Triangle de signalisation

Jan 28, 2006 - please contact the National Semiconductor Sales. Office Distributors ...... +381 11 635 777. For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, ..... 400 mil 28-pin plastic SOP (FP-28D).
3MB taille 1 téléchargements 330 vues
Triangle de signalisation

1

ANALYSE DU SYSTEME MIXTE ...................................................................................................................................2 1.1 1.2

EXPRESSION DU BESOIN ..................................................................................................................................................2 DIAGRAMME SAGITTAL ...................................................................................................................................................2

2

PRESENTATION DE L'OBJET TECHNIQUE 1............................................................................................................2

3

ANALYSE FONCTIONNELLE DU TRIANGLE DE SIGNALISATION LUMINEUX .............................................3 3.1 ETUDE FONCTIONNELLE ..................................................................................................................................................3 3.1.1 Fonction d'usage ....................................................................................................................................................3 3.1.2 Schéma fonctionnel de niveau 2 .............................................................................................................................3 3.1.3 Etude des milieux associés à l'objet technique1 .....................................................................................................3 a) b) c) d)

Milieu humain:...............................................................................................................................................................................3 Milieu physique: ............................................................................................................................................................................3 Milieu économique: .......................................................................................................................................................................3 Milieu technique: ...........................................................................................................................................................................3

3.2 ETUDE FONCTIONNELLE DE 1ER DEGRE...........................................................................................................................4 3.2.1 SCHEMA FONCTIONNEL DE 1er DEGRE .........................................................................................................4 3.3 ETUDE FONCTIONNELLE DE 2ND DEGRE ..........................................................................................................................5 3.3.1 Schéma fonctionnel de degré 2...............................................................................................................................5 3.3.2 Définition des entrées/sorties .................................................................................................................................6 4

ETUDE STRUCTURELLE ................................................................................................................................................7 4.1 4.2 4.3

5

SCHEMA STRUCTUREL.....................................................................................................................................................7 NOMENCLATURE .............................................................................................................................................................8 DOCUMENTS DE FABRICATION ........................................................................................................................................9

DOCUMENTATION TECHNIQUE................................................................................................................................10

RT 28/01/06

triangle.doc

-1-

1 Analyse du système mixte 1.1 Expression du besoin Lors de travaux sur la chaussée, les usagers de la route doivent être avertis du chantier qu'ils vont rencontrer, afin qu'ils limitent leur vitesse et qu'ils ne soient pas surpris par l'encombrement de la route. Une signalisation lumineuse avertira l'automobiliste de plus loin et attirera plus fortement son attention.

1.2 Diagramme sagittal information M/A et choix du motif usagers de la route

triangle de signalisation lumineux

information lumineuse signalant un chantier

visualisation

ouvrier de chantier

O.T.1 info. J/N

info. 12V/24V

environnement batterie de véhicule O.T.2

2 Présentation de l'objet technique 1

RT 28/01/06

triangle.doc

-2-

3 Analyse fonctionnelle du triangle de signalisation lumineux 3.1

Etude fonctionnelle

3.1.1

Fonction d'usage Le triangle de signalisation lumineux réalise les fonctions suivantes: • Élaborer une commande d'allumage des lampes en fonction du motif choisit, de la luminosité de l'environnement et du type de batterie. • Signaler de façon lumineuse un éventuel chantier aux usagers de la route.

3.1.2

Schéma fonctionnel de niveau 2

info.M/A

élaboration d'une cmde

choix du motif

d'allumage des lampes

ouvrier

3.1.3

usagers de la route

O.T.1

Simplicité d'utilisation. Détermination du motif effectué en usine, en accord avec le client. Diminution de l'intensité lumineuse la nuit pour éviter les éblouissements.

Milieu physique: • •

L'électronique étant logée dans la carcasse du triangle, il en résulte des contraintes dues à l'environnement thermique (température ambiante avoisinant 60°C en été). Électronique enrobée de résine et protégée contre les courts-circuits. Résistant aux chocs.

Milieu économique: • • •

Reconnaissance et adaptation automatique au type de batterie 12V ou 24V. Motif lumineux facilement modifiable à la commande. Faible coût de revient.

Milieu technique: • •

RT 28/01/06

lumineuse

Milieu humain:



d)

info.

Etude des milieux associés à l'objet technique1 • • •

c)

lumineuse

information 12V/24V

batterie

b)

des lampes

signalisation

info. J/N

environnement

a)

cmde d'allumage

ouvrier de chantier

Source d'énergie = batterie 12V ou 24V. Lampe à iode 12V/55W uniquement.

triangle.doc

-3-

3.2

Etude fonctionnelle de 1er degré

3.2.1 SCHEMA FONCTIONNEL DE 1er DEGRE info. 12V/24V

identification du

information 12V / 24V

type de batterie F.P.3

captage info. J/N

information J/N

jour / nuit F.P.4 3

choix d'un motif parmi 8

élaboration de la commande d'allumage des lampes F.P.1

commande d'allumage

signalisation lumineuse

des lampes

information lumineuse

F.P.2 O.T.1

RT 28/01/06

triangle.doc

-4-

3.3 Etude fonctionnelle de 2nd degré 3.3.1 Schéma fonctionnel de degré 2

Choix d'un motif parmi 8

info J/N

A12-A13-A14

captage J/N

3

mémorisation

A10

J/N

S0

de commande énergie électrique 12V/24V

S0'

des informations

F.S.4.1

identification de la tension BAT A11 12V ou 24V

protection contre les inversions VA de polarité et détection du niveau de charge de la batterie F.S.3.1

production d'un signal rectangulaire

h

amplification de puissance S1

S1'

des lampes

F.S.2.1

F.S.3.2

Production d’adresses

F.S.1.1

A0-A9 10

F.S.1.2

F.S.1.3 R.A.Z

VA

Vo F.a

RT 28/01/06

triangle.doc

-5-

conversion énergie électrique/ énergie lumineuse F.S.2.2

information lumineuse

3.3.2 Définition des entrées/sorties info.J/N

: Information : intensité lumineuse ambiante.

J/N (A10) : Information logique relative à l'éclairement ambiant. E.E (12V/24V) : tension de batterie alimentant le triangle pouvant atteindre 14,5V pour une batterie de 12V et 28V pour une batterie de 24V. VA: tension d'alimentation provenant de la batterie. BAT (A11): information logique pour la détection d'une batterie de 12V ou 24V. Vo : tension régulée à 5V permettant d'alimenter les circuits logiques. A12, A13, A14: Information numérique: mot binaire de 3 bits qui permet la sélection d'un motif parmi 8. A14 0 0 0 0 1 1 1 1

A13 0 0 1 1 0 0 1 1

A12 0 1 0 1 0 1 0 1

motifs Modèle A Modèle B ou C Non utilisé Non utilisé Non utilisé Non utilisé Non utilisé Non utilisable Identification mémoire

h : ddp rectangulaire d'amplitude (0;5V). A0 à A9 : Information numérique: mot binaire de 10 bits. Chaque mot correspond à une case mémoire qui renferme un nombre binaire de 8 bits. Le balayage des combinaisons $000 à $3FF détermine la période d'allumage et de découpage des lampes.

S0 : Information logique qui commande l'allumage des lampes L1, L2, L3. S0 est une valeur mémorisée et correspond au bit de poids faible de l'octet. Lors du balayage des combinaisons des adresses A0 à A9, le niveau logique en S0 détermine l'allumage et l'intensité lumineuse des lampes L1, L2, L3.

RAZ : Information logique permet la remise à zéro du nombre (A9…A0)2 .

RT 28/01/06

triangle.doc

-6-

4 Etude structurelle 4.1 Schéma structurel

11 RST 10

RT 28/01/06

triangle.doc

f

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

9 7 6 5 3 2 4 13 12 14 15 1

-7-

4.2 Nomenclature

RT 28/01/06

RefDes Type Value -------------------- -------------------- ---------------

RefDes Type Value -------------------- -------------------- ---------------

C1 C2 C3 C4 C5 C6 C7 C8 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 L1 L2 L3 P1 P2 R1 R2 R3 R4 R5 R6 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 S1 S2 S3

T1 T2 T3 T4 U1 U2 U3 U4 U5 U6

C2 C2 C1 C2_POL C2_POL C2_POL C2 C2 1N4148 1N4148 ZENER12V 1N4148 ZENER9.1V ZENER9.1V 1N4001 ZENER4.7V ZENER9.1V ZENER4.7V BORNE1 BORNE1 DOUILLE4 DOUILLE4 PTEST PTEST PTEST PTEST PTEST PTEST PTEST BORNE1 BORNE1 LAMPE LAMPE LAMPE POT3T POT3T R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R1 R2 INVERSEUR INVERSEUR INVERSEUR

10n 22u 22n 100u 1u 1u 100n 100n

12v

BC548A SFH309 BC548A BC558B CD4093BCN HCC4040BF IRF540 ZVP2106A HN58C256 78L05

9.1V 9.1V 4.7V 9.1V 4.7V

2.2Meg 470k 100K 0 100k 4.7k 1K 100k 100k 100k 100k 3.3k 1Meg 100K 22K 4.7K 4.7k 10k 3.3k

triangle.doc

-8-

4.3 Documents de fabrication

RT 25/01/06

triangle.doc

-9-

Triangles rabattables pour véhicules Triangles pour véhicules symbole AK5 r : 500 LEDs Ø 60

Code

Référence

T1 T2 T1 T2 T1 T2

TML124/500T1 TML124/500T2 808562035 TML500ELECT1 808562036 TML500ELECT2 808564035 TUML124/500T1 808564036 TUML124/500T2 Moins value

XENON Ø 60 Relevage(1) Double T1 face manuel T2 Relevage Double T1 face électrique T2 Fixation T1 simple face rail arrière T2

Référence TNX124/500T1 808500045 TNX124/500T2 808503 TNX500ELECT1 808503045 TNX500ELECT2 808506 TUX124/500T1 808506035 TUX124/500T2 Moins value

Relevage(1) Double face manuel Relevage Double face électrique Fixation simple face rail arrière Simple face TML500/700

Simple face TNX500/700

IODE Ø 60 Relevage(1) Double face manuel Relevage Double face électrique Fixation rail arrière

simple face

808560035 808560036

Code

808500

Code T1 T2 T1 T2 T1 T2

808542 808542045 808548 808548045 808509 808509045

Simple face TMO500/700

Référence TMO124/500T1 TMO124/500T2 TMO500ELECT1 TMO500ELECT2 TUMO124/500T1 TUMO124/500T2

Moins value

r : 700 Prix

389 431 678 719 281 302 -89

€� €� €� €� €� €� €�

Prix

427 469 791 832 317 338 -74

€� €� €� €� €� €� €�

Code

€� €� €� €� €� €� €�

Prix

474 562 793 882 366 410 -89

TML124/700T1 TML124/700T2 808563035 TML700ELECT1 808563036 TML700ELECT2 808565035 TUML124/700T1 808565036 TUML124/700T2 Moins value 808561035 808561036

€� €� €� €� €� €� €�

Jour

Nuit

12 V : 0,3 A

12 V : 0,15 A

24 V : 0,15 A 24 V : 0,07 A 12 V : 0,15 A 12 V : 0,07 A 24 V : 0,07 A 24 V : 0,04 A

Prix Référence TNX124/700T1 531 €� 808501045 TNX124/700T2 620 €� 808504 TNX700ELECT1 926 €� 808504045 TNX700ELECT2 1015 €� 808507 TUX124/700T1 412 €� 808507035 TUX124/700T2 456 €� Moins value -74 €� Code

808501

Prix

294 335 657 698 291 312 -6

Consommation

Référence

Code 808543045 808549 808549045 808510 808510045

384 473 779 867 381 425 -6

Moins value

(1) Le kit de rabattement est à commander séparément

12 V : 0,8 A

24 V : 0,7 A

24 V : 0,4 A

12 V : 0,7 A

12 V : 0,4 A

24 V : 0,04 A

24 V : 0,2 A

12 V : 6,8 A

12 V : 3,4A

24 V : 3,4 A

24 V : 1,7A

12 V : 6,8 A

12 V : 3,4 A

24 V : 3,4 A

24 V : 1,7 A

Prix

Référence TMO124/700T1 TMO124/700T2 TMO700ELECT1 TMO700ELECT2 TUMO124/700T1 TUMO124/700T2

808543

12 V : 1,4 A

€� €� €� €� €� €� €�

Accessoires

Code

inter avec voyant 12 V (10 A max)

812199

inter avec voyant 24 V (10 A max)

812197

prise allume-cigares

811400

kit de rabattement

809356

plaque de fixation r 500

809355

plaque de fixation r 700

809357

embase magnétique r 500

809613

embase magnétique r 700

809614

Référence INT/VOY12 INT/VOY24 P/AC K/RAB FIX/TP500 FIX/TP700 MAG/TP500 MAG/TP700

Prix

12 12 8 23 21 28 63 73

€� €� €� €� €� €� €� €�

SYMBOLES AK2

AK3

AK4

AK5

AK14

AK17

AK22

AK30

AK31

• Film Diamond Grade fluo • Symbole autre que AK5 • Triangles de dimensions 1000 mm • Relevage électrique seul • Triangles pendulaires pour camions bennes

Nous sommes à votre disposition pour étudier

toute fabrication particulière !

275, rue de Clermont - ZA la Vatine - F 60000 BEAUVAIS Tél. : 03 44 10 33 90 - Fax : 03 44 10 33 99 - Email : [email protected] - www.franclair.com

Tarifs en Euros hors taxes - départ usine

Extrait du Catalogue 2005

MM54HC4020/MM74HC4020 14-Stage Binary Counter MM54HC4040/MM74HC4040 12-Stage Binary Counter General Description The MM54HC4020/MM74HC4020, MM54HC4040/ MM74HC4040, are high speed binary ripple carry counters. These counters are implemented utilizing advanced silicongate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high noise immunity of CMOS. The ’HC4020 is a 14 stage counter and the ’HC4040 is a 12stage counter. Both devices are incremented on the falling edge (negative transition) of the input clock, and all their outputs are reset to a low level by applying a logical high on their reset input.

These devices are pin equivalent to the CD4020 and CD4040 respectively. All inputs are protected from damage due to static discharge by protection diodes to VCC and ground.

Features Y Y Y Y Y

Typical propagation delay: 16 ns Wide operating voltage range: 2 – 6V Low input current: 1 mA maximum Low quiescent current: 80 mA maximum (74HC Series) Output drive capability: 10 LS-TTL loads

Connection Diagrams Dual-In-Line Packages ’HC4020

TL/F/5216 – 1

’HC4040

TL/F/5216 – 3

Order Number MM54HC4020/4040 or MM74HC4020/4040

C1995 National Semiconductor Corporation

TL/F/5216

RRD-B30M105/Printed in U. S. A.

MM54HC4020/MM74HC4020 14-Stage Binary Counter MM54HC4040/MM74HC4040 12-Stage Binary Counter

December 1988

Absolute Maximum Ratings (Notes 1 & 2)

Operating Conditions

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC)

Supply Voltage (VCC) DC Input Voltage (VIN) DC Output Voltage (VOUT) Clamp Diode Current (ICD) DC Output Current, per pin (IOUT) DC VCC or GND Current, per pin (ICC) Storage Temperature Range (TSTG) Power Dissipation (PD) (Note 3) S.O. Package only Lead Temperature (TL) (Soldering 10 seconds)

DC Input or Output Voltage (VIN, VOUT)

b 0.5 to a 7.0V b 1.5 to VCC a 1.5V

Operating Temp. Range (TA) MM74HC MM54HC

b 0.5 to VCC a 0.5V g 20 mA

Min 2

Max 6

0

VCC

Units V V

b 40 b 55

a 85 a 125

§C §C

1000 500 400

ns ns ns

Input Rise or Fall Times VCC e 2.0V (tr, tf) VCC e 4.5V VCC e 6.0V

g 25 mA g 50 mA

b 65§ C to a 150§ C

600 mW 500 mW 260§ C

DC Electrical Characteristics (Note 4) Symbol

Parameter

Conditions

VCC

TA e 25§ C Typ

74HC TA eb40 to 85§ C

54HC TA eb55 to 125§ C

Units

Guaranteed Limits

VIH

Minimum High Level Input Voltage

2.0V 4.5V 6.0V

1.5 3.15 4.2

1.5 3.15 4.2

1.5 3.15 4.2

V V V

VIL

Maximum Low Level Input Voltage**

2.0V 4.5V 6.0V

0.5 1.35 1.8

0.5 1.35 1.8

0.5 1.35 1.8

V V V

VOH

Minimum High Level Output Voltage

VIN e VIH or VIL lIOUTl s20 mA

2.0V 4.5V 6.0V

2.0 4.5 6.0

1.9 4.4 5.9

1.9 4.4 5.9

1.9 4.4 5.9

V V V

4.5V 6.0V

4.2 5.7

3.98 5.48

3.84 5.34

3.7 5.2

V V

2.0V 4.5V 6.0V

0 0 0

0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

V V V

VIN e VIH or VIL lIOUTl s4.0 mA lIOUTl s5.2 mA

4.5V 6.0V

0.2 0.2

.26 .26

0.33 0.33

0.4 0.4

V V

VIN e VIH or VIL lIOUTl s4.0 mA lIOUTl s5.2 mA VOL

Maximum Low Level Output Voltage

VIN e VIH or VIL lIOUTl s20 mA

IIN

Maximum Input Current

VIN e VCC or GND

6.0V

g 0.1

g 1.0

g 1.0

mA

ICC

Maximum Quiescent Supply Current

VIN e VCC or GND IOUT e 0 mA

6.0V

8.0

80

160

mA

Note 1: Maximum Ratings are those values beyond which damage to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating Ð plastic ‘‘N’’ package: b 12 mW/§ C from 65§ C to 85§ C; ceramic ‘‘J’’ package: b 12 mW/§ C from 100§ C to 125§ C. Note 4: For a power supply of 5V g 10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case VIH and VIL occur at VCC e 5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current (IIN, ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used. **VIL limits are currently tested at 20% of VCC. The above VIL specification (30% of VCC) will be implemented no later than Q1, CY’89.

2

AC Electrical Characteristics VCC e 5V, TA e 25§ C, CL e 15 pF, tr e tf e 6 ns Symbol

Parameter

Conditions

Typ

Guaranteed Limit

Units

50

30

MHz

17

35

ns

fMAX

Maximum Operating Frequency

tPHL, tPLH

Maximum Propagation Delay Clock to Q

tPHL

Maximum Propagation Delay Reset to any Q

16

40

ns

tREM

Minimum Reset Removal Time

10

20

ns

tW

Minimum Pulse Width

10

16

ns

(Note 5)

AC Electrical Characteristics VCC e 2.0V to 6.0V, CL e 50 pF, tr e tf e 6 ns (unless otherwise specified) Symbol

Parameter

Conditions

TA e 25§ C

VCC

Typ

74HC TA eb40 to 85§ C

54HC TA eb55 to 125§ C

Units

Guaranteed Limits

fMAX

Maximum Operating Frequency

2.0V 4.5V 6.0V

10 40 50

6 30 35

5 24 28

4 20 24

MHz MHz MHz

tPHL, tPLH

Maximum Propagation Delay Clock to Q1

2.0V 4.5V 6.0V

80 21 18

210 42 36

265 53 45

313 63 53

ns ns ns

TPHL, tPLH

Maximum Propagation Delay Between Stages from Qn to Qn a 1

2.0V 4.5V 6.0V

80 18 15

125 25 21

156 31 26

188 38 31

ns ns ns

tPHL

Maximum Propagation Delay Reset to any Q (’4020 and ’4040)

2.0V 4.5V 6.0V

72 24 20

240 48 41

302 60 51

358 72 61

ns ns ns

tREM

Minimum Reset Removal Time

2.0V 4.5V 6.0V

100 20 16

126 25 21

149 50 25

ns ns ns

tW

Minimum Pulse Width

2.0V 4.5V 6.0V

90 16 14

100 20 18

120 24 20

ns ns ns

tTLH, tTHL

Maximum Output Rise and Fall Time

2.0V 4.5V 6.0V

75 15 13

95 19 16

110 22 19

ns ns ns

tr, tf

Maximum Input Rise and Fall Time

1000 500 400

1000 500 400

1000 500 400

ns ns ns

CPD

Power Dissipation Capacitance (Note 6)

CIN

Maximum Input Capacitance

30 10 9

(per package)

55 5

pF 10

10

10

pF

Note 5: Typical Propagation delay time to any output can be calculated using: tP e 17 a 12(N–1) ns; where N is the number of the output, QW, at VCC e 5V. Note 6: CPD determines the no load dynamic power consumption, PD e CPD VCC2 f a ICC VCC, and the no load dynamic current consumption, IS e CPD VCC f a ICC.

3

Logic Diagrams MM54HC4020/MM74HC4020

TL/F/5216 – 5

MM54HC4040/MM74HC4040

TL/F/5216 – 7

4

TL/F/5216 – 11

Timing Diagram

5

Physical Dimensions inches (millimeters)

Order Number MM54HC4020J, MM54HC4024J, MM54HC4040J, MM74HC4020J, MM74HC4024J, or MM74HC4040J NS Package J14A

6

Physical Dimensions inches (millimeters) (Continued)

Order Number MM54HC4020J, MM54HC4024J, MM54HC4040J, MM74HC4020J, MM74HC4024J, or MM74HC4040J NS Package J16A

Order Number MM74HC4020N, MM74HC4024N or MM74HC4040N NS Package N14A

7

MM54HC4020/MM74HC4020 14-Stage Binary Counter MM54HC4040/MM74HC4040 12-Stage Binary Counter

Physical Dimensions inches (millimeters) (Continued)

Order Number MM74HC4020N, MM74HC4024N or MM74HC4040N NS Package N16E

LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Europe Fax: (a49) 0-180-530 85 86 Email: cnjwge @ tevm2.nsc.com Deutsch Tel: (a49) 0-180-530 85 85 English Tel: (a49) 0-180-532 78 32 Fran3ais Tel: (a49) 0-180-532 93 58 Italiano Tel: (a49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Order this document by MCT7800/D

   





        These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. • Output Current in Excess of 1.0 A

• • • • • •

THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS

No External Components Required Internal Thermal Overload Protection T SUFFIX PLASTIC PACKAGE CASE 221A

Internal Short Circuit Current Limiting Output Transistor Safe-Area Compensation Output Voltage Offered with a 4% Tolerance Available in Surface Mount D2PAK and Standard 3-Lead Transistor

Heatsink surface connected to Pin 2.

1

Packages

2 3

Pin 1. Input 2. Ground 3. Output

D2T SUFFIX PLASTIC PACKAGE CASE 936 (D2PAK)

1

2 3

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

This MCT-prefixed device is intended to be a possible replacement for the similar device with the MC-prefix. Because the MCT device originates from different source material, there may be subtle differences in typical parameter values or characteristic curves. Due to the diversity of potential applications, Motorola can not assure identical performance in all circuits. Motorola recommends that the customer qualify the MCT-prefixed device in each potential application.

STANDARD APPLICATION Input Cin* 0.33 µF

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE MCT7805 MCT7806 MCT7808 MCT7809

5.0 V 6.0 V 8.0 V 9.0 V

MCT7812 MCT7815 MCT7818 MCT7824

12 V 15 V 18 V 24 V

MCT78XX

Output CO**

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

ORDERING INFORMATION Device

Output Voltage Tolerance

Tested Operating Temperature Range

Package Surface Mount

MCT78XXBD2T TJ = – 40° to +125°C

MCT78XXBT

Insertion Mount

4% Surface Mount

MCT78XXCD2T MCT78XXCT

TJ = 0° to +125°C

Insertion Mount

XX, these two digits of the type number indicate nominal voltage. ** Cin is required if regulator is located an appreciable distance from power supply filter. ** Some CO is recommended for stability; it does improve transient response. Values less than 0.1 µF could cause instability.

XX indicates nominal voltage.  Motorola, Inc. 1994

MOTOROLA

Rev 3

MCT7800 1

MCT7800 MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.) Rating

Symbol

Value

Unit

VI

35

Vdc

PD θJA θJC

Internally Limited 65 5.0

W °C/W °C/W

PD θJA θJC

Internally Limited 70 5.0

W °C/W °C/W

Tstg

– 65 to +150

°C

TJ

+150

°C

Input Voltage Power Dissipation Case 221A TA = +25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 936 (D2PAK) TA = +25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Storage Junction Temperature Range Operating Junction Temperature

Representative Schematic Diagram Input 100 100

100

10 k

500

240 200

0.3 Output

3.3 k

2.0 k

6.0 k

0.25 k 2.7 k

1.4 k

28 k

30 pF

5.0 k

500

6.0 k

1.0 k

5.0 k Gnd

This device contains 19 active transistors.

MCT7800 2

MOTOROLA

MCT7800 ELECTRICAL CHARACTERISTICS (Vin = 10 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7805B Characteristics

MCT7805C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

Output Voltage (TJ = +25°C)

VO

4.8

5.0

5.2

4.8

5.0

5.2

Vdc

Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 7.0 Vdc ≤ Vin ≤ 20 Vdc 8.0 Vdc ≤ Vin ≤ 20 Vdc

VO — 4.75

— 5.0

— 5.25

4.75 —

5.0 —

5.25 —

— —

7.0 2.0

100 50

— —

7.0 2.0

100 50

— —

2.0 1.5

100 50

— —

2.0 1.5

100 50



5.5

8.0



5.5

8.0

— — —

— — —

— 1.3 0.5

— — —

— — —

1.3 — 0.5



65





65





2.0





2.0





10





10





1.3





1.3





0.2





0.2



Imax



2.2





2.2



A

TCVO



0.5





0.5



mV/°C

Line Regulation, TJ = +25°C (Note 2) 7.0 Vdc ≤ Vin ≤ 25 Vdc 8.0 Vdc ≤ Vin ≤ 12 Vdc

Regline

Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ Vin ≤ 1.5 A 250 mA ≤ Vin ≤ 750 mA

Regload

Quiescent Current (TJ = +25°C)

IB

Quiescent Current Change 7.0 Vdc ≤ Vin ≤ 25 Vdc 8.0 Vdc ≤ Vin ≤ 25 Vdc 5.0 mA ≤ IO ≤ 1.0 A

∆IB

Ripple Rejection 8.0 Vdc ≤ Vin ≤ 18 Vdc, f = 120 Hz

RR

Dropout Voltage (IO = 1.0 A, TJ = +25°C)

VI – VO

Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz

Vn

Output Resistance f = 1.0 kHz

rO

Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc

ISC

Peak Output Current (TJ = +25°C) Average Temperature Coefficient of Output Voltage

Vdc

mV

mV

mA mA

dB Vdc µV/VO mΩ A

ELECTRICAL CHARACTERISTICS (Vin = 11 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7806B Characteristics

MCT7806C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

Output Voltage (TJ = +25°C)

VO

5.75

6.0

6.25

5.75

6.0

6.25

Vdc

Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 8.0 Vdc ≤ Vin ≤ 21 Vdc 9.0 Vdc ≤ Vin ≤ 21 Vdc

VO — 5.7

— 6.0

— 6.3

5.7 —

6.0 —

6.3 —

— —

7.0 2.0

120 60

— —

7.0 2.0

120 60

— —

2.0 1.5

120 60

— —

2.0 1.5

120 60



5.5

8.0



5.5

8.0

— — —

— — —

— 1.3 0.5

— — —

— — —

1.3 — 0.5



65





65



Line Regulation, TJ = +25°C (Note 2) 8.0 Vdc ≤ Vin ≤ 25 Vdc 9.0 Vdc ≤ Vin ≤ 13 Vdc

Regline

Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ Vin ≤ 1.5 A 250 mA ≤ Vin ≤ 750 mA

Regload

Quiescent Current (TJ = +25°C)

IB

Quiescent Current Change 8.0 Vdc ≤ Vin ≤ 25 Vdc 9.0 Vdc ≤ Vin ≤ 25 Vdc 5.0 mA ≤ IO ≤ 1.0 A

∆IB

Ripple Rejection 9.0 Vdc ≤ Vin ≤ 19 Vdc, f = 120 Hz

RR

NOTES:

Vdc

mV

mV

mA mA

dB

1. Tlow = 0°C for MCT78XXC = – 40°C for MCT78XXB

Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting will reduce the output current to less than 1.0 A at a VI–VO of 15 V or greater. The MC7800 die will supply more current under the same conditions. 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MOTOROLA

MCT7800 3

MCT7800 ELECTRICAL CHARACTERISTICS (continued) (Vin = 11 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7806B Characteristics Dropout Voltage (IO = 1.0 A, TJ = +25°C) Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz

MCT7806C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

VI – VO



2.0





2.0



Vdc



10





10





1.3





1.3





0.2





0.2



µV/VO

Vn

Output Resistance f = 1.0 kHz

rO

Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc

ISC

Peak Output Current (TJ = +25°C)

Imax



2.2





2.2



A

TCVO



– 0.8





– 0.8



mV/°C

Average Temperature Coefficient of Output Voltage

mΩ A

ELECTRICAL CHARACTERISTICS (Vin = 14 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7808B Characteristics

MCT7808C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

Output Voltage (TJ = +25°C)

VO

7.7

8.0

8.3

7.7

8.0

8.3

Vdc

Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 10.5 Vdc ≤ Vin ≤ 23 Vdc 11.5 Vdc ≤ Vin ≤ 23 Vdc

VO — 7.6

— 8.0

— 8.4

7.6 —

8.0 —

8.4 —

— —

7.0 2.0

160 80

— —

7.0 2.0

160 80

— —

2.0 1.5

160 80

— —

2.0 1.5

160 80



5.5

8.0



5.5

8.0

— — —

— — —

— 1.0 0.5

— — —

— — —

1.0 — 0.5



63





63





2.0





2.0





10





10





18





18





0.2





0.2



Line Regulation, TJ = +25°C (Note 2) 10.5 Vdc ≤ Vin ≤ 25 Vdc 11 Vdc ≤ Vin ≤ 17 Vdc

Regline

Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ IO ≤ 1.5 A 250 mA ≤ IO ≤ 750 mA

Regload

Quiescent Current (TJ = +25°C)

IB

Quiescent Current Change 10.5 Vdc ≤ Vin ≤ 25 Vdc 11.5 Vdc ≤ Vin ≤ 25 Vdc 5.0 mA ≤ IO ≤ 1.0 A

∆IB

Ripple Rejection 11.5 Vdc ≤ Vin ≤ 21.5 Vdc, f = 120 Hz

RR

Dropout Voltage (IO = 1.0 A, TJ = +25°C)

VI – VO

Vdc

mV

mV

mA mA

dB Vdc µV/VO

Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz

Vn

Output Resistance f = 1.0 kHz

rO

Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc

ISC

Peak Output Current (TJ = +25°C)

Imax



2.2





2.2



A

TCVO



– 0.8





– 0.8



mV/°C

Average Temperature Coefficient of Output Voltage NOTES:

mΩ A

1. Tlow = 0°C for MCT78XXC = – 40°C for MCT78XXB

Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting will reduce the output current to less than 1.0 A at a VI–VO of 15 V or greater. The MC7800 die will supply more current under the same conditions. 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MCT7800 4

MOTOROLA

MCT7800 ELECTRICAL CHARACTERISTICS (Vin = 15 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7809B Characteristics Output Voltage (TJ = +25°C) Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 11.5 Vdc ≤ Vin ≤ 24 Vdc 12.5 Vdc ≤ Vin ≤ 24 Vdc Line Regulation, TJ = +25°C (Note 2) 11.5 Vdc ≤ Vin ≤ 26 Vdc 11.5 Vdc ≤ Vin ≤ 17 Vdc Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ IO ≤ 1.5 A 250 mA ≤ IO ≤ 750 mA Quiescent Current (TJ = +25°C) Quiescent Current Change 11.5 Vdc ≤ Vin ≤ 26 Vdc 12.5 Vdc ≤ Vin ≤ 26 Vdc 5.0 mA ≤ IO ≤ 1.0 A

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

VO VO

8.65

9.0

9.35

8.65

9.0

9.35

Vdc

— 8.55

— 9.0

— 9.45

8.55 —

9.0 —

9.45 —

— —

8.0 4.0

50 25

— —

8.0 4.0

50 25

— —

3.0 2.0

50 25

— —

3.0 2.0

50 25



5.5

8.0



5.5

8.0

— — —

— — —

— 1.0 0.5

— — —

— — —

1.0 — 0.5



62





62





2.0





2.0



mV

Regload

IB ∆IB

RR

Dropout Voltage (IO = 1.0 A, TJ = +25°C)

VI – VO Vn

Output Resistance f = 1.0 kHz

rO

Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc Peak Output Current (TJ = +25°C)

ISC

Average Temperature Coefficient of Output Voltage

Vdc

Regline

Ripple Rejection 11.5 Vdc ≤ Vin ≤ 21.5 Vdc, f = 120 Hz Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz

MCT7809C

Imax TCVO

mV

mA mA

dB Vdc µV/VO —

10





10





18





18





0.2





0.2





2.2





2.2



A



–1.0





–1.0



mV/°C

mΩ A

ELECTRICAL CHARACTERISTICS (Vin = 19 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7812B Characteristics Output Voltage (TJ = +25°C) Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 14.5 Vdc ≤ Vin ≤ 27 Vdc 15.5 Vdc ≤ Vin ≤ 27 Vdc Line Regulation, TJ = +25°C (Note 2) 14.5 Vdc ≤ Vin ≤ 30 Vdc 16 Vdc ≤ Vin ≤ 22 Vdc Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ IO ≤ 1.5 A 250 mA ≤ IO ≤ 750 mA Quiescent Current (TJ = +25°C) Quiescent Current Change 14.5 Vdc ≤ Vin ≤ 30 Vdc 15 Vdc ≤ Vin ≤ 30 Vdc 5.0 mA ≤ IO ≤ 1.0 A NOTES:

MCT7812C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

VO VO

11.5

12

12.5

11.5

12

12.5

Vdc

— 11.4

— 12

— 12.6

11.4 —

12 —

12.6 —

— —

10 5.0

240 120

— —

10 5.0

240 120

— —

3.0 2.0

240 120

— —

3.0 2.0

240 120



5.5

8.0



5.5

8.0

— — —

— — —

— 1.0 0.5

— — —

— — —

1.0 — 0.5

Vdc

Regline

mV

Regload

IB ∆IB

mV

mA mA

1. Tlow = 0°C for MCT78XXC = – 40°C for MCT78XXB

Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting will reduce the output current to less than 1.0 A at a VI–VO of 15 V or greater. The MC7800 die will supply more current under the same conditions. 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MOTOROLA

MCT7800 5

MCT7800 ELECTRICAL CHARACTERISTICS (continued) (Vin = 19 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7812B Characteristics Ripple Rejection 15 Vdc ≤ Vin ≤ 25 Vdc, f = 120 Hz Dropout Voltage (IO = 1.0 A, TJ = +25°C) Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz Output Resistance f = 1.0 kHz Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc Peak Output Current (TJ = +25°C) Average Temperature Coefficient of Output Voltage

Symbol

MCT7812C

Min

Typ

Max

Min

Typ

Max



62





62





2.0





2.0





10





10





18





18





0.2





0.2





2.2





2.2



A



–1.0





–1.0



mV/°C

RR VI – VO Vn rO ISC Imax TCVO

Unit dB Vdc µV/VO mΩ A

ELECTRICAL CHARACTERISTICS (Vin = 23 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7815B Characteristics

MCT7815C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

Output Voltage (TJ = +25°C)

VO

14.4

15

15.6

14.4

15

15.6

Vdc

Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 17.5 Vdc ≤ Vin ≤ 30 Vdc 18.5 Vdc ≤ Vin ≤ 30 Vdc

VO — 14.25

— 15

— 15.75

14.25 —

15 —

15.75 —

— —

11 5.0

300 150

— —

11 5.0

300 150

— —

3.0 2.0

300 150

— —

3.0 2.0

300 150



5.5

8.0



5.5

8.0

— — —

— — —

— 1.0 0.5

— — —

— — —

1.0 — 0.5



60





60





2.0





2.0





10





10





19





19





0.2





0.2



Line Regulation, TJ = +25°C (Note 2) 17.5 Vdc ≤ Vin ≤ 30 Vdc 20 Vdc ≤ Vin ≤ 26 Vdc

Regline

Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ Vin ≤ 1.5 A 250 mA ≤ Vin ≤ 750 mA

Regload

Quiescent Current (TJ = +25°C)

IB

Quiescent Current Change 17.5 Vdc ≤ Vin ≤ 30 Vdc 18.5 Vdc ≤ Vin ≤ 30 Vdc 5.0 mA ≤ IO ≤ 1.0 A

∆IB

Ripple Rejection 18.5 Vdc ≤ Vin ≤ 28.5 Vdc, f = 120 Hz

RR

Dropout Voltage (IO = 1.0 A, TJ = +25°C)

VI – VO

Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz

Vdc

mV

mV

mA mA

dB Vdc µV/VO

Vn

Output Resistance f = 1.0 kHz

rO

Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc

ISC

Peak Output Current (TJ = +25°C)

Imax



2.2





2.2



A

TCVO



–1.0





–1.0



mV/°C

Average Temperature Coefficient of Output Voltage NOTES:

mΩ A

1. Tlow = 0°C for MCT78XXC = – 40°C for MCT78XXB

Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting will reduce the output current to less than 1.0 A at a VI–VO of 15 V or greater. The MC7800 die will supply more current under the same conditions. 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MCT7800 6

MOTOROLA

MCT7800 ELECTRICAL CHARACTERISTICS (Vin = 27 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7818B Characteristics Output Voltage (TJ = +25°C) Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 21 Vdc ≤ Vin ≤ 33 Vdc 22 Vdc ≤ Vin ≤ 33 Vdc Line Regulation, TJ = +25°C (Note 2) 21 Vdc ≤ Vin ≤ 33 Vdc 24 Vdc ≤ Vin ≤ 30 Vdc Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ Vin ≤ 1.5 A 250 mA ≤ Vin ≤ 750 mA Quiescent Current (TJ = +25°C) Quiescent Current Change 21 Vdc ≤ Vin ≤ 33 Vdc 22 Vdc ≤ Vin ≤ 33 Vdc 5.0 mA ≤ IO ≤ 1.0 A Ripple Rejection 22 Vdc ≤ Vin ≤ 32 Vdc, f = 120 Hz Dropout Voltage (IO = 1.0 A, TJ = +25°C) Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz Output Resistance f = 1.0 kHz Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc Peak Output Current (TJ = +25°C) Average Temperature Coefficient of Output Voltage

MCT7818C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

VO VO

17.3

18

18.7

17.3

18

18.7

Vdc

— 17.1

— 18

— 18.9

17.1 —

18 —

18.9 —

— —

11 5.0

360 180

— —

11 5.0

360 180

— —

4.0 3.0

360 180

— —

4.0 3.0

360 180



5.5

8.0



5.5

8.0

— — —

— — —

— 1.0 0.5

— — —

— — —

1.0 — 0.5



59





59





2.0





2.0



Vdc

Regline

mV

Regload

IB ∆IB

mV

mA

RR ViI – VO Vn rO ISC Imax TCVO

mA

dB Vdc µV/VO —

10





10





19





19





0.2





0.2





2.2





2.2



A



–1.0





–1.0



mV/°C

mΩ A

ELECTRICAL CHARACTERISTICS (Vin = 33 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.) MCT7824B Characteristics Output Voltage (TJ = +25°C) Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W) 27 Vdc ≤ Vin ≤ 38 Vdc 28 Vdc ≤ Vin ≤ 38 Vdc Line Regulation, TJ = +25°C (Note 2) 27 Vdc ≤ Vin ≤ 38 Vdc 30 Vdc ≤ Vin ≤ 36 Vdc Load Regulation, TJ = +25°C (Note 2) 5.0 mA ≤ IO ≤ 1.5 A 250 mA ≤ IO ≤ 750 mA Quiescent Current (TJ = +25°C) Quiescent Current Change 27 Vdc ≤ Vin ≤ 38 Vdc 28 Vdc ≤ Vin ≤ 38 Vdc 5.0 mA ≤ IO ≤ 1.0 A Ripple Rejection 28 Vdc ≤ Vin ≤ 38 Vdc, f = 120 Hz Dropout Voltage (IO = 1.0 A, TJ = +25°C) Output Noise Voltage (TA = +25°C) 10 Hz ≤ f ≤ 100 kHz Output Resistance f = 1.0 kHz Short Circuit Current Limit (TA = +25°C) Vin = 35 Vdc Peak Output Current (TJ = +25°C) Average Temperature Coefficient of Output Voltage NOTES:

MCT7824C

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

VO VO

23

24

25

23

24

25

Vdc

— 22.8

— 24

— 25.2

22.8 —

24 —

25.2 —

— —

12 6.0

480 240

— —

12 6.0

480 240

— —

5.0 4.0

480 240

— —

5.0 4.0

480 240



5.5

8.0



5.5

8.0

— — —

— — —

— 1.0 0.5

— — —

— — —

1.0 — 0.5



56





56





2.0





2.0



Vdc

Regline

mV

Regload

IB ∆IB

mV

mA

RR VI – VO Vn rO ISC Imax TCVO

mA

dB Vdc µV/VO —

10





10





20





20





0.2





0.2





2.2





2.2



A



–1.5





–1.5



mV/°C

mΩ A

1. Tlow = 0°C for MCT78XXC = – 40°C for MCT78XXB

Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting will reduce the output current to less than 1.0 A at a VI–VO of 15 V or greater. The MC7800 die will supply more current under the same conditions. 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MOTOROLA

MCT7800 7

MCT7800 Figure 1. Peak Output Current as a Function of Input-Output Differential Voltage

Figure 2. Ripple Rejection as a Function of Output Voltages (MCT78XXC) 80

3.0

2.0 TJ = – 40°C

1.0

TJ = +25°C

RR, RIPPLE REJECTION (dB)

I O , OUTPUT CURRENT (A)

4.0

TJ = +125°C 10 20 30 40 VI – VO, INPUT-OUPUT VOLTAGE DIFFERENTIAL (V)

0 0

60 Device 50

40 4.0

Figure 3. Ripple Rejection as a Function of Frequency (MCT78XXC)

6.0

8.0

Vin 10 V 19 V 23 V 10 12 14 16 18 VO, OUTPUT VOLTAGE (V)

20

22

24

1000 Z O, OUTPUT IMPEDANCE (mΩ )

RR, RIPPLE REJECTION (dB)

MCT7805C MCT7812C MCT7815C

Figure 4. Output Impedance as a Function of Output Voltage (MCT78XXC)

80

60 Vin = 10 V VO = 5.0 V IO = 20 mA 40

20 10

f = 120 Hz IO = 20 mA ∆Vin = 1.0 Vrms

70

100

1.0 k f, FREQUENCY (Hz)

10 k

100 k

500 300 200 100

f = 120 Hz IO = 500 mA CL = 0 µF

50 30 20 10 4.0

8.0

12 16 VO, OUTPUT VOLTAGE (V)

20

24

Figure 5. Quiescent Current as a Function of Temperature

I B, QUIESCENT CURRENT (mA)

6.0 4.0

2.0 1.0 0 –75

MCT7800 8

Vin = 10 V VO = 5.0 V IO = 20 mA

3.0

– 50

– 25 0 25 50 75 TJ, JUNCTION TEMPERATURE (°C)

100

125

MOTOROLA

MCT7800 APPLICATIONS INFORMATION Design Considerations The MCT7800 Series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or

if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies, should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators’ input terminals. Normally, good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 6. Worst Case Power Dissipation versus Ambient Temperature (Case 221A)

θHS = 0°C/W

16

θHS = 5°C/W

12

θHS = 15°C/W

8.0 4.0 0 – 50

2.5

θJC = 5°C/W θJA = 65°C/W TJ(max) = +150°C

V I – VO , INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V)

PD, POWER DISSIPATION (W)

20

Figure 7. Input Output Differential as a Function of Junction Temperature

No Heatsink

– 25

0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C)

125

IO = 1.0 A

2.0

200 mA

500 mA

1.5

20 mA 0 mA

1.0

∆VO = 2% of VO – – – Extended Curve for MCT78XXB

0.5 0 –75

150

– 50

– 25 0 25 50 75 TJ, JUNCTION TEMPERATURE (°C)

100

125

JUNCTION-TO-AIR (° C/W)

R θ JA, THERMAL RESISTANCE

80

3.5 PD(max) for TA = 50°C

70

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ

Free Air Mounted Vertically

60

2.0 oz. Copper L

Minimum Size Pad

50

L

40 RθJA 30

3.0 2.5 2.0 1.5

PD, MAXIMUM POWER DISSIPATION (W)

Figure 8. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

1.0 0

5.0

10

15

20

25

30

L, LENGTH OF COPPER (mm)

DEFINITIONS Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected. Load Regulation — The change in output voltage for a change in load current at constant chip temperature. Maximum Power Dissipation — The maximum total device dissipation for which the regulator will operate within specifications. MOTOROLA

Quiescent Current — That part of the input current that is not delivered to the load. Output Noise Voltage — The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range. Long Term Stability — Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices’ electrical characteristics and maximum power dissipation. MCT7800 9

MCT7800 OUTLINE DIMENSIONS T SUFFIX PLASTIC PACKAGE CASE 221A-06

-TF

B

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIM Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

SEATING PLANE

C T

S DIM A B C D F G H J K L N Q R S T U V Z

4

A

Q 1 2 3

U

H K Z R

L J

V G D

INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 — — 0.080

MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 — — 2.04

N

D2T SUFFIX PLASTIC PACKAGE CASE 936-03 (D2PAK)

OPTIONAL CHAMFER

A

TERMINAL 4

-T-

U

E

S

K

V

B H F

1

2

3

M

P

J N

D

R

0.010 (0.254) M T G

C

MCT7800 10

L

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K. 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.

DIM A B C D E F G H J K L M N P R S U V

INCHES MIN MAX 0.386 0.403 0.356 0.368 0.170 0.180 0.026 0.036 0.045 0.055 0.051 REF 0.100 BSC 0.539 0.579 0.125 MAX 0.050 REF 0.000 0.010 0.088 0.102 0.018 0.026 0.058 0.078 5 _ REF 0.116 REF 0.200 MIN 0.250 MIN

MILLIMETERS MIN MAX 9.804 10.236 9.042 9.347 4.318 4.572 0.660 0.914 1.143 1.397 1.295 REF 2.540 BSC 13.691 14.707 3.175 MAX 1.270 REF 0.000 0.254 2.235 2.591 0.457 0.660 1.473 1.981 5 _ REF 2.946 REF 5.080 MIN 6.350 MIN

MOTOROLA

MCT7800 NOTES

MOTOROLA

MCT7800 11

MCT7800

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MCT7800 12



*MCT7800/D*

1PHX33530-3 PRINTED IN USA (8/94) MPS/POD LINEAR YCAAAA

MCT7800/D MOTOROLA

DISCRETE SEMICONDUCTORS

DATA SHEET

BS250 P-channel enhancement mode vertical D-MOS transistor Product specification File under Discrete Semiconductors, SC13b

April 1995

Philips Semiconductors

Product specification

P-channel enhancement mode vertical D-MOS transistor DESCRIPTION

BS250

QUICK REFERENCE DATA

P-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and intended for use in relay, high-speed and line-transformer drivers.

Drain-source voltage

−VDS

max.

Gate-source voltage (open drain)

±VGSO

max.

20 V

Drain current (DC)

−ID

max.

0.25 A

Ptot

max.

0.83 W

FEATURES

Drain-source ON-resistance RDS(on)

typ. max.

9 Ω 14 Ω

 Yfs

typ.

125 mS

Total power dissipation up to Tamb = 25 °C −ID = 200 mA; −VGS = 10 V

• Low RDS(on) • Direct interface to C-MOS

Transfer admittance

• High-speed switching

−ID = 200 mA; −VDS = 15 V

• No second breakdown PINNING - TO-92 VARIANT 1

= source

2

= gate

3

= drain

PIN CONFIGURATION

d

handbook, halfpage

1

2 3 g

MAM147

s

Note: Various pinout configurations available.

Fig.1 Simplified outline and symbol.

April 1995

45 V

2

Philips Semiconductors

Product specification

P-channel enhancement mode vertical D-MOS transistor

BS250

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Drain-source voltage

−VDS

max.

Gate-source voltage (open drain)

± VGSO

max.

20 V

Drain current (DC)

−ID

max.

0.25 A

Drain current (peak value)

−IDM

max.

0.5 A

Total power dissipation up to Tamb = 25 °C (note 1)

Ptot

max.

0.83 W

Storage temperature range

Tstg

Junction temperature

Tj

max.

150 °C

Rth j-a

=

150 K/W

45 V

−65 to + 150 °C

THERMAL RESISTANCE From junction to ambient (note 1) Note 1. Transistor mounted on printed-circuit board, max. lead length 4 mm. CHARACTERISTICS Tj = 25 °C unless otherwise specified Drain-source breakdown voltage − ID = 100 µA; VGS = 0

−V(BR)DSS

min.

45

V

−IDSS

max.

0.5

µA

−IGSS

max.

20

nA

−VGS(th)

min. max.

1.0 V 3.5 V

RDS(on)

typ. max.

9 Ω 14 Ω

 Yfs

typ.

125 mS

Ciss

typ. max.

30 pF 45 pF

Coss

typ. max.

20 pF 30 pF

Crss

typ. max.

5 pF 10 pF

Drain-source leakage current −VDS = 25 V; VGS = 0 Gate-source leakage current −VGS = 15 V; VDS = 0 Gate threshold voltage −ID = 1 mA; VDS = VGS Drain-source ON-resistance −ID = 200 mA; −VGS = 10 V Transfer admittance −ID = 200 mA; −VDS = 15 V Input capacitance at f = 1 MHz −VDS = 10 V; VGS = 0 Output capacitance at f = 1 MHz −VDS = 10 V; VGS = 0 Feedback capacitance at f = 1 MHz −VDS = 10 V; VGS = 0

April 1995

3

Philips Semiconductors

Product specification

P-channel enhancement mode vertical D-MOS transistor

BS250

Switching times (see Figs 2 and 3) ton toff

−ID = 200 mA; −VDD = 40 V; −VGS = 0 to 10 V

Fig.2 Switching times test circuit.

April 1995

typ. typ.

4 ns 10 ns

Fig.3 Input and output waveforms.

4

Philips Semiconductors

Product specification

P-channel enhancement mode vertical D-MOS transistor

BS250

PACKAGE OUTLINES Plastic single-ended leaded (through hole) package; 3 leads (on-circle)

SOT54 variant

c

L2

E d

A

L b

1 e1

2

e

D

3 b1

L1

0

2.5

5 mm

scale

DIMENSIONS (mm are the original dimensions) UNIT

A

b

b1

c

D

d

E

e

e1

L

L1(1) max

L2 max

mm

5.2 5.0

0.48 0.40

0.66 0.56

0.45 0.40

4.8 4.4

1.7 1.4

4.2 3.6

2.54

1.27

14.5 12.7

2.5

2.5

Notes 1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities. OUTLINE VERSION SOT54 variant

April 1995

REFERENCES IEC

JEDEC

EIAJ

TO-92

SC-43

5

EUROPEAN PROJECTION

ISSUE DATE 97-04-14

Philips Semiconductors

Product specification

P-channel enhancement mode vertical D-MOS transistor

BS250

DEFINITIONS Data sheet status Objective specification

This data sheet contains target or goal specifications for product development.

Preliminary specification

This data sheet contains preliminary data; supplementary data may be published later.

Product specification

This data sheet contains final product specifications.

Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

April 1995

6

Philips Semiconductors

Product specification

P-channel enhancement mode vertical D-MOS transistor NOTES

April 1995

7

BS250

Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1997

SCA54

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

137107/00/01/pp8

Date of release: April 1995

Document order number:

9397 750 02458

BZX85C...

TELEFUNKEN Semiconductors

Silicon Epitaxial Planar Z–Diodes Features  Sharp edge in reverse characteristics  Low reverse current  Low noise  Very high stability  Available with tighter tolerances

Applications 94 9369

Voltage stabilization

Absolute Maximum Ratings Tj = 25C Parameter Power dissipation

Test Conditions

Type

l=4mm, TL=25C

Junction temperature Storage temperature range

Symbol

Value

Unit

PV

1.3

W

Tj

175

C

Tstg

–65...+175

C

Symbol

Value

Unit

RthJA

110

K/W

Maximum Thermal Resistance Tj = 25C Parameter Junction ambient

Test Conditions l=4mm, TL=constant

Characteristics Tj = 25C Parameter Forward voltage

Rev. A1: 12.12.1994

Test Conditions IF=200mA

Type

Symbol VF

Min

Typ

Max

Unit

1

V

1

BZX85C... Type

1)

2

TELEFUNKEN Semiconductors

VZnorm

IZT for VZT 1) and rzjT

rzjk at IZK

IR

at VR

TKVZ

BZX85C...

V

mA

V





mA

A

V

%/K

2V7

2.7

80

2.5 to 2.9

< 20

< 400

1

< 150

1

–0.08 to –0.05

3V0

3.0

80

2.8 to 3.2

< 20

< 400

1

< 100

1

–0.08 to –0.05

3V3

3.3

80

3.1 to 3.5

< 20

< 400

1

< 40

1

–0.08 to –0.05

3V6

3.6

60

3.4 to 3.8

< 20

< 500

1

< 20

1

–0.08 to –0.05

3V9

3.9

60

3.7 to 4.1

< 15

< 500

1

< 10

1

–0.07 to –0.02

4V3

4.3

50

4.0 to 4.6

< 13

< 500

1