

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Uncorrected Proof - Alexandre Cortier

Second, the functional blocks, data exchange buses and signals are used 52 architecture, by specifying which data is transported by which bus for instance.

 Télécharger le PDF

 1MB taille
 3 téléchargements
 319 vues

 commentaire

 Report

BookID 187219 ChapID 003 Proof# 1 - 17/05/10

Chapter 3

1

Synoptic: A Domain-Specific Modeling Language for Space On-board Application Software

2 3 4

5 6

3.1 Introduction

7

3.1.1 Context: Embedded Flight Software

8

oo

f

A. Cortier, L. Besnard, J.P. Bodeveix, J. Buisson, F. Dagnat, M. Filali, G. Garcia, J. Ouy, M. Pantel, A. Rugina, M. Strecker, and J.P. Talpin

ct

A. Cortier, J.P. Bodeveix, M. Filali, M. Pantel, and M. Strecker IRIT-ACADIE, Universit´e de Toulouse, site Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France e-mail: ; ; ; ;

re

J.P. Talpin, J. Ouy, and L. Besnard IRISA-ESPRESSO, campus de Beaulieu., 35042 Rennes Cedex, France e-mail: ;

nc

or

J. Buisson ´ VALORIA, Ecoles de St-Cyr Cotquidan, Universit´e Europ´eenne de Bretagne, 56381 Guer Cedex, France e-mail: F. Dagnat Institut T´el´ecom – T´el´ecom Bretagne, Universit´e Europ´eenne de Bretagne, Technopole Brest Iroise, CS83818, 29238 Brest Cedex 3, France e-mail:

U

AQ1

ed

Pr

This section describes the context of the SPaCIFY project and the various constraints 9 that have been handled in the design and implementation of the Synoptic language 10 toolset. 11

G. Garcia Thales Alenia Space, 100 Boulevard Midi, 06150 Cannes, France e-mail: A. Rugina EADS Astrium, 31 rue des Cosmonautes Z.I. du Palays, 31402 Toulouse Cedex 4, France e-mail:

S.K. Shukla and J.-P. Talpin (eds.), Synthesis of Embedded Software: Frameworks and Methodologies for Correctness by Construction, DOI 10.1007/978-1-4419-6400-7 3, c Springer Science+Business Media, LLC 2010

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

Satellite and Flight Software

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

nc

or re

ct

ed

Pr

oo

f

AQ2 AQ3 A satellite is an unmanned spacecraft. The system architecture is usually specialized according to the satellite mission. There are two main subsystems: the payload is an application equipment such as specific scientific instrumentation for instance; the platform consists of mechanical structure, sensors and actuators used by the payload and devices for communications with ground stations. The SPaCIFY project focuses on the flight software embedded in the satellite to manage its platform, also called on-board software. The flight software is a real-time software that provides services that are common to whatever mission-specific payload the spacecraft is assigned. Typical services include reaching and following the desired attitude and orbit, managing thermal regulation systems, power sources, monitoring system status, managing on-board network (MIL-STD-1553, OBDH, SpaceWire), and communicating with ground stations. Even after the satellite has been launched, flight software must be adapted. Satellites are subject to high energy particles that may damage hardware components. Such damages cannot be fixed except by installing software workarounds. Bug fixes and software updates should be propagated to flying satellites. In addition, mission extensions may require functional enhancements. As flight software is critical to the success of the mission, space industries and agencies have worked on engineering processes in order to help increase reliability. For instance, the European Space Agency has published standards (ECSS-E-40) on software engineering and (ECSS-Q-ST-80) on product assurance. These standards do not prescribe a specific process. They rather formalize documents, list requirements of the process and assign responsibilities to involved partners. Regarding updates, standards stipulate for instance that the type, scope and criticality must be documented; that updates must be validated; and so on. Industries are free to come up with their own conforming processes. The SPaCIFY project defines such a process and supporting tools based on Model-Driven Engineering (MDE), synchronous languages and the Globally Asynchronous Locally Synchronous System (GALS) paradigm.

42

Two main kinds of models are commonly used in order to design the platform software: on the one hand, the description of the platform itself, its hardware and software architecture, CPU, memory, storage, communication buses, sensors, actuators, hardware communication facilities, operating system, tasks, software communication facilities, and on the other hand, the command and control algorithms involved in the management of the platform. All these models have common features. First, the notion of mode is central to represent the various states or configurations of both hardware and software (for example: init, reset, on, low power, failure, safe). The modes and their management are usually expressed using finite automata. Second, the functional blocks, data exchange buses and signals are used to represent both the hardware and software architectures, and the command and control software.

43 44 45 46 47 48 49 50 51 52 53 54

U

Kind of Model Used

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 55 56 57 58 59 60 61 62 63 64 65 66

Models in Development Process

67

Currently, industrial main actors are relying on the Matlab toolboxes Simulink and Stateflow from “The MathWorks” [4] for expressing the command and control algorithms for the various sub-systems of the platform. These models are built by command and control engineers taking into account several kinds of constraints:

68 69 70 71

oo

f

However, the current models only provide a partial account of the constraints that the final system must satisfy. The designers usually encode these hidden constraints using the available constructs in the modeling languages, even if this was not the initial purpose of the construct used. This is usually the case for hard real-time constraints. The designers will rely on explicit management of the control-flow in dataflow models in order to manage the concurrency between the activities. But, the real timing constraints are not explicitly given in the model, they are handled by the designers who sequence the activities, but there is no real specification of the intended result. Thus it requires a very difficult verification phase that can only occur on the final target. This is the current main difficulty: using model constructs for other purpose than their intended ones without any formal, model-level, traceability to the initial constraints.

ed

Pr

 The hardware which is usually known very early (in particular if it handles timing 72 and synchronisation constraints related to sensors and actuators, which must be 73 activated and will produce results in very precise timing patterns) 74 The system mode management that impacts the execution of the various 75 sub-systems 76 77 The specification of the intended sub-system

U

nc

or

re

ct

The Simulink and Stateflow toolboxes allow a very wide range of modeling methods, from continuous partial differential equations to graphical functional specifications. Each industrial actor has a well defined process which defines the restricted subset of the modeling language that will be used at each phase of the development cycle. In the ITEA GeneAuto project [34], a subset of these toolboxes was defined that fits the needs for the modeling of space application from early design to automated target code generation. The industrial partners of SPaCIFY took also part in GeneAuto. This subset aimed at providing a solid semantic background that would ease the understanding and the formal verification of models. This subset was chosen as an entry point for the design of the Synoptic language. One key point is the use of control-flow signals and events (called in Simulink function call events) in order to manage explicitly the sequencing of the blocks in dataflow models. This is an important point which is significantly different on the semantics side from the classical dataflow modeling languages such as SCADE [16] or RT-Builder [3] which do not provide a specific modeling construct for this purpose, but allow to encode it through empty data signals that are added between each block in the intended sequencing path. The key point is that the intended hard real-time constraints are not explicit. Thus it is mandatory to handle the control-flow construct exactly in its usual semantics not using an approximate encoding which only works most of the time but is not proven to work in all cases.

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

nc

or re

ct

ed

Pr

oo

f

Several studies have been conducted by industrial main actors regarding the modeling of hardware and software architecture. HOOD [30] and CCM [20] have been used for many real projects; AADL [6, 31], SysML [18] and UML/MARTE [29] have been evaluated using already existing projects that could be modeled and the results compared with the real systems. Once again, these languages provide a very wide range of modeling constructs that must be reduced or organized in order to be manageable. In the European ASSERT project [5], two tracks were experimented related to these languages, one mainly synchronous based on the LUSTRE [23] and SIGNAL [22] languages, the other mainly asynchronous based on the RAVENSCAR Ada [13] profile. The industrial partners from SPaCIFY were also part of ASSERT. Thus, the results of these experiments were used as entry points for the design of the Synoptic language. In the current software development process, command and control models are formal specifications for the software development. These specifications have been validated by command and control engineers by using model simulators. The hardware architecture is currently defined in a semi-formal manner through structured documents. In the near future, models in AADL, or in a subset of SysML/UML/ MARTE similar to AADL, will be used to give a formal specification of the architecture. Then, software engineers either develop the software and verify its conformance to the specification, or use automated code generators; the software is then split in parts that are mapped to threads from the RTOS. They are then scheduled according to the real-time constraints. The know-how of engineers lies in finding the best splitting, mapping and scheduling in order to minimize the resources used. One of the purposes of introducing Model Driven Engineering is to be able to automate partly these manual transformations and the verification that their result satisfies the specification. The Synoptic language should thus allow to import command and control models expressed in Simulink/Stateflow, hardware architecture models expressed in AADL. The associated toolset should assist in the re-organisation of the model, and allow to express the mapping and scheduling.

128

Real Time Constraints

129

Flight software is mainly responsible for implementing command and control laws. It is therefore a set of tasks performed at fixed time periods by a real-time kernel. Tasks perform the various management activities of the system. They have severe time constraints inherited from the command and control design by automation. The number of tasks varies depending on the approach adopted by the industry: Thales Alenia Space favors a large number of tasks (about 20–30 active tasks on a total of 40–50); while EADS Astrium has a tendency to aggregate calculations, including frequency activation to reduce the number of tasks.

130 131 132 133 134 135 136 137

U

3.1.2 Domain Specific Requirements

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

Although the constraints are strong, the time scale is relatively slow. The 138 activation periods of tasks in the flight software vary typically between 100 ms 139 and 100 s. 140

141

The computing resources embedded in satellites are limited. Thus, at the time of writing, the memory allocated to the flight software is generally under 10 MB. The binary image is also stored in a 1–2 MB EEPROM. The computing power ranges from the 20 MIPS ERC32 processor up to nearly 100 MIPS for the LEON 2 and 3 ones. Moreover, satellites operate in a hostile physical environment. Shocks, temperature variations, radiation, high energy particle beams, damage and destroy electronic components, leading to rapid aging of embedded equipments.

142 143 144 145 146 147 148 149

oo

f

Limited Hardware Resources Capacity

Remote Observability and Commandability

150

Pr

Once a satellite has been launched, the only interventions currently possible are re- 151 mote. Several scenarios have been identified that require maintenance interventions 152 such as for example: 153

nc

or

re

ct

ed

 The satellite, and therefore its embedded software, must survive as long as pos- 154 sible to equipment aging and damages. Installing software workarounds is an 155 economical means of continuing the mission as long as remaining equipments 156 permit. Identifying problems is critical for the ground engineering teams that 157 design such workarounds. 158 Satellites are often still usable at the end of their initial mission. Updating the 159 software is an economical way of achieving new mission objectives while recy- 160 cling satellites. Therefore, ground operators must adapt the software to changing 161 operational conditions. 162 When a bug is detected in the software, its correction should be remotely installed 163 without compromising the satellite. 164

U

These scenarios emphasize the need for remote monitoring and management of the flight software. Monitoring probes characteristics and state of satellite components (both hardware and software) and the physical environment. Management provides actions both at the application level, e.g., manoeuvre, and at the middleware level, e.g., software update. The communication link between satellites and ground passes through ground stations. Since the SPaCIFY project has removed from its study the possibility of routing communications through other spacecrafts, being in range of a ground station is a prerequisite for connectivity. Characteristics (speed, visibility window)

165 166 167 168 169 170 171 172

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

of the communication link depend of the orbit and of the mission. In general, we 173 consider that it is rarely possible to download or upload a full image of the flight 174 software. 175

176

Given the fact that the only possible actions once the satellite has been launched are performed remotely, it is essential to ensure that the satellite is always able to respond to maintenance requests. In addition to verifying the software, defensive mechanisms are usually added as for example to restart computers in case of trouble. Indeed, given the radiation to which satellites are exposed during flight, high-energy particles can swap bits in memory. Several images of the software are also stored on board to be sure to have at least a version which is sufficiently functional to enable communications with the ground.

177 178 179 180 181 182 183 184

oo

f

A High Level of Quality and Safety

Pr

A Particular Software Industry

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

GALS Systems

200

A satellite management software is usually divided in parts that are quite autonomous one from the other, even if they share the same platform and resources. Inside each of these parts, the subparts are most of the time strongly linked and must cooperate in a synchronous manner. These parts usually exchange information but with less time critical constraints, thus relying on asynchronous exchanges. These kind of system are usually called Globally Asynchronous, Locally Synchronous. Synoptic must provide some specific modelling elements to handle this structure.

201 202 203 204 205 206 207 208

U

nc

or re

ct

ed

In addition to software business constraints, the design of flight software has its own peculiarities. For certain classes of satellites, including scientific satellites, each satellite is a single unit, in fact a prototype. Indeed, every scientific mission has a specific objective, needing specific measuring equipment. For other categories, including communications satellites, they are built in series from a single design. However, due to the unpredictability of last minute client requests, manufacture, launch and space environment hazards, each satellite soon becomes again unique. This inevitably leads to a specific flight software for each different satellite. Even when multiple identical copies are initially installed on several satellites, such copies diverge to take into account the specific situation of each satellite and especially their failures and specific maintenance. Furthermore, it is difficult to perform realistic testing of flight software. At best, simulations can give an indication of the software correctness.

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 209

Motivations

210

In collaboration with major European manufacturers, the SPaCIFY project (The SPaCIFY Consortium 2008) aims at bringing advances in MDE to the satellite flight software industry. It focuses on software development and maintenance phases of satellite lifecycles. The project advocates a top-down approach built on a domainspecific modeling language named Synoptic. In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic features hierarchical decomposition in synchronous block diagrams and state machines. SPaCIFY also emphasizes verification, validation and code generation. One key point to ease the long-term availability and the adaptability of the tools, is to rely on open-source technologies.

211 212 213 214 215 216 217 218 219 220

Overview of the SPaCIFY Development Process

221

oo

f

3.1.3 Synoptic: A Domain Specific Design Environment

U

nc

or

re

ct

ed

Pr

To take into account the domain specific requirements and constraints presented in the previous section, the SPaCIFY project proposes to introduce models inside the design and maintenance processes of the on-board applications. Thus, the space domain may benefit from technologies developed in the context of Model Driven Engineering for processing, handling and analyzing models. It therefore takes a shift from current practices based on documents to a tool-supported process built around formal models. The Fig. 3.1 summarizes the major steps of the proposed development and design process. The central models are described in the Synoptic domain specific and

Fig. 3.1 Sketch of the SPaCIFY development cycle for on-board software

222 223 224 225 226 227 228 229 230

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

Fig. 3.2 Code generation and execution platform (middleware) 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

Contents of the Chapter

252

nc

or re

ct

ed

Pr

oo

f

formal language defined by the project. The process promotes vertical and horizontal transformations. The vertical transformations sketch the refinements and the enrichments of Synoptic models. The horizontal transformations consist of translation transformations to formal models (Altarica [1], SME [9] models) that are equipped with specific verification, code generation or simulation tools. The initial Synoptic model, resulting from the automated transformation of Simulink/Stateflow models previously designed by control engineers, is enriched by non-functional properties derived from textual requirements. Using the hardware specifications, the Synoptic model is further enriched by the hardware model of the system. Based on hardware and software constraints, the dynamic architecture can be derived. Finally, the resulting model includes the different views of the system (software, hardware, dynamic architectures) and mappings between them. This last model is used to generate the source code and to configure the middleware of the embedded application. At each step, analysis and verifications can be performed. The transformations of models used in the refinement process formalize the expertise acquired by the industry. Figure 3.2 focuses on the code generation phase. At this phase, the model of the application is initially translated into a SME model. Code generation itself is performed by the Polychrony compiler [21]. The generated code targets the use of a middleware specifically designed for the SPaCIFY project.

U

This chapter is organized as follows. Section 3.2 introduces the main features of the Synoptic DSML with a particular focus on the functional sub-language of Synoptic, called Synoptic core. Synoptic core permits to model synchronous islands. They communicate through asynchronous shared variables (called external variables) managed by the middleware. A simplified case study is used to present the various concepts introduced. Section 3.3 describes the formal semantics and the polychronous model of computation of the Synoptic core which is based on the synchronous dataflow language SIGNAL [7]. Section 3.4 focuses on middleware aspects. The architecture of the execution platform, the middleware kernel, external variables, and the reconfiguration service of the middleware are discussed. Section 3.5 concludes the main contribution of the project and gives an outlook on future investigations.

253 254 255 256 257 258 259 260 261 262 263 264

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 265

3.2.1 Synoptic Overview

267

Synoptic is a Domain Specific Modeling Language (DSML) which aims to support all aspects of embedded flight-software design. As such, Synoptic consists of heterogeneous modeling and programming principles defined in collaboration with the industrial partners and end users of the SPaCIFY project. Used as the central modeling language of the SPaCIFY model driven engineering process, Synoptic allows to describe different layers of abstraction: at the highest level, the software architecture models the functional decomposition of the flight software. This is mapped to a dynamic architecture which defines the thread structure of the software. It consists of a set of threads, where each thread is characterized by properties such as its frequency, priority and activation pattern (periodic, sporadic). At the lowest level, the hardware architecture permits to define devices (processors, sensors, actuators, busses) and their properties. Synoptic permits to describe three types of mappings between these layers:

268 269 270 271 272 273 274 275 276 277 278 279 280 281

266

Pr

oo

f

3.2 Synoptic: A Domain Specific Modeling Language for Aerospace Systems

ed

 Mappings which define a correspondence between the software and the dynamic 282 architecture, by specifying which blocks are executed by which threads 283 Mappings which describe the correspondences between the dynamic and hard- 284 ware architecture, by specifying which threads are executed by which processor 285 Mappings which describe a correspondence between the software and hardware 286 architecture, by specifying which data is transported by which bus for instance 287

U

nc

or

re

ct

Figure 3.3 depicts the principles discussed above.

Fig. 3.3 Global view: layers and architecture mappings

288

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

Pr

oo

f

Our aim is to synthesize as much of these mappings as possible, for example by appealing to internal or external schedulers. However, to allow for human intervention, it is possible to give a fine-grained mapping, thus overriding or bypassing machine-generated schedules. Anyway, consistency of the resulting dynamic architecture is verified by the SPaCIFY tool suite, based on the properties of the software and dynamic model. At each step of the development process, it is also useful to model different abstraction levels of the system under design inside a same layer (functional, dynamic or hardware architecture). Synoptic offers this capability by providing an incremental design framework and refinement features. To summarize, Synoptic deals with dataflow diagrams, mode automata, blocks, components, dynamic and hardware architecture, mapping and timing. In this section we focus on the functional part of the Synoptic language which permits to model software architecture. This sub-language is well adapted to model synchronous islands and to specify interaction points between these islands and the middleware platform using the concept of external variables. Synchronous islands and middleware form a Globally Asynchronous and Locally Synchronous (GALS) system.

Software Architecture

U

nc

or re

ct

ed

The development of the Synoptic software architecture language has been tightly coordinated with the definition of the GeneAuto language [34]. Synoptic uses essentially two types of modules, called blocks in Synoptic, which can be mutually nested: dataflow diagrams and mode automata. Nesting favors a hierarchical design and allows to view the description at different levels of details. By embedding blocks in the states of state machines, one can elegantly model operational modes: each state represents a mode, and transitions correspond to mode changes. In each mode, the system may be composed of other sub-blocks or have different connection patterns among components. Apart from structural and behavioral aspects, the Synoptic software architecture language allows to define temporal properties of blocks. For instance, a block can be parameterized with a frequency and a worst case execution time which are taken into account in the mapping onto the dynamic architecture. Synoptic has a formal semantics, defined in terms of the synchronous language SIGNAL [9]. On the one hand, this allows for neat integration of verification environments for ascertaining properties of the system under development. On the other hand, a formal semantics makes it possible to encode the meta-model in a proof assistant. In this sense, Synoptic will profit from the formal correctness proof and subsequent certification of a code generator that is under way in the GeneAuto project. Synoptic is equipped with an assertion language that allows to state desired properties of the model under development. We are mainly interested in properties that permit to express, for example, coherence of the modes (“if component X is

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

in mode m1, then component Y is in mode m2” or “. . . can eventually move into 330 mode m2”). Specific transformations extract these properties and pass them to the 331 verification tools. 332

333

One typical case study under investigation in the project is a generic satellite positioning software, Fig. 3.4. It is responsible for automatically moving the satellite into a correct position before starting interaction with the ground. The specification of the central flight software (OBSW), consists of the composition of heterogeneous diagrams. Each diagram represents one specific aspect of the software’s role. The OBSW module is controlled by a remote control telecommand TC 001 and receives attitude and position data (POS Data and ATT Data) from sensors through the middleware. The Attitude and Orbit Control System (AOCS) is the main sub-module of the central flight software, Fig. 3.5b. The AOCS automaton controls its operational modes for specific conditions. It is either in nominal mode or in SAFE mode, Fig. 3.5c. The safe mode is characterized by a rude pointing of satellite equipments (solar panels, antennas). It computes the command to be sent to the thrusters to maintain a correct position and attitude.

334 335 336 337 338 339 340 341 342 343 344 345 346 347

Block Diagram: Dataflow, Automaton and External Blocks

U

nc

or

re

ct

A Synoptic model is a graphical block-diagram. A Synoptic block-diagram is a hierarchy of nested blocks. As such, you can navigate through different levels of abstraction and see increasing levels of model details. A block is a functional unit that communicates with other blocks through its interface.

Fig. 3.4 Satellite positioning software

348 349 350 351 352

this figure will be printed in b/w

3.2.2.1

ed

Pr

oo

f

3.2.2 Software Architecture Models

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

a

OBSW : On Board Software

AOCS

or re

ct

ed

c

Pr

oo

f

b

SAFE : AOCS safe mode

U

nc

d

Legend

Fig. 3.5 A typical case study: satellite positioning software

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 353

A block interface consists of communication ports. A port can be either an event port or a data port and is characterized by its direction (in or out). Data ports can be typed using simple data types. However, typing data ports is optional in the early stages of design to give the designer the flexibility to describe abstract models. As shown in Fig. 3.6, which represents a part of the Synoptic meta-model, it is possible to encapsulate a set of ports within a single entity called group of ports (PortGroup in Fig. 3.6). A group of ports is used to group a set of ports which are conceptually linked. As specified by the synchronized property of the PortGroupDecl meta-model class, it is possible to specify a synchronization constraint on ports constituting the group. A block interface can be implemented by different types of blocks: dataflows, automata or externals, Fig. 3.7.

354 355 356 357 358 359 360 361 362 363 364 365

Dataflow

366

oo

f

Block Interface

Fig. 3.6 Synoptic metamodel: interface

this figure will be printed in b/w

U

nc

or

re

ct

ed

Pr

A dataflow block models a dataflow diagram. It embodies sub-blocks and specifies 367 data or event flows between them. A flow is a directed connection between ports 368 of sub-blocks. A sub-block is either an instance of dataflow, automaton or external 369

BookID 187219 ChapID 003 Proof# 1 - 17/05/10

this figure will be printed in b/w

SPaCIFY Project

oo

f

Fig. 3.7 Synoptic metamodel: model diagram

370 371 372 373

Automaton

374

ed

Pr

block, or an instance of block interface (see ModelInstance class in Fig. 3.7). In the latter case, the model is abstract: the designer must implement all the block interfaces used to type sub-blocks in order to obtain a concrete model. As such, Synoptic environment design promotes a top-down approach.

375 376 377 378 379 380 381 382 383 384 385 386 387

External Block

388

A common practice in software industry is the re-use of external source code: designers must be able to introduce blocks representing existing source code into the model. Moreover, for modeling flight software functional units, it is necessary to use primitive operations such as addition, cosinus, division.

389 390 391 392

U

nc

or re

ct

An automaton block models state machines. A Synoptic automaton consists of states and transitions. As for dataflow, a state can be represented by an instance of dataflow, automaton or block interface. Dataflow diagrams and automata can be hierarchically nested; this allows for a compact modelling of operational modes. Apart from the ongoing actions of automata (block embedded in state), it is possible to specify entry and exit actions in an imperative style. Transitions between states are guarded and equipped with actions. There are two types of transitions in Synoptic: strong and weak transitions. Strong transitions are used to compute the current state of the automaton (before entering the state), whereas weak transitions are used to compute the state for the next instant. More precisely, the guards of weak transitions are evaluated to estimate the state for the next instant, and the guards of strong transitions whose source is the state estimated at the previous instant, are evaluated to determine the current state.

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 393 394 395 396 397 398 399

Example: A Dataflow Block Diagram

400

Figure 3.8 shows the graphical decomposition of the nominal mode of the Attitude and Orbit Control System (AOCS/NM) depicted in (Fig. 3.5b). The header of the block tells us that NM is an instance of the NM dtf dataflow block. In nominal mode, AOCS can either use its sun pointing sensors (SUP) to define its position or, during eclipse, use its geocentric pointing sensors (GAP). To model this activity, the nominal mode of the AOCS flight software encapsulates two sub-blocks: one dataflow block (TEST ECLIPSE) which detects an eclipse occurrence and one automaton block (SUP OR GAP) which ensures the change of sub-mode (SUP or GAP) depending on the outcome of the eclipse test block.

401 402 403 404 405 406 407 408 409

Synchronous Islands

ed

3.2.2.2

Pr

oo

f

Synoptic provides the concept of external block to model primitive blocks and external source code, Fig. 3.7. Primitive blocks are encapsulated in a Synoptic library. The Synoptic tool suit recognizes these primitive operations during code generation. For embedding an external source code, the procedure is quite different. The designer must build his own external block by defining its interface, by giving the source code path which will be used at code generation time, and by specifying pre/post conditions and the Worst Case Execution Time of the functional unit.

411 412 413 414

Fig. 3.8 AOCS nominal (NM) sub-mode – satellite positioning software

this figure will be printed in b/w

U

nc

or

re

ct

A functional model consists of synchronous islands. A synchronous island is a synchronous functional unit in interaction with the middleware. The middleware supports the execution of code generated from the Synoptic model: it provides a synchronous abstraction of the asynchronous real world.

410

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project 415 416 417 418 419 420 421 422 423 424 425

Contractual Approach

426

f

To ensure proper integration of the generated code with the middleware platform, it is essential to locate all interactions between the middleware and the application. Our approach is to locate all these interactions into a single concept in Synoptic: the concept of external variables. External variables allow to represent in Synoptic models the following domain specific and technical concepts: telecommand, telemetry, constants database systems, shared variables and persistent variables (on reboot). The specification of external variables are used for code generation and middleware configuration. Therefore a Synoptic synchronous island is a block in which all input and output signals are connected to external variables. The OBSW block of our case study is one such synchronous island, Fig. 3.5a.

427 428 429 430

1. 2. 3. 4.

A classical syntactic contract that includes its name and type A remote access contract (through telemetry) A persistence contract that specifies if the variable is persistent on reboot or not A synchronization contract that describes the possible concurrent interactions when the variable is shared

431 432 433 434 435

Each component using such a variable must also provide a usage contract that defines the protocol it will use to access the variable. These contracts allow the middleware to manage the variable. Thus, the synchronization contract will indicate if locks are needed and when they should be used. The persistence contract will indicate how the variable should be stored (RAM or permanent memory). The monitoring functions of the variable that the middleware must implement are defined by the remote access contract and the usage contracts.

436 437 438 439 440 441 442

3.2.2.3

nc

or re

ct

ed

Pr

oo

An external variable is a variable managed by the middleware. It can be read or written by multiple clients (components of the application). Contracts are used to specify how to control this access. The configuration of an external variable is done using four levels of contracts:

Control and Temporal Properties

443 444 445 446 447

Trigger Port

448

U

As described before, blocks are functional units of compilation and execution. Block execution is controlled using two specific control ports: triggerand reset ports. These ports are inherited from the Simulink/Stateflow approach [4]. These ports appear as black triangles in the upper left of the block, Figs. 3.5 and 3.8.

The trigger port is an event port. The occurrence of a trigger event starts the execu- 449 tion of the block and its specification may then operate at its own pace until the next 450 trigger is signaled. 451

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

Sub-blocks have their own trigger control ports and can thus operate at a different 452 rate. Without event signal connecting its control port, a sub-block inherits the control 453 signals of its parent block. 454

455

The trigger port stands for the clock of the block. In our case study, the trigger control port of blocks is never connected: the clock of the block is explicitly defined using a period or a frequency property. Adding this frequency property is semantically equivalent to connecting the trigger control port with a 20-Hz clock. By convention, all input signals of the block are synchronized with the trigger of the parent block. This constraint may be too strict: it is thus possible to redefine the frequency of ports by adding an explicit property of frequency. Note however that the clock of ports must be a down-sampling of the parent trigger. Explicitly specifying a real-time constraint on ports and blocks can lead to difficulties when specifying a flow between two ports with different frequencies. Synoptic tools are able to detect such clock errors. The designer should use predefined clock adaptors to resample the signal, Fig. 3.8. Besides frequency properties, it is possible to specify the phase and the Worst Case Execution Time (WCET) of a block.

456 457 458 459 460 461 462 463 464 465 466 467 468 469

Reset Port

470

ed

Pr

oo

f

Explicit Clock and Adaptors

471 472 473 474 475 476 477

3.2.2.4

478

or

re

ct

The reset port is a boolean data port whose clock is a down-sampling of the trigger signal. The reset signal forces the block B to reset its state and variables to initial values. Contrarily to StateCharts [24], when a transition is fired the destination state of the transition is not reset. It means that by default, one enters the history state. To reset the destination state and all variables it contains, the solution is to specify this reset in the action of the transition.

nc

Properties Specification

479 480 481 482 483 484 485

(OBSW.MCS.state = SAFE) H) (OBSW.AOCS.state = SAFE)

486

U

The Synoptic language is equipped with an assertion language to state desired properties of the model under development. This language makes it possible to express invariants, pre- and post-conditions on blocks. Invariants are used to express coherence of modes. For instance, a typical assertion that we want to prove on the case study model (Fig. 3.5) is that if the MCS block is in SAFE mode, then the AOCS block is also in SAFE mode. Such an assertion is described in Synoptic as follows:

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

The Synoptic environment provides a tool to extract Synoptic models and their associated properties and pass them to the Altarica model-checker [1]. Pre- and post-conditions can be either statically or dynamically tested. In the latter case, monitoring functions are implemented in the final software and raise events when properties are not satisfied. Monitoring functions are distinguished from assertion properties by raising an event to its environment when the property is not satisfied: Assertion : Monitoring function :

pre : a < 10 ;

487 488 489 490 491 492 493 494

pre : a < 10 raise eŠ ;

oo

3.2.3 Synoptic Components: Genericity and Modularity

f

Here, a stand for an input data port and e for an event port and eŠ for an event 495 emission on e port. 496

ct

ed

Pr

Synoptic supports modular system development and parametric components. The latter are particularly useful for an incremental design and gradual refinement, using predefined development patterns (see Sect. 3.2.4). As mentioned in Sect. 3.2.2.1, there are two main categories of components: dataflow blocks and automata blocks. They exist on the type level (interfaces) and on the element level (instances). Components can be parametric, in the sense that a block can take other elements as arguments. Parametric components are similar to functors in ML-style programming languages, but parameters are not limited to be blocks. They can, among others:

497 498 499 500 501 502 503 504 505 506

or re

 Be integers, thus allowing for variable-sized arrays whose length is only fixed 507 during compile time 508 509 Be types, thus allowing for type genericity as in Java 5 [19] Be entire components, thus allowing for component assembly from more ele- 510 mentary blocks 511

U

nc

Syntactically, the parameters of a block are specified after a requires clause, the publicly visible elements made available by the block follow in a provides clause, and there maybe a private part, as in Fig. 3.9. This example reveals parts of the textual syntax of Synoptic , which in this case is more perspicuous than a graphical syntax. The component C requires (an instance of) a block, called ADD, that is characterized by a component type having a certain number of in and out ports. C provides a dataflow that is composed of two blocks, one of which is defined in the private part of C. Parameterized blocks can be instantiated with elements that meet their typing constraints, in a large sense. In the case of simple parameter types (like integers), the typing constrains are evident. When instantiating a parameterized component having a parameter type P with a component C , the component C has to provide all the elements stipulated by the requires clause of P (but may provide more).

512 513 514 515 516 517 518 519 520 521 522 523 524

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

this ﬁgure will be printed in b/w

4

f

3

component C requires b l o c k t y p e ADD features idp1 : i n d a t a p o r t i n t e g e r ; idp2 : i n d a t a p o r t i n t e g e r ; odp1 : o u t d a t a p o r t i n t e g e r ; end ADD; provides d a t a f l o w ADD_MULT.op blocks add : b l o c k t y p e ADD; mult : b l o c k t y p e MULT; flows s1 : d a t a idp1 ! add.idp1; -- other flows ... end ADD_MULT.op; private b l o c k t y p e MULT features -- ... end MULT; end C;

oo

2

Pr

1

Fig. 3.9 A parameterized component

U

nc

or

re

ct

ed

Conversely, C may require some (but not necessarily all) the elements provided by P . Parameter instantiation is thus essentially contravariant. Some clauses of a component are not checked during instantiation, such as private. Parameter types can be equipped with properties (see Sect. 3.2.2.4) such as temporal properties. Instantiating these types gives rise to proof obligations, depending on the underlying logic. In some cases, an exact match between the formal parameter component and the actual argument component is not required. In this case, a mechanism comparable to a type cast comes into play: Take, for example, the case of a component triggered at 20 Hz C20j (as in Fig. 3.8) that is to be used by a parametric component C10j operating at 10 Hz. Component C20j can be used as argument of C10j , and a default frequency splitter will be synthesized that adapts the frequency of the C20j to C10j .

3.2.4 Incremental Design and Refinement Features

525 526 527 528 529 530 531 532 533 534 535 536

537

The Synoptic environment promotes a top-down approach including incremental 538 design and refinement features. 539

BookID 187219 ChapID 003 Proof# 1 - 17/05/10

this figure will be printed in b/w

SPaCIFY Project

oo

f

Fig. 3.10 Synoptic metamodel: refinement

U

nc

or re

ct

ed

Pr

In first steps of design, Synoptic allows to describe an abstract model. For instance, the designer can describe abstract interfaces where data ports are not typed and connect instances of these interfaces in a dataflow diagram. In a second step, the designer can refine its modeling by typing the block interfaces. The block interface can be then implemented with dataflow or automaton blocks. These features of the Synoptic environment are mainly “edition refinement” which allows the designer to model a system in an incremental way. In doing so, the designer loses the link between the different levels of refinement: when the model is concretized, the initial abstract model is not preserved and therefore cannot be accessed. Synoptic offers a way to specify refinement and to keep a formal link between an abstract model and its concretization. As depicted in the metamodel, Synoptic provides two types of refinements: flow refinement and block refinement, Fig. 3.10. A flow refinement consists of refining a flow with a dataflow block. To be properly defined, the flow must be declared as abstract and the dataflow block must have a single input port and a single output port correctly typed. A block refinement consists of refining a block instance with a dataflow block. The main use of this type of refinement is to concretize an interface block with a dataflow.

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

Example

559

Figure 3.11 illustrates a flow refinement. The first model is an abstract view of the global architecture of the case study. The abstract model consists of three dataflow blocks. Sensors send their data (position and attitude) to the central flight software. OBSW computes them and sends a new command to actuators. In this abstract block diagram, flows between actuators and the OBSW are obviously not synchronous signals: data are exchanged through an 1553 bus.

560 561 562 563 564 565 566

BookID 187219 ChapID 003 Proof# 1 - 17/05/10

this figure will be printed in b/w

3 Synoptic: A DSML for Space On-board Application Software

Fig. 3.11 Flow refinement: introduce external variables

re

ct

ed

Pr

oo

f

To consider this fact, flows are specified as abstract. The same applies to the flows between OBSW and actuators. Moreover, a real-time requirement is added to the flows: delay 20 s . This requirement represents the maximum age of data: data consumed by OBSW must be aged less than 20 s. The second model in Fig. 3.11 shows how this abstract model is refined. Each flow is refined with a dataflow block composed of external variables. The concrete model confirms that data sent by the sensors are not Synchronous flows but pass through the middleware. According to the real-time requirement of abstract model, the middleware is in charge of distributing data to flight software by respecting the limit of data aging. In addition, this refinement step displays the OBSW synchronous island.

or

3.3 Semantic and Model of Computation of synoptic Models

579 580 581 582 583 584

U

nc

The model of computation on which Synoptic relies is that of the Eclipse-based synchronous modeling environment SME [9]. SME is used to transform Synoptic diagrams and executable generate C code. The core of SME is based on the synchronous dataflow language SIGNAL [22]. This section describes how Synoptic programs are interpreted and compiled into this core language.

567 568 569 570 571 572 573 574 575 576 577 578

3.3.1 An Introduction to SIGNAL

585

In SIGNAL, a process P consists of the composition of simultaneous equations 586 x D f .y; z/ over signals x; y; z. A delay equation x D y pre v defines x every 587 time y is present. Initially, x is defined by the value v, and then, it is defined by the 588

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

previous value of y. A sampling equation x D y when z defines x by y when z is true. Finally, a merge equation x D y default z defines x by y when y is present and by z otherwise. An equation x D yfz can use a boolean or arithmetic operator f to define all of the nth values of the signal x by the result of the application of f to the nth values of the signals y and z. The synchronous composition of processes P j Q consists of the simultaneous solution of the equations in P and in Q. It is commutative and associative. The process P =x restricts the signal x to the lexical scope of P . P; Q WWD x D yfz j P =x j P j Q

589 590 591 592 593 594 595 596

(process): 597 598 599 600

oo

f

In SIGNAL, the presence of a value along a signal x is an expression noted Ox. It is true when x is present. Otherwise, it is false. Specific processes and operators are defined in SIGNAL to manipulate clocks explicitly. We only use the simplest one, x sync y, that synchronizes all occurrences of the signals x and y.

3.3.2 Interpretation of Blocks

602 603 604 605 606 607 608 609

A; B WWD block xA j dataﬂow xA j automaton xA j A j B :

or re

.blocks/

ct

ed

Pr

Blocks are the main structuring elements of Synoptic. A block block xA defines a functional unit of compilation and of execution that can be called from many contexts and with different modes in the system under design. A block x encapsulates a functionality A that may consist of sub-blocks, automata and dataflows. A block x is implicity associated with two signals x:trigger and x:reset. The signal x:trigger starts the execution of A. The specification A may then operate at its own pace until the next x:trigger is signaled. The signal x:reset is delivered to x at some x:trigger and forces A to reset its state and variables to initial values.

601

610 611 612 613 614 615 616 617 618 619

3.3.3 Interpretation of Dataflow

620

U

nc

The execution of a block is driven by the trigger t of its parent block. The block resynchronizes with that trigger when itself or one of its sub-blocks makes an explicit reference to time (e.g., a skip for an action or a delayed transition S T for an automaton). Otherwise, the elapse of time is sensed from outside the block, whose operations (e.g., on ci), are perceived as belonging to the same period as within Œti ; tiC1 Œ. The interpretation implements this feature by encoding actions and automata using static single assignment. As a result, and from within a block, every non-time-consuming sequence of actions AI B or transitions A ! B defines the value of all its variables once and defines intermediate ones in the flow of its execution.

Dataflows inter-connect blocks with data and events (e.g., trigger and reset signals). 621 A flow can simply define a connection from an event x to an event y, written 622

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

event x ! y, combine data y and z by a simple operation f to form the flow x, written data y f z ! x or feed a signal y back to x, written data y pre v ! x. In a feedback loop, the signal x is initially defined by x0 D v. Then, at each occurrence n > 0 of the signal y, it takes its previous value xn D yn1 . The execution of a dataflow is controlled by its parent clock. A dataflow simultaneously executes each connection it is composed of every time it is triggered by its parent block. .dataflow/

623 624 625 626 627 628 629

A; B WWD data y pre v ! x j data yfz ! x j event x ! y j A j B :

or

re

ct

ed

Pr

oo

f

Dataflows are structurally similar to SIGNAL programs and equally combined using synchronous composition. The interpretation ŒŒArt D hhP ii of a dataflow (Fig. 3.12) is parameterized by the reset and trigger signals of the parent block and returns a process P (The input term A and the output term P are marked by ŒŒA and hhP ii for convenience). A delayed flow data y pre v ! x initially defines x by the value v. It is reset to that value every time the reset signal r occurs. Otherwise, it takes the previous valueQof y in time. In Fig. W 3.12, we write in Pi for a finite product of processes PV1 jj : : : Pn . Similarly, in ei is a finite merge of signals e1 default : : : en and in ei a finite sampling e1 when : : : en . A functional flow data yfz ! x defines x by applying f to the values of y and z. An event flow event y ! x connects y to define x. Particular cases are the operator ‹.y/ to convert an event y to a boolean data and the operator O.y/ to convert the boolean data y to an event. We write in.A/ and out.A/ for the input and output signals of a dataflow A. By default, the convention of Synoptic is to synchronize the input signals of a dataflow to the parent trigger. It is however, possible to define alternative policies. One is to down-sample the input signals at the pace of the trigger. Another is to adapt or resample them at that trigger. Alternatively, adaptors could better be installed around the input and output signals of a block in order to resample them with respect to the specified frequency of the block.

nc

ŒŒdataﬂow f Art D hhŒŒArt j

Q

 x sync t ii x2in.A/

U

ŒŒ data y pre v ! xrt D hhx D .v when r/ default .y pre v/ j .x sync y/ii ŒŒ data y f z ! xrt D hhx D y f zii ŒŒ event y ! xrt D hhx D when yii ŒŒA j Brt D hhŒŒArt j ŒŒBrt ii

Fig. 3.12 Interpretation of dataflow connections

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

3.3.4 Interpretation of Actions

651

Actions are sequences of operations on variables that are performed during the execution of automata. The assignment x D yfz defines the value of the variable x at the next instant as the result of the application of the function f to y and z. The skip action lets time elapse until the next trigger and assigns to unchanged variables the value they had at the previous instant. The conditional if x then A else B executes A if the current value of x is true and executes B otherwise. A sequence AI B executes A and then B.

652 653 654 655 656 657 658 659

.action/

A; B WWD skip j x D yfz j if x then A else B j AI B : 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

U

nc

or re

ct

ed

Pr

oo

f

The execution of an action A starts at an occurrence of its parent trigger and shall end before the next occurrence of that event. During the execution of an action, one may also wait and synchronize with this event by issuing a skip: A skip has no behavior but to signal the end of an instant: all the newly computed values of signals are flushed in memory and execution is resumed upon the next parent trigger. Action xŠ sends the signal x to its environment. Execution may continue within the same symbolic instant unless a second emission is performed: one shall issue a skip before that. An operation x D yfz takes the current value of y and z to define the new value of x by the product with f . A conditional if x then A else B executes A or B depending on the current value of x. As a result, only one new value of a variable x should at most be defined within an instant delimited by a start and an end or a skip. Therefore, the interpretation of an action consists of its decomposition in static single assignment form. To this end, we use an environment E to associate each variable with its definition, an expression, and a guard, that locates it (in time). An action holds an internal state s that stores an integer n denoting the current portion of the actions that is being executed. State 0 represents the start of the program and each n > 0 labels a skip that materializes a synchronized sequence of actions. The interpretation ŒŒAs;m;g;E D hhP iin;h;F of an action A (Fig. 3.13) takes as parameters the state variable s, the state m of the current section, the guard g that leads to it, and the environment E. It returns a process P , the state n and guard h of its continuation, and an updated environment F . The set of variables defined in E is written V .E/. We write usegE .x/ for the expression that returns the definition of the variable x at the guard g and defgE .x/ for storing the final values of all variables x defined in E at the guard g. usegE .x/ D if x 2 V .E/ then hhE.x/ii else hh.x pre 0/ when gii; Q defg .E/ D x2V .E / x D usegE .x/ :

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

ŒŒ do Art D hh.P j s sync t j rD.sD0// =sii where hhP iin;h;F DŒŒAI end s;0;..s pre0/D0/;;

ŒŒ end s;n;g;E D hhsD0 when g j defg .E/ii0;0;; ŒŒ skip s;n;g;E D hhsDn C 1 when g j defg .E/iinC1;..s pre 0/DnC1/;;

ŒŒxŠs;n;g;E D hhxD1 when giin;g;E ŒŒxDyfzs;n;g;E D hhxDeiin;g;Ex]fx7!eg where eDhhf .usegE .y/; usegE .z// when gii ŒŒAI Bs;n;g;E D hhP j QiinB ;gB ;EB where hhP iinA ;gA ;EA DŒŒAs;n;g;E and hhQiinB ;gB ;EB D ŒŒBs;nA ;gA ;EA ŒŒ if x then A else Bs;n;g;E D hhP j QiinB ;.gA default gB /;.EA]EB / g where hhP ii D ŒŒAs;n;.g when useE .x//;E and hhQii

nB ;gB ;EB DŒŒB

oo

f

nA ;gA ;EA g s;nA ;.g when not useE .x//;E

Pr

Fig. 3.13 Interpretation of timed sequential actions

nc

or

re

ct

ed

Execution is started with s D 0 upon receipt of a trigger t . It is also resumed from a skip at s D n with a trigger t . Hence the signal t is synchronized to the state s of the action. The signal r is used to inform the parent block (an automaton) that the execution of the action has finished (it is back to its initial state 0). An end resets s to 0, stores all variables x defined in E with an equation x D usegE .x/ and finally stops (its returned guard is 0). A skip advances s to the next label n C 1 when it receives control upon the guard e and flushes the variables defined so far. It returns a new guard .s pre 0/ D n C 1 to resume the actions past it. An action xŠ emits x when its guard e is true. A sequence AI B evaluates A to the process P and passes its state nA , guard gA , environment EA to B. It returns P j Q with the state, guard and environment of B. Similarly, a conditional evaluates A with the guard g when x to P and B with g when not x to Q. It returns P j Q but with the guard gA default gB . All variables x 2 X , defined in both EA and EB , are merged in the environment F . In Fig. 3.13, we write E] F to merge the definitions in the environments E and F . For all variables x 2 V .E/ [V .F / in the domains of E and F ,

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

U

8 x 2 V .E/ n V .F /; < E.x/; .E] F /.x/ D F .x/; x 2 V .F / n V .E/; : E.x/ default F .x/; x 2 V .E/ \ V .F /:

Note that an action cannot be reset from the parent clock because it is not synchronized to it. A sequence of emissions xŠI xŠ yield only one event along the signal x because they occur at the same (logical) time, as opposed to xŠI skip I xŠ which sends the second one during the next trigger.

701 702 703 704

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

0 1 2 3 4 5 6 7 8 9

x1 D 0 when .s D 0/ x2 D x1 C 1 when .s D 0/ when y x3 D x1 1 when .s D 0/ when not y x4 D .x pre 0/ 1 when .s D 1/ x D x2 when .s D 0/ when y default x3 when .s D 0/ when not y default x4 when .s D 1/ 0 s D 0 when .s D 1/ default 0 when .s D 0/ when y default 1 when .s D 0/ when not y s D s 0 pre 0

Fig. 3.14 Tracing the interpretation of a timed sequential program

705

Pr

Example

oo

f

10

x1 D 0I if y then x2 D x1 C 1 else f x3 D x1 1I x D x3 I skip I x4 D x 1 gI x D .x2 ; x4 / end

ed

Consider the simple sequential program of the introduction. Its static single assign- 706 ment form is depicted in Fig. 3.14. 707 x D 0I if y then fx D x C 1g else fx D x 1I skip I x D x 1gI end

U

nc

or re

ct

AQ4 As in GCC, it uses a -node, line 9 to merge the possible values x2 and x4 of x flowing from each branch of the if . Our interpretation implements this by a default equation that merges these two values with the third, x3 , that is stored into x just before the skip line 6. The interpretation of all assignment instructions in the program follows the same pattern.1 Line 2, for instance, the value of x is x1 , which flows from line 1. Its assignment to the new definition of x, namely x2 , is conditioned by the guard y on the path from line 1 to 2. It is conditioned by the current state of the program, which needs to be 0, from line 1 to 6 and 9 (state 1 flows from line 7 to 9, overlapping on the -node). Hence the equation x2 D x1 C 1 when .s D 0/ when y.

3.3.5 Interpretation of Automata

708 709 710 711 712 713 714 715 716 717

718

Automata schedule the execution of operations and blocks by performing timely 719 guarded transitions. An automaton receives control from its trigger and reset signals 720

1

In the actual translation, temporary names x1;:::;5 are substituted by the expression that defines them. We kept them in the figure for a matter of clarity.

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

x:trigger and x:reset as specified by its parent block. When an automaton is first triggered, or when it is reset, its starts execution from its initial state, specified as initial state S . On any state S W do A, it performs the action A. From this state, it may perform an immediate transition to new state T , written S ! on x T , if the value of the current variable x is true. It may also perform a delayed transition to T , written S on x T , that waits the next trigger before to resume execution (in state T). If no transition condition applies, it then waits the next trigger and resumes execution in state S . States and transitions are composed as A j B. The timed execution of an automaton combines the behavior of an action or a dataflow. The execution of a delayed transition or of a stutter is controlled by an occurrence of the parent trigger signal (as for a dataflow). The execution of an immediate transition is performed without waiting for a trigger or a reset (as for an action). .automaton/

721 722 723 724 725 726 727 728 729 730 731 732

A; B WWD state SW doA j S ! on x T j S on x T j A j B :

ed

Pr

oo

f

An automaton describes a hierarchic structure consisting of actions that are executed upon entry in a state by immediate and delayed transitions. An immediate transition occurs during the period of time allocated to a trigger. Hence, it does not synchronize to it. Conversely, a delayed transition occurs upon synchronization with the next occurrence of the parent trigger event. As a result, an automaton is partitioned in regions. Each region corresponds to the amount of calculation that can be performed within the period of a trigger, starting from a given initial state.

Notations

740 741 742 743 744 745 746

or

re

ct

We write !A and A for the immediate and delayed transition relations of an automaton A. We write pred!A .S / D fT j .T; x; S / 2 Rg and succ!A .S / D fT j .S; x; T / 2 Rg (resp. predA .S / and succA .S /) for the predecessor and successor states of the immediate (resp. delayed) transitions !A (resp. A) from a state S in an automaton A. Finally, we write S for the region of a state S . It is defined by an equivalence relation.

733 734 735 736 737 738 739

nc

8S; T 2 S .A/; ..S; x; T / 2 !A / , S D T:

U

For any state S of A, written S 2 S .A/, it is required that the restriction of !A to 747 the region S is acyclic. Notice that, still, a delayed transition may take place between 748 two states of the same region. 749

Interpretation

750

An automaton A is interpreted by a process ŒŒ automaton x Art parameterized by 751 its parent trigger and reset signals. The interpretation of A defines a local state s. It 752 is synchronized to the parent trigger t . It is set to 0, the initial state, upon receipt of 753

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

a reset signal r and, otherwise, takes the previous value of s 0 , that denotes the next state. The interpretation of all states is performed concurrently. We give all states Si of an automaton A a unique integer label i D dSi e and designate with dAe its number of states. S0 is the initial state and, for each state of index i , we call Ai its action i and xij the guard of an immediate or delayed transition from Si to Sj .

754 755 756 757 758 759

ŒŒ automaton x Art D Q s =ss 0 ii : hh t sync s j s D .0 when r/ default .s 0 pre 0/ j ŒŒS i Si 2S .A/ 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

or re

ct

ed

Pr

oo

f

The interpretation ŒŒSi s of all states 0 i < dAe of an automaton (Fig. 3.15) is implemented by a series of mutually recursive equations that define the meaning of each state Si depending on the result obtained for its predecessors Sj in the same region. Since a region is by definition acyclic, this system of equations has therefore a unique solution. The interpretation of state Si starts with that of its actions Ai . An action Ai defines a local state si synchronized to the parent state s D i of the automaton. The automaton stutters with s 0 D s if the evaluation of the action is not finished: it is in a local state si ¤ 0. Interpreting the actions Ai requires the definition of a guard gi and of an environment Ei . The guard gi defines when Ai starts. It requires the local state to be 0 or the state Si to receive control from a predecessor Sj in the same region (with the guard xj i). The environment Ei is constructed by merging these Fj returned by its immediate predecessors Sj . Once these parameters are defined, the interpretation of Ai returns a process Pi together with an exit guard hi and an environment Fi holding the value of all variables it defines.

 8i < dAe; ŒŒSi s D Pi j Qi j si sync when .s D i / j s 0 D si0 =si where

U

nc

hhPi iin;hi ;Fi D ŒŒAi si ;0;gi ;Ei Q Qi D .Si ;xij ;Sj /2A defhi when .useF .xij // .Fi / i U Ei D Sj 2pred! .Si / Fj A W gi D 1 when .si pre 0 D 0/ default .Sj ;xj i ;Si /2!A .useE .xj i // gij D hi when .useFi .xij //; 8.Si ; xij ; Sj / 2 A W si0 D .s when si ¤ 0/ default .j when g / ij .Si ;xij ;Sj /2A

Fig. 3.15 Recursive interpretation of a mode automaton

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 777 778 779 780 781 782 783 784 785 786 787

Example

788

Reconsider our previous sequential program, which we now represent by a mode automaton (Fig. 3.16, left). Our interpretation of automata merges, loads and stores the variables defined in states S1:::5 . Thanks to a decomposition in regions, this provides an interpretation with synchronous equations that has an equivalent meaning as that of a sequential program. One can actually check that the translation of the automaton (Fig. 3.16, right) is identical to that of the original program modulo substitution of local the local signals x1;:::;4 by their definition.

789 790 791 792 793 794 795 796

ed

Pr

oo

f

Upon evaluation of Ai , delayed transition from Si are checked. This is done by the definition of a process Qi which, first, checks if the guard xij of a delayed transition from Si evaluates to true with Fi . If so, variables defined in Fi are stored with defhi .Fi /. All delayed transitions from Si to Sj are guarded by hi (one must have finished evaluating i before moving to j) and a condition gij , defined by the value of the guard xij . The default condition is to stay in the current state s while si ¤ 0 (i.e., until mode i is terminated). Hence, the next state from i is defined by the equation s 0 D si0 . The Q next state equation of each state isWcomposed with the other to form the product i ˆ ˇ > ˆ > ˆ ˇ v > ˆ = < ˇC D C r [fmin.T .b.x///g ˇ C ; ŒŒ data y pre v ! x D b 2 B jx;y ˇ ˇ8t 2 C v ; b.x/.t/ D v > ˆ > ˆ ˇ > ˆ > ˆ ˇ > ˆ : ˇ8t 2 C x n C v ; b.x/.t/ D b.y/.predC x .t// ; ˇ () ˇ8t 2 T .b.x// D T .b.y// D T .b.z//; ˇ ŒŒ data yfz ! xC D b 2 B jx;y;z ˇ ; ˇ b.x/.t/ D f .b.y/.t/; b.z/.t// ˚ ŒŒ event y ! xC D b 2 B jx;y jT .b.x// D T .b.y// ;

or

Denotation of Actions

re

ŒŒA j BC D ŒŒAC j ŒŒBC :

U

nc

Given its state b, the execution ck D ŒŒAb of an action A returns a new state c and a status k whose value is 1 if a skip occurred and 0 otherwise. We write b#x D b.x/.min T .b// and b"x D b.x/.max T .b// for the first and last value of x in b. A sequence first evaluates A to ck and then evaluates B with store b c to dl . If k is true, then a skip has occurred in A, meaning that c and d belong to different instants. In this case, the concatenation of b and c is returned. If k is false, then the execution that ended in A continues in B at the same instant. Hence, variables defined in the last reaction of c must be merged to variables defined in the first reaction of d . To this end, we write .b ‰ c/.x/ D b.x/] c.x/ for all x 2 V .b/ if t D max.T .b// D min.T .c//.

847 848 849 850 851 852 853 854 855 856 857

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

ŒŒ do Ab D b c ;

where ck D ŒŒAb ;

ŒŒ skip b D ;1 ; ŒŒxŠb D f.x; t; 1/g0 ; ŒŒx D yfzb D f .x; t; f .b"y ; b"z / g0 ; ŒŒ if x then A else Bb D if b"x then hhAiib else hhBiib ; ŒŒAI Bb D if k then .c d /l else .c ‰ d /l ; where ck D ŒŒAb and dl D ŒŒBbc :

858

An automaton x receives control from its trigger at the clock C t and is reset at the clock C r . Its meaning is hence parameterized by C D .C t ; C r /. The meaning of its specifications hhAiisb is parameterized by the finite trace b, that represents the store, by the variable s, that represents the current state of the automaton. At the i th step of execution, given that it is in state j (.bi /"s D j) the automaton produces a finite behavior biC1 D hhSj iisb . This behavior must match the timeline of the trigger: T .bi / C t . It must to the initial state 0 is a reset occurs: 8t 2 C r ; bi .s/.t / D 0.

859 860 861 862 863 864 865 866

Pr

oo

f

Denotation of Automata

9 > =: > ;

or re

ct

ed

ŒŒ automaton x ACˇ D 8 ˇb D f.x; t ; 0/ j x 2 V .A/ [fsgg ˆ 0 ˇ 0 < ˇ .ıi0 bi / =s ˇ8i 0; biC1 2 ŒŒSj sbi ; T .biC1 / C t ˇ ˆ : ˇ j D if min.T .biC1 // 2 C r then 0 else .bi /"s

When an automaton is in the state Si , its action Ai is evaluated to c 2 hhAi iib given 867 the store b. Then, immediate or delayed transitions departing from Si are evaluated 868 to return the final state d of the automaton. 869 .Si ; xij ; Sj / 2 !A ^ c"xij ; .Si ; xij ; Sj / 2 A ^ c"xij ; where c=s D ŒŒ do Ai b and t D max T c; otherwise:

U

nc

8 ŒŒSj sc ; ˆ ˆ < c] f.s; t; j /g; ŒŒSi sb D ˆ ˆ : c] f.s; t; i /g;

3.4 Middleware Aspect

870

In order to support the execution of code generated from Synoptic model at runtime, a middleware is embedded in the satellite. This SPaCIFY middleware not only implements common middleware services such as communication or naming, but also offers domain-specific services of satellite flight control software. There are then

871 872 873 874

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

or

re

ct

ed

Pr

oo

f

two difficulties that must be addressed. First, one has take into account the scarceness of resources in a satellite. The large variety2 of satellite platforms from one project to another being the second. To take into account the scarceness of resources in a satellite, this middleware is tailored to the domain and adapted to each specific project. This notion of generative middleware is inherited from the ASSERT project which has studied proof-based engineering of real-time applications but is here specialised to the area of satellite software. ASSERT defines a so-called virtual machine, which denotes a RTOS kernel along with a middleware and provides a language-neutral semantics of the Ravenscar profile [14]. It relies on PolyORB-HI [25], a high integrity version of PolyORB refining the broker design pattern [15], which fosters the reuse of large chunks of code when implementing multiple middleware personalities. Satisfying restrictions from the Ravenscar profile, PolyORB-HI can suitably be used as a runtime support for applications built with AADL code generators. In our context, the support of a precise adaptation to the need of the middleware is obtained thanks to its generation based on the requirements expressed in the Synoptic models (mainly through the interaction contracts attached to external variables). Some of the services of the middleware cannot be reused and must be reimplemented for each satellite. For example, the AOCS3 implements control laws that are specific to the expected flight and to the mission. Providing a framework, the middleware will help capitalizing on the experience of domain expert, giving a general architecture for the AOCS. The models of services can belong to either the middleware or the application. In the later case, we use the same process as for the rest of the application, including the Synoptic language. Furthermore as services will have a well defined interface (i.e., an API) other services or applications using AOCS are not coupled to any particular implementation. This section starts by presenting the architecture of the SPaCIFY middleware. Then, the middleware kernel and the communication between applications generated from Synoptic models and their hosting middleware is explained. Lastly, the reconfiguration service that has been one of the main focus during the project is described.

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

906

Figure 3.17 depicts the overall architecture of the SPaCIFY middleware. Following previous work on middlewares for real-time embedded systems [8, 32], the SPaCIFY middleware has a microkernel-like or service-based architecture. That way, high flexibility allows to embed only the services that are required, depending on the

907 908 909 910

U

nc

3.4.1 Architecture of the Execution Platform

2 This diversity is due to the high specialisation of platforms for a specific mission and the broad range of missions. 3 Attitude and Orbit Control System.

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project synchronous islands External variables Management of external variables

bus & devices on board/gound link

on of the

persistent memory

f

a

c ti

RTOS kernel

S

r abst

Services naming, time, persistency, reconfiguration, redundancy, PUS TM/TC, PUS event, AOCS...

RT O

- mi

w are ke dle

el rn

d

asynchronous environment

oo

Fig. 3.17 Architecture of the middleware

Pr

satellite. While previous work has focused on techniques to reduce the time during 911 which the reconfigured system is suspended, along with an analysis to bound that 912 time, our work aims at: 913

ct

ed

 Using application model to specify reconfiguration 914 Proposing a contract approach to the specification of relation between applica- 915 tions and the middleware 916 Providing on demand generation of the needed subset of the middleware for a 917 given satellite 918

U

nc

or re

The RTOS kernel offers the usual basic services such as task management and synchronisation primitives. The core middleware is built on top of this RTOS and provides core services of composition and communication. They are not intended to be used by application-level software. They rather provide means to structure the middleware itself in smaller composable entities, the services. Upon these abstractions are built general purpose services and domain specific services. These services are to be used (indirectly) by the application software (here the various synchronous islands). They can be organized in two categories as follows:

919 920 921 922 923 924 925 926

 The first layer is composed of general purpose services that may be found in 927 usual middleware. Among them, the naming service implements a namespace 928 that would be suitable for distributed systems. The persistency service provides 929 a persistent storage for keeping data across system reboots. The redundancy 930 service helps increasing system reliability thanks to transparent replication man- 931 agement. The reconfiguration service, further described in a dedicated subsection 932 below (Sect. 3.4.3), adds flexibility to the system as it allows to modify the soft- 933 ware at runtime. The task and event service contributes real-time dispatching of 934 processors according to the underlying RTOS scheduler. It provides skeletons for 935

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 936 937 938 939 940 941 942 943 944

To support the execution the platform use hardware resources provided by the satellite. As the hardware platform changes from one satellite to another, it must be abstracted even for the middleware services. Only the implementation of specific drivers must be done for each hardware architecture. During the software development lifecycle, the appropriate corresponding service implementations are configured and adapted to the provided hardware. As already exposed, one particularity of the SPaCIFY approach is the use of the synchronous paradigm. To support the use of the middleware services within this approach, we propose to use an abstraction, the external variable as shown in Sect. 3.2.2.2. Such a variable abstracts the interaction between synchronous islands or between a synchronous island and the middleware relaxing the requirements of synchrony. In the model, when the software architect wants to use a middleware service, he provides a contract describing its requirements on the corresponding set of external variables and the middleware is in charge to meet these requirements. Clearly, this mediation layer in charge of the external variables management is specific to each satellite. Hence the contractual approach drives the generation of the proper management code. This layer is made of backends that capture all the asynchronous concerns such as accessing to a device or any aperiodic task, hence implementing asynchronous communications of the GALS approach. The middleware is in charge of the orchestration of the exchange between external variables, their managing backends and the services while ensuring the respect of quality of service constraints (such temporal one) specified in their contracts.

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966

or

re

ct

ed

Pr

oo

f

various kinds of tasks, including periodic, sporadic and aperiodic event-triggered tasks, possibly implementing sporadic servers or similar techniques [26, 33]. The second layer contains domain-specific services to capture the expertise in the area of satellite flight control software. These services are often built following industry standards such as PUS [17]. The TM/TC service implements the well established telemetry/telecommand link with ground stations or other satellites. The AOCS (attitude and orbit control system) controls actuators in order to ensure the proper positioning of the satellite. As discussed earlier, services may be implemented by synchronous islands.

967

As stated above, the middleware is built around a RTOS providing tasks and synchronisation. As the RTOS cannot be fixed due to industrial constraints, the middleware kernel must provide a common abstraction. It therefore embeds its own notion of task and for specific RTOS an adaptor must be provided. The implementation of such adaptors has been left for future until now. Notice that the use of this common abstraction forbids the use of specific and sophisticated services offered by some RTOS. The approach here is more to adapt the services offered by the middleware to the business needs rather using low level and high performance services.

968 969 970 971 972 973 974 975 976

U

nc

3.4.2 The Middleware Kernel and External Variables

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project

The task is the unit of execution. Each task can contain Synoptic components according to the specification of the dynamic architecture of the application. Tasks have temporal features (processor provisioning, deadline, activation period) inherited from the Synoptic model. The middleware kernel is in charge of their execution and their monitoring. It is also in charge of provisioning resources for the aperiodic and sporadic tasks. Communication inside a task results from the compilation of the synchronous specification of the various components it must support. All communication outside a task must go through external variables limiting interaction to only one abstraction. External variables are decomposed into two sub abstractions:

977 978 979 980 981 982 983 984 985 986

or re

ct

ed

Pr

oo

f

 The frontend identified in the Synoptic model and that constitutes the interaction 987 point. It appears as a usual signal in the synchronous model and may be used as 988 input or output. The way it is provided or consumed is abstracted in a contract 989 that specify the requirements on the signal (such as its timing constraints). An 990 external variable is said to be asynchronous because no clock constraint is intro- 991 duced between the producer of the signal and its consumer. In the code generated 992 access to such variables are compiled into getter and setter function implemented 993 by the middleware. The contract must include usage requirements specifying the 994 way the signal is used by the task (either an input or an output). They may also 995 embed requirements on the freshness of the value or on event notifying value 996 change. 997 The backend specified using stereotypes in the contract configure the middle- 998 ware behavior for non synchronous concerns. For example, persistency contract 999 specify that the external variable must be saved in a persistent memory. Acquisi- 1000 tion contracts can be used by a task to specify which data it must get before its 1001 execution. Such backends are collected and global acquisition plan are built and 1002 executed by the middleware. 1003 1004 1005 1006 1007 1008 1009 1010

U

nc

As the middleware supports the reconfiguration of applications at runtime, tasks can be dynamically created. The dynamic modification of the features is also provided by the middleware. The middleware will have to ensure that these constraints are respected. Beware that any modification must be made on the model and validated by the SPaCIFY tools to only introduce viable constraints. Each task has a miss handler defined. This defensive feature makes the middleware execute corrective actions and report an error whenever the task does not respect its deadline.

3.4.3 Reconfiguration Service

1011

Among, domain specific services offered by the middleware, the reconfiguration service is the one that had the most impact on the middleware conception. The design of the reconfiguration service embedded in the SPaCIFY middleware is driven by the specific requirements of satellite onboard software. Reconfiguration is typically controlled from ground stations via telemetry and telecommands.

1012 1013 1014 1015 1016

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software offline compilation OBSW image

a d-s groun

onboard software model

tel l

Developer satellite state abstract reconf plan Operator

compilation according to the OBSW image

ite l

ink

concrete reconf plan

ground station

Fig. 3.18 Process and responsibilities for reconfigurations

U

nc

or

re

ct

ed

Pr

oo

f

Human operators not only design reconfigurations, they also decide the right time at which reconfigurations should occur, for instance while the mission is idle. Due to resource shortage in satellites, the reconfiguration service must be memory saving in the choice of embedded metadata. Last, in families of satellites, software versions tend to diverge as workarounds for hardware damages are installed. Nevertheless, some reconfigurations should still apply well to a whole family despite the possible differences between the deployed software. In order to tackle these challenges, the reconfiguration service rely on the structural model (Synoptic models) of the OBSW enriched by the current state of the satellite as described in Fig. 3.18. Using the structure of the software allows to abstract the low-level implementation details when performing reconfigurations. While designing reconfigurations, operators can work on models of the software, close to those used at development time, and specify so called abstract reconfiguration plan like: change the flow between blocks A and B by a flow between A and C. An abstract reconfiguration plan use high level elements and operations which may increase the CPU consumption of reconfigurations compared to low level patches. Typical operations such as pattern matching of components make the design of reconfiguration easier, but they are compute intensive. Instead of embedding the implementation of those operations into the satellite middleware, patterns may be matched offline, at the ground station, thanks to the knowledge of the flying software. We therefore define a hierarchy of reconfiguration languages, ranging from high-level constructs presented to the reconfiguration designer to low-level instructions implemented in the satellite runtime. Reconfigurations are compiled in a so called concrete reconfiguration plan before being sent to the satellite. For instance, the abstract plan upgrade A may be compiled to stop A and B; unbind A and B; patch the implementation of A; rebind A and B; restart A and B. This compilation process uses proposed techniques to reduce the size of the patch sent to the satellite and the time to apply it [35]. Another interest of this compilation scheme is to enable the use of the same abstract reconfiguration plan to a whole family of satellites. While traditional patch based approaches make it hard to apply a single reconfiguration to a family, each concrete plan may be adapted to the precise state of each of the family member.

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

Outlook

or re

3.5 Conclusion

ct

ed

Pr

oo

f

Applying the previously model driven approach to reconfigurations of satellite software raise a number of other issues that are described in [10]. Work remains to be conducted to get the complete reconfiguration tool chain available. The biggest challenge being the specification of reconfiguration plan. Indeed, considering reconfiguration at the level of the structural model implies to include the reconfigurability concern in the metamodel of Synoptic . If reconfigurability is designed as an abstract framework (independent of the modeling language), higher modularity is achieved when deciding the elements that are reconfigurable. First experiments made on Fractal component model [11] allow us to claim that focusing on the points of interest in application models, metadata for reconfiguration are more efficient. Indeed, separating reconfigurability from Synoptic allows to download metadata on demand or to drop them at runtime, depending on requested reconfigurations. Lastly, applying reconfiguration usually require that the software reach a quiescent state [28]. Basically, the idea consists in ensuring that the pieces of code to update are not active nor will get activated during their update. For reactive and periodic components as found in the OBSW, such states where reconfiguration can be applied may not be reached. We have proposed another direction [12]. We consider that active code can be updated consistently. Actually, doing so runs into low-level technical issues such as adjusting instruction pointers, and reshaping and relocating stack frames. Building on previous work on control operators and continuation, we have proposed to deal with the low level difficulties using the notion of continuation and operators to manipulates continuations. This approach do not make updating easier but gives the opportunity to relax the constraints on update timing and allow updates without being anticipated.

U

nc

The SPaCIFY ANR exploratory project proposes a development process and associated tools for hard real time embedded space applications. The main originality of the project is to combine model driven engineering, formal methods and synchronous paradigms in a single homogeneous design process. The domain specific language Synoptic has been defined in collaboration with industrial end-users of the project combining functional models derived from Simulink and architectural models derived from AADL . Synoptic provides several views of the system under design: software architecture, hardware architecture, dynamic architecture and mappings between them. Synoptic is especially well adapted for control and command algorithm design. The GALS paradigm adopted by the project is also a key point in the promoted approach. Synoptic language allows to model synchronous islands and to specify how these islands exchange asynchronous information by using the services of a dedicated middleware.

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software 1089 1090 1091 1092 1093 1094 1095

The Synoptic Environment

1096

The SPaCIFY design process has been equipped with an Eclipse-based modeling workbench. To ensure the long-term availability of the tools, the Synoptic environment rely on open-source technologies: it guarantees the durability and the adaptability of tools for space projects which can last more than 15 years. We hope this openness will also facilitate adaptations to other industries requirements. The development of the Eclipse-based modeling workbench started with the definition of the Ecore meta-model [2] of the Synoptic language. The definition of this meta-model has relied on the experience gained during the GeneAuto project. This definition is the result of a collaborative and iterative process. In a first step, a concrete syntax relying on the meta-model has been defined using academic tools such as TCS (Textual Concrete Syntax) [27]. This textual syntax was used to validate the usability of the language through a pilot case study. These models have helped to improve the Synoptic language and to adapt it to industrial know-how. Once the language was stabilized, a graphical user editor was designed. A set of structural and typing constraints have been formalized, encoded in OCL (Object Constraint Language), and integrated into the environment. In parallel of these activities, the semantics of the language was defined. The formal semantics of the Synoptic language relies on the polychronous paradigm. This semantics was used for the definition of the transformation of Synoptic models towards SME models following a MDE approach. This transformation allows to use the Polychrony platform for verification, semantics model transformation hints for the end user, such as splitting of software as several synchronous islands and simulation code generation purposes. The Synoptic environment is being used to develop case studies of industrial size.

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

Future Investigations

1121

The Synoptic environment is based on model transformation. Thus, verifying this transformations is a key point. It has been addressed in the Geneauto project to certify sequential code generation from a Stateflow/Simulink based language. This work must be extended to take into account features of the execution platform such as timers, preemption-based schedulers, multi-threading, multi-processors, Work is in progress on a subset of the Synoptic language.

1122 1123 1124 1125 1126 1127

U

nc

or

re

ct

ed

Pr

oo

f

In particular, the SPaCIFY project proposed a contract approach to the specification of the relations between applications and the middleware. This middleware does not only implement common services such as communication or naming, but also offers domain-specific services for satellite flight control software. Reconfiguration is one of these domain-specific services. The SPaCIFY project studied this service with a particular focus on the use of application model to specify reconfiguration.

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 SPaCIFY Project 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

References

1139

oo

f

The Synoptic environment provides a toolset supporting a development process. Experience acquired during the SPaCIFY project with industrial partners has enlighten two different processes and thus the need to parameterize the platform by the process. A SPEM-based specification of the development process could be used as input of a generic platform so that it could be configured to match end user current and future development method. The Synoptic environment offers a limited support to refinement-based development process. This support could be extended and coupled with versioning to allow refinement checking between any couples of models or submodels. It means a support for defining and partially automatically generating gluing invariants between models. Then proof obligations could be generated.

U

nc

or re

ct

ed

Pr

1. Altarica Project. http://altarica.labri.u-bordeaux.fr/wiki/. 2. Eclipse Modeling Framework project (EMF). http://www.eclipse.org/modeling/emf/. 3. RT-Builder. Solutions for Real-Time design, modeling and analysis of complex, multiprocessors and multi-bus systems and software. http://www.geensys.com/?Outils/RTBuilder. 4. Simulink. Simulation and model-based design. http://www.mathworks.com/. 5. ASSERT Project. Automated proof-based system and software engineering for real-time systems. http://www.assert-project.net/, 2007. 6. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis & Design Language (AADL). SAE Standards no AS5506, November 2004. 7. Albert Benveniste, Patricia Bournai, Thierry Gautier, Michel Le Borgne, Paul Le Guernic, and Herv Marchand. The Signal declarative synchronous language: controller synthesis and systems/architecture design. In 40th IEEE Conference on Decision and Control, December 2001. 8. U. Brinkschulte, A. Bechina, F. Picioroag˘a, and E. Schneider. Open System Architecture for embedded control applications. In International Conference on Industrial Technology, volume 2, pages 1247–1251, Slovenia, December 2003. 9. Christian Brunette, Jean-Pierre Talpin, Abdoulaye Gamati´e, and Thierry Gautier. A metamodel for the design of polychronous systems. Journal of Logic and Algebraic Programming, 78(4):233–259, 2009. 10. J´er´emy Buisson, Cecilia Carro, and Fabien Dagnat. Issues in applying a model driven approach to reconfigurations of satellite software. In HotSWUp ’08: Proceedings of the 1st International Workshop on Hot Topics in Software Upgrades, pages 1–5, New York, NY, USA, 2008. ACM. 11. J´er´emy Buisson and Fabien Dagnat. Experiments with fractal on modular reflection. In SERA ’08: Proceedings of the 2008 Sixth International Conference on Software Engineering Research, Management and Applications, pages 179–186, Washington, DC, USA, 2008. IEEE Computer Society. 12. J´er´emy Buisson and Fabien Dagnat. Introspecting continuations in order to update active code. In HotSWUp ’08: Proceedings of the 1st International Workshop on Hot Topics in Software Upgrades, pages 1–5, New York, NY, USA, 2008. ACM. 13. Alan Burns. The Ravenscar profile. ACM Ada Letters, 4:49–52, 1999. 14. Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the use of the Ada Ravenscar Profile in high integrity systems. Ada Letters, XXIV(2):1–74, 2004. 15. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented software architecture: a system of patterns. Wiley, New York, 1996.

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

BookID 187219 ChapID 003 Proof# 1 - 17/05/10 3 Synoptic: A DSML for Space On-board Application Software

f

oo

Pr

ed

ct

re

or

nc

U

AQ5

16. F.-X. Dormoy. Scade 6: a model based solution for safety critical software development. In Proceedings of the 4th European Congress on Embedded Real Time Software (ERTS ’08), pages 1–9, Toulouse, France, January–February 2008. 17. ESA. European space agency. ground systems and operations – telemetry and telecommand packet utilization (ECSS-E-70), January 2003. 18. Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML: the systems modeling language. Morgan Kaufmann, San Francisco, CA, 2008. 19. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) language specification, 3rd edition. Addison-Wesley, New York, 2005. 20. Object Management Group. CORBA Component Model 4.0 Specification. Specification Version 4.0, Object Management Group, April 2006. 21. Paul Le Guernic, Paul Le Guernic, Jean-Pierre Talpin, Jean pierre Talpin, Jean-Christophe Le Lann, Jean christophe Le Lann, and Projet Espresso. Polychrony for system design. Journal for Circuits, Systems and Computers, 12:261–304, 2002. 22. Paul Le Guernic, Paul Le Guernic, Jean-Pierre Talpin, Jean pierre Talpin, Jean-Christophe Le Lann, Jean christophe Le Lann, and Projet Espresso. Polychrony for System Design. Journal for Circuits, Systems and Computers, Special Issue on Application Specific Hardware Design, 12:261–304, August 2003. 23. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming language LUSTRE. In Proceedings of the IEEE, pages 1305–1320, 1991. 24. David Harel. Statecharts: a visual formalism for complex systems. Science of Computer Programming, 8(3):231–274, 1987. 25. Jerome Hugues, Bechir Zalila, and Laurent Pautet. Combining model processing and middleware configuration for building distributed high-integrity systems. In ISORC ’07: 10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing, pages 307–312, Washington, DC, USA, 2007. IEEE Computer Society. 26. Damir Isovic and Gerhard Fohler. Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex constraints. In 21st IEEE Real-Time Systems Symposium (RTSS’2000), pages 207–216, Orlando, USA, November 2000. 27. Fr´ed´eric Jouault, Jean B´ezivin, and Ivan Kurtev. Tcs:: a DSL for the specification of textual concrete syntaxes in model engineering. In GPCE ’06: Proceedings of the 5th international conference on Generative programming and component engineering, pages 249–254, New York, NY, USA, 2006. ACM. 28. J. Kramer and J. Magee. The evolving philosophers problem: dynamic change management. IEEE Transactions on Software Engineering, 16(11):1293–1306, November 1990. 29. Object Management Group Management Group. A UML profile for MARTE, beta 2. Technical report, June 2008. 30. Peter J. Robinson. Hierarchical object-oriented design. Prentice-Hall, Upper Saddle River, NJ, 1992. 31. Jean-Franois Rolland, Jean-Paul Bodeveix, Mamoun Filali, David Chemouil, and Thomas Dave. AADL modes for space software. In Data Systems In Aerospace (DASIA), Palma de Majorca, Spain, 27 May 08 – 30 May 08, page (electronic medium), http://www.esa.int/ publications, May 2008. European Space Agency (ESA Publications). 32. E. Schneider. A middleware approach for dynamic real-time software reconfiguration on distributed embedded systems. PhD thesis, INSA Strasbourg, 2004. 33. Brinkley Sprunt, John P. Lehoczky, and Lui Sha. Exploiting unused periodic time for aperiodic service using the extended priority exchange algorithm. In IEEE Real-Time Systems Symposium, pages 251–258, Huntsville, AL, USA, December 1988. 34. Andres Toom, Tonu Naks, Marc Pantel, Marcel Gandriau, and Indra Wati. GeneAuto: an automatic code generator for a safe subset of SimuLink/StateFlow. In European Congress on Embedded Real-Time Software (ERTS), Toulouse, France, 29 January 08 – 01 February 08, page (electronic medium), http://www.sia.fr, 2008. Socit des Ingnieurs de l’Automobile. 35. Carl von Platen and Johan Eker. Feedback linking: optimizing object code layout for updates. SIGPLAN Notices, 41(7):2–11, 2006.

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

des documents recommandant

[image: alt]

ALEXANDRE CORTIER

Mechanical properties of solid, fluid mechanics. University of ... Mathematics, Physics. ... Formal Methods : Introduction to theorem-proving and model-checking.

[image: alt]

uncorrected proof

bacterial DNA compared to that of eukaryotic plankton. 42. [12]. UVB may also inhibit concentration, Molecular Probes) in subdued light condi-. 209 tions.

[image: alt]

UNCORRECTED PROOF

The pH was determined in. 74 water and in 1M KCl at a soil:solution ratio of 2 to 5. ... NaOH was determined by titration with 0.1 M HCl. 109 on the Radiometer ...

[image: alt]

UNCORRECTED PROOF

ReÂ´sultats.â€“ La rhinoscopie a` l'optique trouvait une lÃ©sion localisÃ©e a` la partie latÃ©rale de la ... masse prenait naissance au niveau du cornet moyen gauche.

[image: alt]

uncorrected proof

Oct 4, 2004 - The asynchrony of replication at the wild type locus was significantly lower than at imprinted loci and ... transcripts but not Ins1 RNA was expressed in the brain. (Deltour ... of primers for Ins1 and Ins2 genes that coamplifie both.

[image: alt]

uncorrected proof

the top side of the substrate by plasma enhanced chemical. 317 vapor deposition l'Industrie et dans l'Agriculture (F.R.I.A., Belgium). 533. References. 534.

[image: alt]

uncorrected proof

montrait des cordes vocales et des arytÃ©noÄ±des mobiles. L'examen clinique rÃ©vÃ©lait un purpura infiltrÃ© des membres infÃ©rieurs. Une radiographie pulmonaire ...

[image: alt]

UNCORRECTED PROOF

69% rh), after 30 min of pre-cooling in a cold bath (16 â—¦C), or after 30 min of passive warm-up in a hot bath (38 â—¦C). Despite an equivalent increase from morning ...

[image: alt]

uncorrected proof

... Research Center, Corrosion-Surfaces, BP 15, 62330 Isbergues, France. 6 344. [31] T. Gross, W.E.S. Unger, J. Patscheider, Surf. Interface Anal. 33. 345.

[image: alt]

UNCORRECTED PROOF

It is now well established by experimental data (e.g.,. 55 Wolf and Wyllie, 1994; 133 lated olivine during their ascent through the mantle. 134 Both models can ...

[image: alt]

Uncorrected Proof

S. Martin. Cemagref - LISC, 24 av. des Landais 63172 Aubi`ere, France Finally, we go back to the trajectory robustness definitions proposed in. Sect. 8.2.3 ...

[image: alt]

uncorrected proof

controller, an adaptive law is developed to tune a robust gain of the This adaptive law is derived in the Lyapunov sense such that the system stability can. 39.

[image: alt]

UNCORRECTED PROOF

there is an accumulation of nuclear, inactive, p53 ... species; (ii) all these epitopes are linear sequences resonance signal at time t, using BIAevaluation 3.0.

[image: alt]

UNCORRECTED PROOF

were cryo-protected by adding 20% glycerol (v/v) to the. 80 mother liquor and ... backbone dihedral angles of all of the non-Gly residues in. 110 each monomer ...

[image: alt]

UNCORRECTED PROOF

Oct 24, 2005 - unobtrusively induced to move in the slow manner that is stereotypic of asked to put on a life vest and a set of four gymnastic weights that.

[image: alt]

UNCORRECTED PROOF

1 aoÃ»t 2006 - TGA Characterization. 234. All thermogravimetric analyses (TGA) were per-. 235 formed on 5â€“15 mg samples, at a heating rate of 20 Â°C/. 236 min from 25 to 600 Â°C on a Hi-Res TGA 2950 appa-. 237 ratus from TA Instruments (USA). For a

[image: alt]

uncorrected proof .fr

a Laboratoire des Sciences du Climat et de l'Environnement, Avenue de la terrasse, 91198 Gif sur Yvette, France b Centre d'OcÃ©anologie de Marseille, rue de la ...

[image: alt]

Swing User Interfaces ... - Alexandre Cortier

user-based models describe the tasks the user can achieve by using the final system together ... Some models try also to describe formally the behavior of the.

[image: alt]

uncorrected proof - GN Clements

a. , G.N. Clements b,. * a 1602 NE Junior Street, Portland, OR 97211, USA b Phonetique Experimentale et Modelisation Phonologique, 'I hawked fish, meat, palm-wine, eggs, honey (and shrimp at night)'. 2. In J. Kingston, & M. Beckman (Eds.)

[image: alt]

uncorrected proof - mamobipet

Jun 16, 2011 - gin of most of the pathological processes associated with AD (3). To date, there is ... animal is stabilized in a head holder using ear bars and a bite bar built in a Octylphenol ethylene oxide condensate 0.2% (Triton X-. 100TM, S

[image: alt]

uncorrected proof - Xun ZHANG

May 15, 2007 - 68 to medium volumes of production. chain. It should be noted that the MicroBlaze processor. 346 and its C compiler Commerce, 1977.

[image: alt]

uncorrected proof .fr

difficult to carry on key software quality related best practices such ... design decisions are to be applied on a family of analysis models database. The aim of this re-engineering project is to //www.softeam.fr/us/pdf/uml profiles.pdf,

[image: alt]

Uncorrected Proof .fr

(Pessoa, Kastner, & Ungerleider, 2003), left inferior parie- tal cortex exerts topâ€“down temporal attentional mod- ulation of activity in task-specific networks. To test ...

[image: alt]

uncorrected proof .fr

a cardiovascular profile was due to the slow admin- istration of P. aeruginosa (which was 0.3 mL/20 kg/ min) and to the control of the pulmonary arterial.

×
Report Uncorrected Proof - Alexandre Cortier

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

