

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Towards Formal Verification of Contiki OS with ... - Nikolai Kosmatov

Mar 6, 2018 - Continuous integration system does not include formal verification. â–» and unit tests are under-represented. A. Blanchard, N. Kosmatov.

 Télécharger le PDF

 1MB taille
 15 téléchargements
 271 vues

 commentaire

 Report

Towards Formal Verification of Contiki OS with Frama-C Allan Blanchard

Nikolai Kosmatov

joint work with Simon Duquennoy, Fr´ ed´ eric Loulergue, Fr´ ed´ eric Mangano, Alexandre Peyrard, Shahid Raza, . . .

CEA List, March 6th, 2018

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

1 / 43

Introduction The MEMB Module The AES-CCM Module The LIST module Conclusion

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

2 / 43

Introduction

Contiki OS

A lightweight OS for IoT Contiki is a lightweight operating system for IoT It provides a lot of features (for a micro-kernel): I

(rudimentary) memory and process management

I

networking stack and cryptographic functions

I

...

Typical hardware platform: I

8, 16, or 32-bit MCU (little or big-endian),

I

low-power radio, some sensors and actuators, ... 55

SicsthSense

SICS Networked Embedded Systems Group

Note for security: there is no memory protection unit.

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

3 / 43

Introduction

Contiki OS

Contiki: Typical Applications I I I I

IoT scenarios: smart cities, building automation, ... Multiple hops to cover large areas • Low-power for battery-powered scenarios Nodes are interoperable and addressable (IP)

Traffic lights Parking spots Public transport Street lights Smart metering …

55

SicsthSense

A. Blanchard, N. Kosmatov

Light bulbs Thermostat Power sockets CO2 sensors Door locks Smoke detectors SICS Networked Embedded Systems … Group

Towards Formal Verification of Contiki OS

March 6th, 2018

4 / 43

Introduction

Contiki OS

Contiki and Formal Verification

I

When started in 2003, no particular attention to security

I

Later, communication security was added at different layers, via standard protocols such as IPsec or DTLS

I

Security of the software itself did not receive much attention Continuous integration system does not include formal verification

I

I

and unit tests are under-represented

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

5 / 43

Introduction

Contiki OS

Verification goals

For low-level library/system code: ideally functional verification I

highly critical code

I

frequently used (memory, lists, ...)

For the netstack: absence of runtime errors I

using Eva

I

using minimal contracts and WP if Eva cannot prove

I

using runtime verification if WP cannot prove either

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

6 / 43

Introduction

Contiki OS

Verification goals

For low-level library/system code: ideally functional verification I

highly critical code

I

frequently used (memory, lists, ...)

For the netstack: absence of runtime errors I

using Eva

I

using minimal contracts and WP if Eva cannot prove

I

using runtime verification if WP cannot prove either

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

6 / 43

Introduction

Overview of Frama-C

Frama-C at a glance

I

A Framework for Modular Analysis of C code

I

Developed at CEA List

I

Released under LGPL license

I

ACSL annotation language Extensible plugin oriented platform

I

I I I

I

Collaboration of analyses over same code Inter plugin communication through ACSL formulas Adding specialized plugins is easy

http://frama-c.com/ [Kirchner et al. FAC 2015]

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

7 / 43

Introduction

Overview of Frama-C

ACSL: ANSI/ISO C Specification Language I I

Based on the notion of contract like in Eiffel, JML Allows users to specify functional properties of programs I I

I

Correctness of the specification is crucial Attacks can exploit every single flaw ⇒ Complete proof is required!

http://frama-c.com/acsl

Basic Components I

First-order logic

I

Pure C expressions

I

C types + Z (integer) and R (real)

I

Built-in predicates and logic functions particularly over pointers: \valid(p), \valid(p+0..2), \separated(p+0..2,q+0..5), \block_length(p)

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

8 / 43

Introduction

Overview of Frama-C

Plugin Frama-C/WP for deductive verification

I

Based on Weakest Precondition calculus [Dijkstra, 1976]

I

Goal: Prove that a given program respects its specification

I

Requires formal specification Capable to formally prove that

I

I I I

I

each program function always respects its contract each function call always respects the expected conditions on its inputs each function call always provides sufficient guarantees to ensure the caller’s contract common security related errors (e.g. buffer overflows) can never occur

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

9 / 43

The MEMB Module

Introduction The MEMB Module Overview of the memb Module Pre-Allocation of a Store in memb Verification of memb with Frama-C/WP The AES-CCM Module The LIST module Conclusion

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

10 / 43

The MEMB Module

Overview of the memb Module

Overview of the memb Module I

No dynamic allocation in Contiki I

to avoid fragmentation of memory in long-lasting systems

I

Memory is pre-allocated (in arrays of blocks) and attributed on demand

I

The management of such blocks is realized by the memb module

The memb module API allows the user to I

initialize a memb store (i.e. pre-allocate an array of blocks),

I

allocate or free a block,

I

check if a pointer refers to a block inside the store

I

count the number of allocated blocks

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

11 / 43

The MEMB Module

Overview of the memb Module

memb is critical! I

Contiki’s main memory allocation module

I

about 100 lines of critical code kernel and many modules rely on memb

I

I

I

used for HTTP, CoAP (lightweight HTTP), IPv6 routes, CSMA, the MAC protocol TSCH, packet queues, network neighbors, the file system Coffee or the DBMS Antelope

memb is one of the most critical elements of Contiki

A flaw in memb could result in attackers reading or writing arbitrary memory regions, crashing the device, or triggering code execution

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

12 / 43

The MEMB Module

Pre-Allocation of a Store in memb

The memb Store I

An array of blocks with a given block size and number of blocks

I

Defined by an instance of struct memb Created by a macro for a given block type and number of blocks

I

I I

I

since there is no polymorphism in C blocks are manipulated as void* pointers

Refers to global definitions added by preprocessing 1 2 3 4 5 6 7 8 9 10

/* file memb.h */ struct memb { unsigned short size; // block size unsigned short num; // number of blocks char *count; // block statuses void *mem; // array of blocks }; #define MEMB(name, btype, num)... // macro used to decrare a memb store for // allocation of num blocks of type btype

11 12 13 14 15

1 2 3

/* file demo.c */ #include "memb.h" struct point {int x; int y};

4 5 6 7

// before preprocessing, // there was the following macro: // MEMB(pblock, struct point, 2);

8 9 10 11

void memb_init(struct memb *m); void *memb_alloc(struct memb *m); char memb_free(struct memb *m, void *p); ...

3

12 13 14 15

// after preprocessing, it becomes: static char pblock_count[2]; static struct point pblock_mem[2]; struct struct memb pblock = { sizeof(struct point), 2, pblock_count, pblock_mem }; ...

Fig. 1: (a) Extract of ﬁle memb.h deﬁning a template macro MEMB, and (b) its usage to prepare allocation of up to 2 of blocks ofOS type struct March point Towards Formal Verification Contiki 6th, 2018

(in ﬁle demo.c) A. Blanchard, N. Kosmatov

13 / 43

The MEMB Module

Verification of memb with Frama-C/WP

Contract of the Allocation Function memb alloc 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

/*@ requires valid_memb(m); ensures valid_memb(m); assigns m→count[0 .. (m→num - 1)]; behavior free_found: assumes ∃ Z i; 0 ≤ i < m→num ∧ m→count[i] == 0; ensures ∃ Z i; 0 ≤ i < m→num ∧ \old(m→count[i]) == 0 ∧ m→count[i] == 1 ∧ \result == (char*) m→mem + (i * m→size) ∧ ∀ Z j; (0 ≤ j < i ∨ i < j < m→num) =⇒ m→count[j] == \old(m→count[j]); ensures \valid((char*) \result + (0 .. (m→size - 1))); ensures _memb_numfree(m) == \old(_memb_numfree(m)) - 1; behavior full: assumes ∀ Z i; 0 ≤ i < m→num =⇒ m→count[i] �= 0; ensures ∀ Z i; 0 ≤ i < m→num =⇒ m→count[i] == \old(m→count[i]); ensures \result == NULL; complete behaviors; disjoint behaviors; */ void *memb_alloc(struct memb *m);

Proven in Frama-C/WP Fig. 2: (Simpliﬁed) ACSL contract for allocation function memb_alloc (ﬁle memb.h)

3.3 Specifying Operations First, we specify the functions of memb in ACSL. Let us describe here the contract for the allocation memb_alloc shownof in Fig.OS 2. Its ACSL contract A. Blanchard, N. Kosmatov functionTowards Formal Verification Contiki March 6th,contains 2018

14 / 43

The MEMB Module

Verification of memb with Frama-C/WP

Specification in ACSL We specify the contract of each function and prove it in Frama-C For instance, the contract of memb_alloc has two behaviors 1. If the store is full, then leave it intact and return NULL (lines 12-15) 2. If the store has a free block, then return a free block b such that: I I I

I I

b is properly aligned in the block array (line 8) b was marked as free, and is now marked as allocated (line 7) b is valid, i.e. points to a valid memory space of a block size that can be safely read or written to (line 10) the states of the other blocks have not changed (line 9) the number of free blocks is decremented (line 11)

These behaviors are disjoint and complete.

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

15 / 43

The MEMB Module

Verification of memb with Frama-C/WP

Summary I

The memb module specified and formally verified with Frama-C/WP I I I

I

A few client functions proven as expected I

I

115 lines of annotations 32 additional assertions 126 verification conditions (i.e. proven properties) Proof fails for out-of-bounds access attempts

A potentially harmful situation detected I

count--; used instead of count=0;

Reference: F.Mangano, S.Duquennoy and N.Kosmatov. A Memory Allocation Module of Contiki Formally Verified with Frama-C. A Case Study. In CRiSIS 2016, LNCS, vol.10158, 114–120. Springer.

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

16 / 43

The AES-CCM Module

Introduction The MEMB Module The AES-CCM Module Overview of the aes-ccm Modules Verification of aes-ccm with Frama-C/WP The LIST module Conclusion

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

17 / 43

The AES-CCM Module

Overview of the aes-ccm Modules

Overview of the aes-ccm Modules I

Critical! – Used for communication security I

I

Advanced Encryption Standard (AES) is a symmetric encryption algorithm I

I I

AES replaced in 2002 Data Encryption Standard (DES), which became obsolete in 2005

Modular API – independent from the OS Two modules: I I I

I

end-to-end confidentiality and integrity (e.g. Link-layer security or DTLS)

AES-128 AES-CCM* block cypher mode A few hundreds of LoC

High complexity crypto code I I I

Intensive integer arithmetics Intricate indexing based on multiplication over finite field GF(28)

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

18 / 43

The AES-CCM Module

Verification of aes-ccm with Frama-C/WP

Example: Function set key /*@ requires \valid_read(key+ (0 .. (AES_128_KEY_LENGTH - 1))); assigns round_keys[0][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[1][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[2][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[3][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[4][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[5][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[6][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[7][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[8][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[9][0 .. (AES_128_KEY_LENGTH - 1)], round_keys[10][0 .. (AES_128_KEY_LENGTH - 1)]; */

static void set_key(const uint8_t *key) /*@ loop invariant 0 root == cArr[index] ==> linked_n(root->next, cArr, index + 1, n - 1, bound) ==> linked_n(root, cArr, index, n, bound); }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

26 / 43

The LIST module

Formalization approach

Formalization approach - Induction Ghost code

index+2 cArr

&C

&D

&E

root

C

D

E

&C

&D

&E

bound

Actual code inductive linked_n{L}(struct list *root, struct list **cArr, integer index, integer n, struct list *bound) { // ... case linked_n_cons{L}: \forall struct list *root, **cArr, *bound, integer index, n; /*indexes properties*/ ==> \valid(root) ==> root == cArr[index] ==> linked_n(root->next, cArr, index + 1, n - 1, bound) ==> linked_n(root, cArr, index, n, bound); }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

26 / 43

The LIST module

Formalization approach

Formalization approach - Induction Ghost code

index+3 cArr

&D

&E

root

D

E

&D

&E

bound

Actual code inductive linked_n{L}(struct list *root, struct list **cArr, integer index, integer n, struct list *bound) { // ... case linked_n_cons{L}: \forall struct list *root, **cArr, *bound, integer index, n; /*indexes properties*/ ==> \valid(root) ==> root == cArr[index] ==> linked_n(root->next, cArr, index + 1, n - 1, bound) ==> linked_n(root, cArr, index, n, bound); }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

26 / 43

The LIST module

Formalization approach

Formalization approach - Induction Ghost code

index+4 cArr

&E

root

E

&E

bound

Actual code inductive linked_n{L}(struct list *root, struct list **cArr, integer index, integer n, struct list *bound) { // ... case linked_n_cons{L}: \forall struct list *root, **cArr, *bound, integer index, n; /*indexes properties*/ ==> \valid(root) ==> root == cArr[index] ==> linked_n(root->next, cArr, index + 1, n - 1, bound) ==> linked_n(root, cArr, index, n, bound); }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

26 / 43

The LIST module

Formalization approach

Formalization approach - Induction base case Ghost code cArr

root bound

Actual code inductive linked_n{L}(struct list *root, struct list **cArr, integer index, integer n, struct list *bound) { case linked_n_bound{L}: \forall struct list **cArr, *bound, integer index; 0 next, L1) == \at(array[i]->next, L2);

While we have to update the array accordingly when the list is modified.

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

28 / 43

The LIST module

Examples

Example with list pop void list_pop(list_t pLst, struct list **cArr, int index, int n){ struct list* l = *pLst; if(*pLst != NULL) { //@ ghost array_pop(cArr, index, n, pLst, NULL); *pLst = (*pLst)->next; } return l; }

Current property:

Ghost code

index cArr

&A

index+n-1 &B

&C

&D

&E

pLst

root

A

B

C

D

E

&root

&A

&B

&C

&D

&E

bound

Actual code A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

29 / 43

The LIST module

Examples

Example with list pop void list_pop(list_t pLst, struct list **cArr, int index, int n){ struct list* l = *pLst; if(*pLst != NULL) { //@ ghost array_pop(cArr, index, n, pLst, NULL); *pLst = (*pLst)->next; } return l; }

Current property: linked_n(*pLst, cArr, index, n, NULL);

Ghost code

index cArr

&A

index+n-1 &B

&C

&D

&E

pLst

root

A

B

C

D

E

&root

&A

&B

&C

&D

&E

bound

Actual code A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

29 / 43

The LIST module

Examples

Example with list pop void list_pop(list_t pLst, struct list **cArr, int index, int n){ struct list* l = *pLst; if(*pLst != NULL) { //@ ghost array_pop(cArr, index, n, pLst, NULL); *pLst = (*pLst)->next; } return l; }

Current property: linked_n((*pLst)->next, cArr, index, n-1, NULL);

Ghost code

index cArr

&B

index+n-2 &C

&D

&E

pLst

*pLst

(*pLst)->next A

B

C

D

E

&root

&A

&B

&C

&D

&E

bound

Actual code A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

29 / 43

The LIST module

Examples

Example with list pop void list_pop(list_t pLst, struct list **cArr, int index, int n){ struct list* l = *pLst; if(*pLst != NULL) { //@ ghost array_pop(cArr, index, n, pLst, NULL); *pLst = (*pLst)->next; } return l; }

Current property: linked_n(*pLst, cArr, index, n-1, NULL);

Ghost code

index cArr

&B

index+n-2 &C

&D

&E

pLst

*pLst root

B

C

D

E

&root

&B

&C

&D

&E

bound

Actual code A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

29 / 43

The LIST module

Examples

Example of required lemma /*@ lemma linked_split_segment: \forall struct list *root, **cArr, *bound, *AddrC, integer i, n, k; n > 0 ==> k >= 0 ==> AddrC == cArr[i + n - 1]->next ==> linked_n(root, cArr, i, n + k, bound) (linked_n(root, cArr, i, n, AddrC) && linked_n(AddrC, cArr, i + n, k, bound)); */

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

30 / 43

The LIST module

Examples

Example of required lemma /*@ lemma linked_split_segment: \forall struct list *root, **cArr, *bound, *AddrC, integer i, n, k; n > 0 ==> k >= 0 ==> AddrC == cArr[i + n - 1]->next ==> linked_n(root, cArr, i, n + k, bound) (linked_n(root, cArr, i, n, AddrC) && linked_n(AddrC, cArr, i + n, k, bound)); */

Ghost code

i cArr

&A

&B

&C

&D

&E

root

A

B

C

D

E

&A

&B

&C

&D

&E

bound

Actual code A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

30 / 43

The LIST module

Examples

Example of required lemma /*@ lemma linked_split_segment: \forall struct list *root, **cArr, *bound, *AddrC, integer i, n, k; n > 0 ==> k >= 0 ==> AddrC == cArr[i + n - 1]->next ==> linked_n(root, cArr, i, n + k, bound) (linked_n(root, cArr, i, n, AddrC) && linked_n(AddrC, cArr, i + n, k, bound)); */

Ghost code cArr

&A

root

A

B

&A

&B

&C

Actual code A. Blanchard, N. Kosmatov

i+n

i &B

AddrC &C

&C

&D

&E

C

D

E

&D

&E

bound

Towards Formal Verification of Contiki OS

March 6th, 2018

30 / 43

The LIST module

Results

Verification

I

Code written and specification I I I I

I

46 lines for ghost functions 500 lines for contracts 240 lines for logic definitions and lemmas 650 lines of other annotations

It generates 798 proof obligations I I I I

772 are automatically discharged by SMT solvers 24 are lemmas proved with Coq 2 assertions proved with Coq 2 assertions proved using TIP

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

31 / 43

The LIST module

Results

Results

I I

Discharging all PO requires about an hour of computation. We have built some tests to check the specification I I

some bugs in the specification were discovered and fixed the handling of assigns could be improved

Reference: A.Blanchard, N.Kosmatov and F.Loulergue. Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C. In NFM 2018, LNCS. Springer (to appear).

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

33 / 43

The LIST module

Results

Bug found in list insert

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

33 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { if(previtem == NULL) { list push(list, newitem); } else { newitem->next = previtem->next; previtem->next = newitem; } }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { newitem->next = previtem->next; previtem->next = newitem; } }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { This code does not care about newitem->next = previtem->next; previtem->next = newitem; } }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

it

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { This code does not care about newitem->next = previtem->next; previtem->next = newitem; } }

it

Consequence: list insert(list, &tail, &e1);

pLst

head

E1

E2

tail

&head

&E1

&E2

&tail

NULL

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { This code does not care about newitem->next = previtem->next; previtem->next = newitem; } }

it

Consequence: list insert(list, &tail, &e1);

pLst

head

E1

E2

tail

&head

&E1

NULL

&tail

NULL

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { This code does not care about newitem->next = previtem->next; previtem->next = newitem; } }

it

Consequence: list insert(list, &tail, &e1);

pLst

head

E1

E2

tail

&head

&E1

NULL

&tail

&E1

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { This code does not care about newitem->next = previtem->next; previtem->next = newitem; } }

it

Consequence: list insert(list, &tail, &e1);

pLst

head

E1

tail

E2

&head

&E1

NULL

&E1

&tail

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

The LIST module

Results

Bug found in list insert void list insert(list t list, struct list *previtem, struct list *newitem) { list push enforces unicity if(previtem == NULL) { list push(list, newitem); } else { This code does not care about newitem->next = previtem->next; previtem->next = newitem; } }

it

Consequence: list insert(list, &tail, &e1);

A. Blanchard, N. Kosmatov

pLst

head

E1

&head

&E1

NULL

Towards Formal Verification of Contiki OS

March 6th, 2018

32 / 43

Conclusion

Introduction The MEMB Module The AES-CCM Module The LIST module Conclusion

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

33 / 43

Conclusion

Let’s sum up! Being an OS for vulnerable connected devices, Contiki is target of choice for verification. Verified modules presented today: I

MEMB module

I

AES-CCM and CCM* functions

I

LIST module

Other known verification effort using WP: I

sicslowpan module (Quentin Molle)

I

Absence of RtE in some core components (Jens Gerlach and Jochen Burghardt from Fraunhofer)

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

34 / 43

Conclusion

Ongoing work - with WP

I

The verification of the list module can be improved I I I

I

assigns are not precise enough (there are things to do in WP), separation was really hard to handle one would prefer a more abstract specification

Ongoing experimentations I I

using ACSL logic lists using contiguous partial functions

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

35 / 43

Conclusion

Future work - with EVA

I

We want to use EVA for a verification of absence of RtE: I I

I

with a focus on the portable code in order to find the right parameters to set for EVA+Contiki

Provide an infrastructure to ease futur verification on Contiki: I I I

an abstract “hardware” platform for Contiki a way to ease configuration generation for verification integrate Frama-C to Travis ?

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

36 / 43

Conclusion

Future work - with EVA

I

We want to use EVA for a verification of absence of RtE: I I

I

with a focus on the portable code in order to find the right parameters to set for EVA+Contiki

Provide an infrastructure to ease futur verification on Contiki: I I I

an abstract “hardware” platform for Contiki a way to ease configuration generation for verification integrate Frama-C to Travis ?

Thank you for your attention! Questions?

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

36 / 43

Bonus - Verification with EVA and Protothread

Contiki instance

Main problems for verification: I

an instance of Contiki is a fraction of its source code

I

no unit tests independent from a full OS instance

Building an instance: I

include basic features

I

define parameters for some features and/or the platform

I

define tasks as new processes (eventually including libs)

I

choose a platform (whose source code contains the main)

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

37 / 43

Bonus - Verification with EVA and Protothread

Integrated Frama-C scripts

Verification scripts and Makefile configurations Integrated to the Contiki Makefile.include: I

+ 1 OS configuration for verification

I

+ some configuration for Frama-C and Eva

Some configuration are directly made in the source code

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

38 / 43

Bonus - Verification with EVA and Protothread

First results with Eva

We can run the Frama-C Eva analysis on examples from Contiki I

with very few more configuration to add to an example

Good news: I

we consider a realistic platform

I

the analysis is fast ...

Bad news: I

... because of a degeneration caused by a recursive function

I

there is a lot of alarms

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

39 / 43

Bonus - Verification with EVA and Protothread

Scheduling of tasks

Processes are handled through a macro library called protothread I

it looks like co-routines

The scheduling algorithm I

maintains a list of “processes”

I

propagates events to other processes when needed

I

... by recursive calls

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

40 / 43

Bonus - Verification with EVA and Protothread

Protothread I Protothreads uses Duff’s device to handle yielding Example static PT THREAD(e x a m p l e (s t r u c t p t ∗ p t)) { PT BEGIN (p t) ; while (1) { PT WAIT UNTIL (pt , c o u n t e r == 1 0 0 0) ; p r i n t f (” T h r e s h o l d r e a c h e d \n”) ; counter = 0; } PT END(p t) ; }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

41 / 43

Bonus - Verification with EVA and Protothread

Protothread II ... which generates a code like this static char example (s t r u c t pt ∗ pt) { s w i t c h (pt−>l c) { c a s e 0 : while (1) { pt−>l c = 1 2 ; c a s e 1 2 : i f (! (c o u n t e r == 1 0 0 0)) r e t u r n 0 ; p r i n t f (” T h r e s h o l d r e a c h e d \n”) ; counter = 0; } } pt−>l c = 0 ; r e t u r n 2 ; }

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

42 / 43

Bonus - Verification with EVA and Protothread

Event management

Most events are immediately handled by the scheduler I

by a recursively call to call_process

I

that can again generates new events

This recursive calls cause the Eva analysis to degenerate Options: I

change the scheduling algorithm

I

improve Eva with recursive function inlining

A. Blanchard, N. Kosmatov

Towards Formal Verification of Contiki OS

March 6th, 2018

43 / 43

des documents recommandant

[image: alt]

Towards Formal Verification of Contiki OS with ... - Nikolai Kosmatov

Jun 7, 2018 - memory protection unit. edded Systems ... and unit tests are under-represented. N. Kosmatov Validation of contracts of a test file. â–· to get ...

[image: alt]

Formal Verification of a Memory Allocation Module ... - Nikolai Kosmatov

Nov 22, 2016 - Includes Cooja simulator. â–· Web: http://www.contiki-os.org/. â–· Git: https://github.com/contiki-os/contikiedded Systems Group. Nikolai Kosmatov ...

[image: alt]

Formal Verification of a Memory Allocation Module ... - Nikolai Kosmatov

This short paper promotes the usage of formal verification to ensure safety ... feature basis, and the memb module helps the management of such blocks. ensures âˆƒ Z i; 0 â‰¤ i < mâ†’num âˆ§ \old(mâ†’count[i]) == 0 âˆ§ mâ†’count[i] == 1 âˆ§. 8 .

[image: alt]

Applications of formal verification for secure Cloud ... - Nikolai Kosmatov

Jun 30, 2015 - For low-level functions, we conducted a â€œclassicâ€� verification. â–» Specification with ... Native Client (NaCl) plugins use Chrome API. â–· ZeroVM: ...

[image: alt]

Verification of IoT Software with Frama-C - Tutorial ... - Nikolai Kosmatov

Jul 16, 2018 - Introduction. Verification of absence of runtime errors using EVA Advanced Encryption Standard (AES): a symmetric encryption algo. â–· AES ...

[image: alt]

Verification of IoT Software with Frama-C - Tutorial ... - Nikolai Kosmatov

May 30, 2018 - Introduction. Security in the IoT. Internet of Things. (c) Internet Security Buzz. â–· connect all devices and services. â–· 46 billions devices by.

[image: alt]

Program Slicing Enhances a Verification ... - Nikolai Kosmatov

generation, runtime errors, alarm-guided test generation. 1. INTRODUCTION. Recent research ... (1) new optimized and adaptive usages of program slicing, 5a) calls DA on k answers (Ex. 2, 4) and without the waste of time of each.

[image: alt]

Static and Dynamic Verification of Relational ... - Nikolai Kosmatov

industrial case study on smart sensor software [7] (emphasis ours): by the PISCO project5) whose proof needs to use property R3. Thanks //frama-c.com/download/frama-c-wp-manual.pdf. 5. ... In: Proc. of the ACM Symposium on Applied Comput

[image: alt]

Towards Verified Cloud Computing Environments - Nikolai Kosmatov

Google's Pregel [11] is a new paradigm for large-graph processing. It is graph oriented: at the implementation of the Thread class of Java API reveals that this ...

[image: alt]

Test Case Generation with PATHCRAWLER ... - Nikolai Kosmatov

In current software engineering practice, testing [27, 25, 34, 3] is the primary approach Two ways to instrument a label: direct and tight instrumentation. Fig. 6.

[image: alt]

Formal verification of program obfuscations

Nov 10, 2015 - ... _ -F

[image: alt]

slides - Nikolai Kosmatov

Aug 27, 2012 - 3 (not a triangle), 2 (equilateral), 1 (isosceles), 0 (other). Robust : validity of inputs is tested go looking for bugs by sub-dividing the paths ...

[image: alt]

Structural Testing with PATHCRAWLER. Tutorial ... - Nikolai Kosmatov

PathCrawler-online structural testing tool, the user must pro- vide not only the full source code, but also must set the test parameters and program the oracle.

[image: alt]

Automated Structural Testing with PathCrawler ... - Nikolai Kosmatov

Xi'an, 27th August, 2012. Example 1. Function ... if (i + j

[image: alt]

Specification and proof of relational properties with ... - Nikolai Kosmatov

Dec 18, 2017 - Motivation: Relational Properties. Specification and Proof of Relational Propserties with RPP. Demo with Relational Property Prover (RPP).

[image: alt]

All-Paths Test Generation for Programs with ... - Nikolai Kosmatov

path-test generation based on symbolic execution, it is con- venient to distinguish two types: Eq(a[U], V) represents the delayed equality a[U] = V, and Aff(a[U] ...

[image: alt]

JournÃ©e CAP'TRONIC - Nikolai Kosmatov

Nov 29, 2017 - Invalid array index. â–· Invalid pointer ... Use the command frama-c-gui -wp -wp-rte file.c ... alarms for potential invalid ACSL annotations.

[image: alt]

Structural Unit Testing as a Service with ... - Nikolai Kosmatov

CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette, France ... programs, and discusses various issues encountered in our Cryptography: use of protected channels (such as https) ... Finally, PathCrawler-online deactivates ne

[image: alt]

A Case Study on Verification of a Cloud Hypervisor ... - Nikolai Kosmatov

present the adopted methodology and emphasize its benefits and limitations. ... tation of the combined verification approach, the proposed methodology, ...

[image: alt]

Runtime Assertion Checking with Frama-C - Nikolai Kosmatov

Sep 24, 2013 - validity of memory accesses. â–» goal: specify the following function which swaps its arguments ... a loop invariant is valid if and only if:.

[image: alt]

Combinations of Static and Dynamic Analyses in ... - Nikolai Kosmatov

Sep 10, 2015 - Verimag, Grenoble, September 10th, 2015. N. Kosmatov ... Frama-C, a platform for analysis of C code. Detecting Frama-C++ (FP7 Stance).

[image: alt]

Behind the Scenes in SANTE: A Combination of ... - Nikolai Kosmatov

all these techniques are combined within one tool for verification of C pro- grams. N = 8 (with 110 paths), while PathCrawler covers 100% paths within guages â€” C (2007). http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

[image: alt]

Shadow State Encoding for Efficient Monitoring of ... - Nikolai Kosmatov

Apr 26, 2017 - time and memory overheads comparable to state-of-the-art memory debuggers. Keywords Memory safety, Shadow memory, Runtime monitor-.

[image: alt]

Combinations of Static and Dynamic Analyses in ... - Nikolai Kosmatov

Nov 2, 2016 - Frama-C, a platform for analysis of C code. Detecting runtime errors by static 9 benchmarks with known errors (from Apache, libgd, . . .).

×
Report Towards Formal Verification of Contiki OS with ... - Nikolai Kosmatov

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

