − Rs ) When integrating this differential equation, we get figure 4.

 

8  

Fig.4 : Physical criticity in a neutron star For rn = 0.9428 Rs a physical criticity appears, before geometrical criticity. Classically one considers the two values as just quite close. If we assume this corresponds to a physical phenomenon, it means that something happens in the center of the star when this physical critical condition is reached. In former papers we developped the concept of joints variations for the so-called constants of physics ( [7], [8], [9] ). Then such very important increase of pressure would go with the increase of c to infinite and create a bridge between the two sectors, the one for positive energy and mass particles, the other for negative energy and mass particles. The challenging decoding of Schwarzschild metric would then correspond to some instant picture of a fast process, to be built from the set of field equations introduced in [10]. A control mechanism for neutron stars’masses. The universe contains a very large number of objects, at distance, of even in our galaxy. When some theoretician predicts the existence of some object, if he is right, this last will be discovered late or soon. As an example Fritz Zwicky predicted the phenomenon of supernova in 1931. He observed the first in 1937, then he found one more four months later. Three years after he had evidenced 12. Now we have thousands. Same thing for neutron stars, exo-planets. The existence of black hole was conjectured in 1963, when Kerr built his axisymmetrical metric solution. Half century have passed, and we have very few questionable stellar black holes candidates. In fact, they are more black hols in poplar journals that observed in the sky, in spite of remarkable progress of observational techniques. A control mechanism for neutron

 

9  

stars could justify such absence. According to this model, when a neutron star receives matter from a companion star, and get a pressure jump at its center, a small space bridge opens there. Matter flows in at large density and relativistic density. The sign of such mass is inverted, so that it escapes the star. It does not any longer interfer with this dense material for matters with opposite signs only interact through gravitational force. Subsidiarily it becomes invisible to our eyes and telescopes. Then the mass of neutron stars should be limited to 3 solar masses, instead 3.3 . The proper time of transfered matter is not distorted and the particle, although its « apparent mass » is inverted, still cruises from pas to future for it does not turn around on its geodesic path. What about « giant black holes » ? Measurements of velocities of fast stars, orbiting close to the center of galaxies indicate that objects whose masses would range between 107 and 109 solar masses should be located there [13]. The scientific community decided to call it « giant black holes ». But are they black holes ? How do they form ? I have suggested a scenario in [11]. From my point of view, the universe is filled by positive and negative masses. In 1957 H.Bondi [12] showed that this cohabitation was impossible, due to the preposterous runaway phenomenon. If the universe is considered as a M4 manifold with a single metric, solution of Einstein’s equation, and if two masses with opposite signs encounter the positive one escapes while the negative one runs after it. This corresponds to the alleged « runaway phenomenon ». Shifting to a bimetric representation ([8], [9], [10] ) we find different the gravitational interaction laws: masses with same signs mutually attract, through Newton’s law. Masses with opposite signs mutually repel through anti-Newton’s law. This model fully challenges the dark matter model. Joint gravitational instability explains VLS, galaxies’ confinement, flatness of their rotation curves and large gravitationel lens effects, mainly imputed to negative lensing [8]. On cosmological scales it explains the observed acceleration of the universe, without need to mysterious « dark energy ». Coupled field equations system may produce joint metric oscillations during the expansion process. It would modify the strenght of the confinement of galaxies, due to their environment of invisible negative mass. If much weakened, the confinement becomes no longer ensured and we get irregular galaxies. If strongly reinforced it creates an annular density wave which focus towards the center of the galaxy. By the way, the density wave triggers young stars’ birth. They ionize the gas and create high magnetic Reynolds number conditions, so that the ring collects the magnetic lignes as a peasant gathers corn ears. This reinforces the magnetic field. When the ring reaches the center, it forms a ball of hot gas in which Lawson conditions occurs in the bulk. Fusion debris are ejected along two diametrally opposite lobes. We get a QSO. The magnetic field gradient acts as a natural particle accelerator and the object is the source of high energy particles, cosmic rays. Soft process would cause gas loss, if the confinement is weakly reduced. Soft reinforcement would send gas to the center of the galaxy, at moderate velocity. This gas would. The mass control mechanism evoked above would limit its growth and would place it in sub-critical configuration R ≤ 0.942 Rs . If some matter would pass by, when captured, its electrons, accelerated, would emit radiation, X-rays . But the wavelength of the radiation emitted by the object would be greatly enlaged by gravitational redshift effect. On another hand, such supermassive objects may have been formed very early by gravitational instability, at the very begining of the life of galaxies. According to the classical theory that would give giant black holes. Considering this new point of view it would give sub-critical objects, due to the evoked mass control process.

 

10  

Conclusion     Starting   from   the   model   of   black   hole,   based   on   Schwarzschild   and   Kerr   metrics   we   introduce   two   successive   changes   of   coordinates.   The   first   reveals   the   true   underlying   topology   of   this   four   dimensional   hypersurface,   eliminating   singularity,   showing   that   this  last  comes  from  a  wrong  choice  of  space  coordinate  and  is  not  an  intrinsic  attribute.       The   horizon,   is   still   a   one-­‐way   membrane   which   becomes   the   mid   part   of   a   space   bridge   linking   the   two   CPT   symmetrical   Minkowskian   sectors   of   a   bimetric   structure.   When   trespassing,  matter  gets  negative  mass.       A  second  change  of  time-­‐marker,  inspired  by  the  one  introduced  by  Eddington  keeps  the   metric  Lorentzian  at  infinite.  To  the  azimutal  Kerr’s  frame-­‐dragging  effect  it  adds  radial   frame-­‐dragging.   The   free   fall   time   of   a   test   particle   towards   the   Schwarzschild   throat   sphere  become  finite,  which  makes  the  black  hole  model  questionable.  .       The   TOV   model   predicts   that   when   the   radius   of   a   neutron   star   reaches   0.942   Rs   the   pressure  at  the  centre  becomes  infinite.  We  assume  it  corresponds  to  a  physical  criticity,   which  would  appears  before  geometrical  criticity  and  prevent  the  birth  of  a  singularity.   We   conjecture   that   this   pressure   rise   goes   with   a   rise   of   the   local   speed   of   light   to   infinity   and   cause   a   geometrical   surgery   which   modifies,   during   a   short   time   the   geodesic  design  with  local  mass  inversion  process.       This  mechanism  would  limit  the  neutron  star’s  mass  to  3  solar  masses.  We  suggest  that   similar  mechanism  could  take  place  at  the  center  of  galaxies  and  draining  off  all  matter   in  excess,  transforming  it  into  negative  mass  and  preventing  the  birth  of  a  singularity.  .       References   [1] Schwarzschild K. : Über das Gravitational eines Massenpunktes nach der Einsteineschen Theory, Sitzber. Preuss. Akad. Wiss. Berlin, 1916, p.189-196   [2] Kerr,   R.   P.   Gravitational   Field   of   a   Spinning   Mass   as   an   Example   of   Algebraically   Special  Metrics.  Phys.  Rev.  Let.  11,  237-­‐238,  1963.   [3] A.Sakharov : "CP violation and baryonic asymmetry of the Universe". ZhETF Pis'ma 5 : 32-35 ( 1967) ; Traduction JETP Lett. 5 : 24-27 (1967) [4] Eddington A.S. : A comparizon of Withehead's and Esinstein's formulæ Nature 113 : 192 (1924) [5] J.M.Souriau : Structure of dynamical systems, Birkhauser Ed, 1998 and Editions Dunod (french) 1974. [6] Oppenheimer   J.R.   and   H.Snyder   (1939)   :   On   continued   Gravitational   Contraction,   Phys.  Rev.  56  :  455   [7] J.P.Petit  :   An   interpretation   of   cosmological   model   with   variable   light   velocity.   Modern  Physics  Letters  A,  Vol.  3,  n°16,  nov  1988,  p.1527   [8] J.P.Petit  :   Twin   Universe   cosmology.   Astronomy   and   Space   Science   1995,   226   pp.   273-­‐307   [9] J.P.  Petit,  P.Midy  &  F.Landsheat  :  Twin  matter  against  dark  matter.  Intern.  Meet.  on   Atrophys.  and  Cosm.  "Where  is  the  matter  ?  ",  Marseille  2001  june  25-­‐29

 

11  

[10]  J.P.Petit  :  The  missing  mas  problem.  Il  Nuevo  Cimento  B,  Vol.  109  july  1994  pp  697-­‐ 710   [11]  J.P.Petit  :  On  a  perdu  la  moitié  de  l’Univers.  Ed.  Albin  Michel,  1997   [12] H.Bondi : Negative mass in General Relativity, Rev. of Mod. Phys. 29 n°3, july 1957, pp. 423-428. [13] Schödel R et al. And : A star in a 15.2 orbit around a supermassive black hole at the centre of the Milky Way, Nature, 419, 17 oct. 694-696 (2002)  

 

12  

Annex  :  Didactic  model   It  can  be  useful  to  give  some  images  of  the  process.    

Fig.5 : The two surfaces figures the gravitational potential, « in mirror ».

Fig. 6 : Stellar wind brings matter

Fig.7 : Matter in excess is evacuated. Its mass is inverted and it spreads away.

 

13  

Fig.8 : Stand by in sub-critical conditions