USE OF PCM IN BUILDINGS

organic-organic eutectic organic-inorganic inorganic inorganic inorganic-inorganic .... fusion 1.9·105 J/kg, specific heat in the liquid and solid state equal to ...
3MB taille 67 téléchargements 379 vues
USE OF PCM IN BUILDINGS

Classification of PCM PCM paraffins organic non-paraffin hydrate salts inorganic metallics organic-organic eutectic

organic-inorganic inorganic inorganic inorganic-inorganic

Commercial PCM PCM name

Type of product

Melting point [°C]

Heat of fusion [kJ/kg]

Source

RT 20 Climsel C23 ClimselC24 RT 26 RT 25 STL 27 S27 RT 30 RT 27 TH 29 Climsel C32 RT32

Paraffin Salt hydrate Salt hydrate Paraffin Paraffin Salt hydrate Salt hydrate Paraffin Paraffin Salt hydrate Salt hydrate Paraffin

22 23 24 25 26 27 27 28 28 29 32 31

172 148 216 131 232 213 207 206 179 188 212 130

Rubitherm GmBH Climator Climator Rubitherm GmBH Rubitherm GmBH Mitsubishi chemical Cristopia Rubitherm GmBH Rubitherm GmBH TEAP Climator Rubitherm GmBH

Characteristics of PCM

Advantages

Disadvantages

Organic

Simple to use Non-corrosive p g No or low supercooling No nucleating agent recyclable

Generally more expensive Lower latent heat density quite broad melting g range g Often q High volume changes during phase changes Can be combustible Some react with ith concrete (béton)

Salt-based

Generally cheap Good latent heat density Higher thermal conductivity Well defined PC temperature Non-flammable g and recyclable y Biodegradable

Need careful preparation Need additives to stablise for long term use Prone to supercooling Can be corrosive to some metals

From Phase change materials: overview Centre for sustainable engineering

Building g applications pp  UNDERFLOOR

 AIR EXCHANGER

 WALL

Applications pp polymers

Encapsuled in plastic or metallic packaging

aluminium

steel

Applications pp

Impregnation porous materials as panelboard and concrete

Macrocapsule PCMs Microencapsulated PCMs

15 mm thick board = 9 cm thick concrete wall

Schematic view of a lightweight g g wall

8 m

Images g from P. Schossig g et al article

SEM (Scanning Electron Microscope) image of PCM micro-capsules in gypsum plaster

Properties p of PCMs Thermophysical properties - melting temperature in the desired operating temperature range - high latent heat of fusion per unit of volume - high specific heat to provide additional heat storage - small volume change on phase transformation - small vapour pressure at operating temperature - congruentt melting lti off the th pcm for f a constant t t storage t capacity it

Properties p of PCMs Kinetic properties high nucleation rate to avoid supercooling of the liquid phase high rate of crystal growth

Chemical properties - complete reversible freeze/melt cycle - no degradation after a large number of freeze/melt cycle - no corrosiveness to the construction materials - non-toxic - non-flammable non flammable

Stability y of PCM  Stability of the proprieties of PCM after many cycles of charging and discharging must be guaranteed. guaranteed 20 years

7300 cycles

 The major problem in using salt hydrates as PCM is that most of them melt incongruently.

 The thermal capacity p y of p pure salt declines q quickly y from an initial value of 238 kJ/kg to 63 kJ/kg after 40 cycles.

Stability y of PCM Several technique to become stable the PCM has studied :

 Calorimeter analysis allow to measure the thermal proprieties of Phase Change Material

provide in a short time, time the  Accellerate cycles allow to provide, behavior of the PCM after many cycles of fusion and solidification

Measurement technique q  DSC (Differential Scanning Calorimetry) Measure the temporal p variation of the thermal energy gy exchanged with the sample of PCM. The output of the measurement is the energy gy time diagram g (thermogram) Use a very small quantities of sample (1-10 mg)

 TA (Thermal Analysis) Measure the temporal variation of temperature in the sample of PCM. The output p of the measurement is the temperature p - time diagram Use small or big quantities of sample (10 g – 10 kg)

Calorimeter analysis

Wall Application pp A PCM layer can be placed within wall constructions to increase the thermal mass of the house The room air temperature p results more comfortable and less varied

The energy consumption for both air conditioning and heating will decrease

Wall Application pp –1 A PCM layer can be placed within the wall close to the external layer DAY The PCM layer in warm days store a great deal of the energy that flows through the wall NIGHT The PCM layer release energy stored in the day outside and inside the building

Wall Application pp –2 A PCM layer can be placed within the wall close to the external layer with a ventilated air chamber DAY The PCM layer in warm days store a great deal of the energy that flows th through h the th wallll d due iin particular ti l tto th the solar radiation NIGHT The PCM layer release outside the energy stored in the day The ventilation in the chamber evacuates part of the energy stored

Wall Application pp –3 A PCM layer can be placed behind a glass and a air chamber

DAY The PCM layer is directly irradiated to solar radiation and store the energy NIGHT The PCM release the energy store in the day within the building If the energy want to be evacuate outside, the air chamber will be open and becomes ventilated

Wall Application pp –4 A PCM layer can be placed within wall constructions to increase the thermal mass of the house The PCM is contained to the internal finish The PCM exchange energy with the internal room Store energy when the air temperature is higher than the temperature of fusion Release R l energy stored t d when h th the air i temperature is lower than the temperature of fusion

Wall - confrontation

Glauber salts Na2SO4·10H2O melting temperature 32°C, density 1450 kg/m3, latent heat of fusion 1.9·105 J/kg, specific heat in the liquid and solid state equal to 3.6·10 3.6 103 J/(kg J/(kg·K). K).

Paolo Principi Dipartimento di Energetica Università Politecnica delle Marche Ancona (Italia)

Air temperature p (surface ( interne))

Thermal flow ((Wm-2) through g south wall

Underfloor applications pp Two PCM layer and plastic tube sandwich

time 2004/08/27 14:35:00

2004/08/27 11:45:00

2004/08/27 0 08:55:00

2004/08/27 0 06:05:00

2004/08/27 0 03:15:00

2004/08/27 0 00:25:00

2004/08/26 2 21:35:00

2004/08/26 18:45:00

2004/08/26 15:55:00

2004/08/26 13:05:00

2004/08/26 10:15:00

2004/08/26 0 07:25:00

2004/08/26 0 04:35:00

2004/08/26 0 01:45:00

2004/08/25 2 22:55:00

2004/08/25 2 20:05:00

2004/08/25 17:15:00

2004/08/25 14:25:00

2004/08/25 11:35:00

2004/08/25 0 08:45:00

2004/08/25 0 05:55:00

2004/08/25 0 03:05:00

2004/08/25 0 00:15:00

2004/08/24 2 21:25:00

2004/08/24 18:35:00

2004/08/24 15:45:00

2004/08/24 12:55:00

2004/08/24 10:05:00

2004/08/24 0 07:15:00

2004/08/24 0 04:25:00

2004/08/24 0 01:35:00

22:45:00 2004/08/23 2

2004/08/23 19:55:00

2004/08/23 17:05:00

2004/08/23 14:15:00

Time

[ [°C]

Underfloor applications pp air temperature

50

45

40

35

30

25 BOX 3 BOX 4

20

15

10

5

0

time 40:00 2004/08/27 14:4

2004/08/27 11:50:00

2004/08/27 09:00:00

2004/08/27 06:10:00

2004/08/27 03:20:00

2004/08/27 00:30:00

40:00 2004/08/26 21:4

2004/08/26 18:50:00

2004/08/26 16:00:00

2004/08/26 13:10:00

2004/08/26 10:20:00

2004/08/26 07:30:00

40:00 2004/08/26 04:4

2004/08/26 01:50:00

2004/08/25 23:00:00

2004/08/25 20:10:00

2004/08/25 17:20:00

2004/08/25 14:30:00

40:00 2004/08/25 11:4

2004/08/25 08:50:00

2004/08/25 06:00:00

2004/08/25 03:10:00

2004/08/25 00:20:00

2004/08/24 21:30:00

40:00 2004/08/24 18:4

2004/08/24 15:50:00

2004/08/24 13:00:00

2004/08/24 10:10:00

2004/08/24 07:20:00

2004/08/24 04:30:00

2004/08/24 01:4 40:00

2004/08/23 22:50:00

2004/08/23 20:00:00

2004/08/23 17:10:00

2004/08/23 14:20:00

2004/08/23 11:30:00

[°C]

Underfloor applications pp surface temperature

80

70

60

50

40 R1 Box3 R1 Box4

30

20

10

0

time 2004/08/27 14:40 2 0:00

2004/08/27 11:50 2 0:00

2004/08/27 09:00 2 0:00

2004/08/27 06:10 2 0:00

2004/08/27 03:20 2 0:00

2004/08/27 00:30 2 0:00

2004/08/26 21:40 2 0:00

2004/08/26 18:50 2 0:00

2004/08/26 16:00 2 0:00

2004/08/26 13:10 2 0:00

2004/08/26 10:20 2 0:00

2004/08/26 07:30 2 0:00

2004/08/26 04:40 2 0:00

2004/08/26 01:50 2 0:00

2004/08/25 23:00 2 0:00

2004/08/25 20:10 2 0:00

2004/08/25 17:20 2 0:00

2004/08/25 14:30 2 0:00

2004/08/25 11:40 2 0:00

2004/08/25 08:50 2 0:00

2004/08/25 06:00 2 0:00

2004/08/25 03:10 2 0:00

2004/08/25 00:20 2 0:00

2004/08/24 21:30 2 0:00

2004/08/24 18:40 2 0:00

2004/08/24 15:50 2 0:00

2004/08/24 13:00 2 0:00

2004/08/24 10:10 2 0:00

2004/08/24 07:20 2 0:00

2004/08/24 04:30 2 0:00

2004/08/24 01:40 2 0:00

2004/08/23 22:50 2 0:00

2004/08/23 20:00 2 0:00

2004/08/23 17:10 2 0:00

2004/08/23 14:20 2 0:00

2004/08/23 11:30 2 0:00

[°C]

Underfloor applications pp surface temperature

50

45

40

35

30

25 R2 Box3 R2 Box4

20

15

10

5

0

Transparent p PCM façade ç panel p

Ceiling g air exchanger g

Ceiling g air exchanger g

NIGHT storing outside cooling

Night behaviour

DAY releasing stored cooling

Day behaviour

Ceiling g air exchanger g

Heat exchanging absorption

SOLID

LIQUID

release Daily cycle

The efficiency of PCM is associate with the heat exchanging

Heat exchanging Conduction Conduction Climate condition with temperature day - night

high

oscillation

of

 Natural Ventilation The exchanging is facilitate with the natural air flow

Heat exchanging  Artificial ventilation The changing and discharging is improved with mechanical system of ventilation

 Hydraulic system The energy energ is carried through thro gh an system s stem with ith water ater or other liquid