

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Toward a Uniform Architecture for Processing Application-Oriented

natural language sentences in practical dialogue based on a transformation, but on an enrichment of ... sentence, or because of a speech recognition error,.

 Télécharger le PDF

 304KB taille
 0 téléchargements
 240 vues

 commentaire

 Report

Toward a Uniform Architecture for Processing Application-Oriented Dialogue Guillaume Pitel LIMSI-CNRS BP 133 F-91403 Orsay CEDEX

Abstract Contrary to common modular approach of dialogue systems, we want to design a uniform framework for interpretation of natural language sentences in practical dialogue situations. We make the assumption that all the knowledge necessary to carry out the process of interpretation is contained in rules acting on several storages of different topologies. This model is designed in order to achieve extensional reference resolution for dialogue systems.

1

Introduction

As far as we know, every existing practical dialogue systems – also known as task-oriented dialogue systems – such as TRIPS (Allen et al., 2000) or DenK (Bunt et al., 1995) adopt a modular design. This approach is generally required for two reasons. First reason is that syntactical and lexical analysis systems exist, and it seems to be a nonsense to not reuse them. Second reason is that dialogue systems are mostly designed to respond to a very particular task, and thus need to be specifically tuned for each task they aim to handle. This leads to the need of separating parts of the system in order to ease the development process, and reuse whole modules of the system as it when possible. From our point of view, such a design is more practically motivated than theoretically valuable. Moreover, as there is currently no theory that would cover the entire field that dialogue systems

Jean-Paul Sansonnet LIMSI-CNRS BP 133 F-91403 Orsay CEDEX

have to handle, modular design is more an obligation than a choice for designers. This approach of dialogue systems raises two important issues. First, backtracking or chart parsing (Earley, 1970) is not straightforwardly implementable in a heterogeneous system, and when dealing with robustness of systems, allowing backtrack in the interpretation process is mandatory in order to deal with inconsistencies appearing at a given level of analysis. Within a modular design, allowing backtracking implies to introduce foreign knowledge in each module, that is, the dialogue module should know a little about the pragmatic level, and the pragmatic level should know a little about semantic level. It is thus impossible, in our opinion, to describe isolated and independent modules while taking robustness into account. The second issue raised by modular design concerns the task-specific parts of the system. Actually, it is not only a problem raised by the modular design, but a problem that dialogue systems built that way try to circumvent. The hard point in any dialogue system is that there is always some important part of the understanding process that must be hand-coded, specially the extensional reference resolution part. The goal of modular systems is to isolate modules of task-specific code. This point only serves to show that modular design is not a solution for the problems raised by practical dialogue systems, but is just a way to circumscribe the problem. If we aim to tackle the problems that remain hard in practical dialogue, we argue that we have to find a theoretical framework where these problems could be solved. We particularly try to address the following issues:

Difference of point of view among different tasks. When dealing with ontological properties of objects, context become of great importance. For instance, as noted by (Dzikovska et al., 2003), a given kind of fruits will not be considered the same way in a transportation management application or in a medical diagnosis system. In the first case, what could be of interest are the properties of the fruits in terms of cargos (conservation time and temperature, density), whereas in the second case, their nutritive characteristics as well as their allergenic power should be taken into account amongst other things. Extensional reference resolution. Resolution of reference, that is, finding the right “object” in the “real world” of the application is dependant of the way the application (or database) is structured or implemented. Dealing with metonymy or metaphor is closely related to this, and also necessarily specific to the task. Plan inference. When a user requests a complex action to be carried out, a good dialogue system must be able to interactively build a plan to fulfil the user’s requirements. To make a plan imply to have a deep knowledge of the dynamic behavior of the underlying application that will ultimately execute the plan. An easy way to bypass this stage is to prepare a specific function for each complex action the user can ever request. This is also definitely a task-specific hand-coding way to handle to problem. On this other hand, the opposite way for doing this, (i.e. the generic way), would be to represent actions as a combination of atomic, generic sub-actions. In our proposal, we have particularly focused on the first two problems. We however believe that our mechanism is general enough to support also plan inference. Readers should keep in mind that this paper presents prospective work, and that a number of experimentations are necessary to validate our model. Moreover, the model we present is an application of a theory of interpretation, not a linguistic theory, hence we do not make use or propose a typology of linguistic objects that would be ultimately necessary in order to effectively use the model.

2 2.1

Interpretation Model Overview of the interpretation process

The model presented in this paper is funded on two theoretical hypotheses: • All the knowledge can potentially be represented by rules that can add information to a previous representation. Rules are either classical production rules or type shifting/type coercion rules. Thus we consider that the whole interpretation process is made of pattern recognitions leading to actions that enrich the initial representation at a stretch. • Information can take place in several storages that represent different sources of observation (e.g. speech, vision). These storages may be topologically different. This hypothesis is a consequence of our will to integrate into one formalism the different levels of analysis needed in a practical dialogue system We have called Observation Rules the rules of our model (OR for short). This is not due to a cognitive account of interpretation, but because topologically different spaces are necessary in order to consider external data (such as those from the computer program we want to dialogue with) within the same formalism than the one used for language processing, and thus directly deal with extensional reference resolution. We also take some inspiration from the notion of type coercion from Pustejovsky while trying to integrate information from other modalities in the interpretation process, which is mandatory for practical dialogue. We also consider mandatory the fact that rules need to be considered as dynamic processes as in (Small, 1980; Hahn, 1994) in order to introduce expectation and tolerance during the analysis. We define three meta-classes in our model: • Observation Types (OT) • Observation Rules (OR) • Observation Environments (OE) We define in turn the three instantiated classes from these meta-classes: • Observations (OBS) from OT • Actions (i-ACT and f-ACT, see below) from OR • Contexts (CXT) from OE We also have to define a special class of OR, that will have to interface contexts reflecting direct (i.e. model-external) observations and actions. As

these OR do not either observe or act in contexts, but observe keyboard, text strings or underlying software data, and act on loud-speakers or underlying software, they have to be implementationspecific. They are thus designated as foreign Observation Rules (f-OR), while context-to-context OR are designated as inner Observation Rules (iOR). Their instantiated counterparts are f-Acts and i-Acts. Fig. 1 presents a snapshot of what would be the interpretation process following the guidelines of our model. It has to be noted that the spatial position of i-Act and f-Act in the sketch are not significant, since Actions do not belong to any of the contexts. This sketch is very simple and only intends to give the reader a general idea of what we aim to design; for instance, we have reduced contexts to linguistic data, software data, and action data, while there should be much more kinds of contexts. Moreover we did not represent in the sketch structural connections between OBSs. The sketch shows that we aim to represent all the analysis knowledge with OR and OT, from the syntactical level to the effective action on the software. From our point of view, this method will allow us to draw a uniform way to deal with backtracking at any level. That is, if the system fails to go farther the pragmatic level with an analysis, it will propagate the information backward, and alternate analysis will be provided by lower levels. Keyboard Input f-Act

Ctx:Underlying software data i-Act

Ctx:Linguistic data

Ctx:Action data Call to underlying software OBS

Act

Cxt

Foreign/Inner frontier

Fig. 1: Sketch of the interpretation process This is made possible because we have built our model on the generalization of expectation driven parsing. When some new data arrives in a context, OR having it in their OBS pattern will increase their activation probability, and also increase the activation interest of other OT in their patterns. In turn, when the activation interest of a given OT in a given area of a context raises a given level (that

depends on the state of the analysis), the phenomenon can be propagated to other ORs that could produce an OBS of the expected OT. As the propagation is obviously exponential, a correct study of the tuning of the system is mandatory. While ????? Some clues from previous results in various statistically-oriented natural language processing studies have made us to decide to try this way, whatever the theoretical complexity is. Beyond Type Coercion: Points of View Type coercion – previously known as type shifting – has been proposed by (Pustejovsky) in order to provide a formal basis to the phenomenon of lexical polysemy. Multiple senses are indeed almost impossible to represent in a simple lexicon: the same noun may be viewed differently depending on the context it is found in, and accounting for polysemy is not like accounting for homonymy, that is, a lexicon cannot contain all meaning of a word the same way it contains all homonyms of a word. Defining that a given type may be transformed in another type under certain circumstances is an account for polysemy much more general than using is-a or part-of ontological relations. We designed our model considering that type shifting is a general mechanism in language, and that interpretation is made of several steps of production of points of view (or type shifts) that can take several forms. In our opinion, all these productions can be represented in a single formalism. There are two ways to produce a point of view about an observation: first is that when a given element is observed in a given context (that is, when a set of elements structured in a certain way is found), it may be viewed as another element (type shifting), second is that when several elements are observed with certain relations between them, they may be viewed as another element (composition), for instance a NP followed by a VP may be viewed as a S. As this mechanism is not based on a transformation, but on an enrichment of data, previous points of view are not lost, and thus can be used in conjunction with new points of view to build newer ones. Event-driven and discrete execution model As a consequence of our vision of the interpretation mechanism, we have organized the analysis

process as an event-driven process. This design imposes important constraints on the form of the OR, but allows a uniform model for expressing expectation and robustness. This event-driven design leads us to build our model based on a discrete execution cycle approach. At each step of execution, the question of the creation of new ACTS from ORs is considered, depending on events in queue. Also, interest for continuing execution of activated ACTS is evaluated at each step, where more interesting ACTS are either executed or simply triggered in order to propagate their expectations. Probabilistic part of the model Our model shares some ideas with Small’s model of Word Expert Parsing (1980), and thus, as a parallel model of interpretation (Hahn, 1994), our model needs to provide a control mechanism for the execution of its ACTs (Word Experts in Small’s model). While Word Expert model delegates the explicit control to experts themselves, we choose to provide a general weighting mechanism for guiding expectation-driven interpretation. This choice also allows for an interesting account for robustness. Probabilistic account for expectation Expectation-driven parsing is based on the idea that the presence of a word (or a group of words) that falls into a given category appeals for the presence of other words (or categories of words/group of words). More generally speaking, observing an object that is used in a pattern of the analysis system, appeals for the recognition of other objects of the pattern. For instance, verbs such as put, move and displace appeals (in one of their meaning, at least) for two arguments: a physical displaceable object and a position. Using this information is important in order to efficiently guide the interpretation process, as well as dealing with robustness. There are several ways to handle the expectation mechanism during interpretation process. Our choice is to use a weighting mechanism, that could serve to sort OR activations from the most interesting one to the least interesting one. We propose to use a function measuring the informative strength (IS) of observations. Roughly, the IS of an OBS is a function of the ISs of the

OBSs it has been built from. For instance, if O is produced by an OR with three OBSs (x, y, z) in its pattern:

IS (O) = a.IS (x) + b.IS (y) + c.IS (z) + d The function’s constants and factors depend on the OR the OBS has been built with. The IS of an OBS produced by a f-OR only depends on the f-OR itself. From this informative strength, we derive the interest of trying to obtain an OBS x expected by a rule which has x, y, z as its inputs and O as its output, with b bound, to be the following:

Interest (x) = f (i) ! x.i + (b.IS (y) + d) The interest factor is used to weigh expectation events. Both factors (IS and interest) are used to choose if an OR or ACT must be processed before another one. Probabilistic account for robustness When a part of a pattern is not available, either because the user pronounced a non-grammatical sentence, or because of a speech recognition error, one still wants that the interpretation system finds the right analysis. While most robust systems make use of constraints relaxation or shallow parsing approaches (Rosé, 2000; Abney, 1991), we found interesting to make use of the expectation mechanism in order to deal with robustness. The idea is to allow ORs to produce new points of view from OBSs even when the new point of view is not the same than the previous one. For instance, if there is an OBS containing the phonetic sequence [ov], one can allow a rule to produce a new sequence [of], while keeping that this is not the primary analysis by setting a validity weigh lower than the previous’ one. This mechanism may be considered as a fuzzy type shifting mechanism.

3 3.1

Definitions Observation Types and Observations

An OT defines constraints for OBS; constraints are expressed as verification functions, one for each feature of the OBS, and one for the whole structure. An OBS is a feature structure typed by an OT. We choose to make use of verification functions because we do not intend to propose a fully declarative formalism.

≡ ((FName, FValue), (FName, is a list of features where each FName is unique in the list; • Features Constraints ≡ ((FName, FFv), (FName, FFv), …) where FName is a name unique in the list and FFv is a feature verification function into [true, false] that checks for the validity of a particular feature; • OT ≡ (OTName, OTFv, Features Constraints) where OTName is a unique name and OTFv is a function of Features List into [true, false] that checks for the validity of the whole features list. OBSs are not stored directly into OEs, but are instead linked by events. In order to fulfil requirements of expectation-driven analysis, •

Features List FValue), …)

3.2

Observation Environments and Contexts

An OE defines a topology for storing events pertaining to some OT. For instance, OBSs in a twodimensional space should appear in a CXT that can support operations allowing computing the relative position of an OBS compared with another one. Actually, OE defines the interface between the general pattern recognition mechanism of OR and particular implementation of a storage for OBS. The definitions of OEs for a given dialogue system depend on the theoretical choices made for the system’s implementation built on top of our generic model. • • •

OE ≡ (list of OT, list of Relations, list of Operations); Relation ≡ a relation between two or more event positions (e.g. precedes, includes, …); Operation ≡ an operation on two or more event positions (e.g. union, intersection, …).

Relations and Operation are combined together in pattern rules, with boolean operators. They can be used in two ways: either to verify that a given set of OBS verifies a given pattern, or to find the possible position of a particular event that is not still available, in order to produce an expect event at the right position, if needed. While this defines the interface of OE for use by OR, the way the OE stores events and computes Operations and Relations is left to the responsibility of the developer of the OE.

3.3

Observation Rules and Actions

An OR defines a rule that is to be triggered when a given pattern of OBS (possibly spread across several contexts) become observable. Contrary to common grammar rules, we must differentiate rules definitions and their instantiation during the analysis process. This is mandatory because a rule can be triggered even when only a part of the rule’s pattern is recognized, so a rule instantiation (called Act) potentially has an activation time spread along several execution cycles. More generally, as we follow an event-driven model of execution, OR are triggered by events, but several events have to appear before the OR can really produce its output, so an intermediate state for rules is necessary in order to keep the execution state of the pattern recognition process. An OR is defined by these elements: • Context connectors • Observation connectors • Structural Pattern • Checking function • Action function Context Connectors As the execution model is event-driven, each OR has to specify in which kind of context it is looking for new events. Context connectors (CXT CON) serve as hooks for later usage by Observation Connectors (see below), in order to specify that different Observation Connectors must necessarily be bound to OBS found in the same (or different) CXT. A CXT CON is a named value containing an OE, thus specifying the kind of context in which the OR will look for OBSs. Observation Connectors Observation Connectors (OBS CON) are used to specify hooks on OBSs, hooks that rules for pattern recognition will apply on. OBSCON are named values containing a CXTCON and an OT. When an OBS of the required OT appears in a compatible CXT, an ACT of the OR is created, the corresponding connector is bound to the OBS, and the CXTCON is bound to the CXT where the OBS appeared. In order to do expectation-driven analysis, the connectors can either be creation driven or expectation driven. That is, a connector may either be bound when a new information created by another

ACT (foreign or inner) appears in a CXT, or when another ACT expects an OBS of a particular OT.

which can use the information from all bound connectors in order to create new OBS of any type.

Structural Patterns

Event Handling

Whereas Context and Observation Connectors may be considered as the ID component of the OR, if we compare our model against the IDLP approach (Gazdar et al., 1985), Structural Patterns play the role of the LP part. However, the structural patterns are not restricted to linear precedence since they are applicable to potentially any topology. Hence Structural Patterns define which relations are allowed between the positions of the OBS bound by the connectors. As we generalize the application of rules to any topology, we consider three kinds of operations that will be used to verify the structural adequacy of a set of OBS for the rule. • Combinational Operations (Union, Intersection, …) • Relational Operations (Precedes, Contains, Left to, Distinct, …) • Boolean Operations (And, Or, Not, …) Depending on the kind of topology a structural pattern is applied on, available relational operations and combinational operations differ. For instance, spatial relations like Left to are only available for two and three dimensional spatial topologies.

When OR are registered in the system, links between OT and OR are listed and stored in a firststage event dispatching table. These links denotes that a given OR may be interested in receiving events about observations of a given type. During execution, events are all sent to the OR event handler, that choose to create new Acts when necessary, or to dispatch events to existing Acts when possible. Events are of two kinds. Expectation events carry an OT, while informational events carry an OBS.

Checking Function While Structural Patterns serve for checking the relative position of Observations in their respective spaces, the checking function of an OR serves for checking the adequacy of the content of bound Observations. For instance, if an OBS have to be shared by two other OBS, the checking function has the responsibility for doing this verification. Compared to unification grammars such as PATR (Shieber et al., 1983) or HPSG (Pollard and Sag, 1994), our mechanism is much less computationally efficient. It is however much more expressive because it can support numerical tests or combine several features together at a glance. Moreover, Action Function Once all the necessary connectors are bound, their relative position checked by structural patterns and their content checked by the checking function, the running Act can produce one or more new OBS. This is the role of the Action Function,

4 4.1

Reference Resolution Extensional Reference Resolution

In practical dialogue systems, extensional reference resolution consists of finding the right referent in the “real world” representation (Byron et al., 2001). In existing dialogue systems, extensional resolution is delegated to task-specific modules (Allen et al., 2000; Byron and Allen, 2002), or is restricted to access a little subset of representations, for instance database-like representations (Pasero and Sabatier, 1995). One of the objectives of our model is to allow dialogue system designers to specify only the taskspecific meaning of referential extractors. Referential extractors are components of extensional referring expressions, for instance in a task dealing with geometrical coloured forms, shape, colour and size adjectives and spatial prepositions such as square, blue, medium and left to may be used as referential extractors. Combining referential extractors together produces a referential expression. Our choice to designate these terms as referential extractors is led by the fact that adjectives (nouns, prepositions, adverbs, relatives) that can be used as referential extractors can be used otherwise. For instance, in “Is the biggest square blue ?”, blue is used as a referential comparator. In “Create a blue square”, blue is used as a referential constructor. Consider the case of a task dealing with geometrical objects, whose OT is XGeomObj (X prefix denotes that this OT is application-specific), de-

fined by an ordered list of 2-D points. The specification of the square extractor must allow the production of a SquareObj from a XGeomObj OBS through an OR. In other words, this OR defines whether a XGeomObj may or may not be considered as a SquareObj. The OBS’s validity weight is then used for sorting the OBS from the more square-like object to the least one. XGeomObj Cxt

GeomObj Cxt (squares) Size Cxt (objects viewed as their size)

Reference Chain medium-extr

square-extr

Fig. 2: Resolution of a reference chain. Now, consider the case of the medium extractor (and any extractor whose meaning is contextdependant), in order to select objects that are appropriate for this adjective, the selection must compute the average size of all other objects. This is a bit complex, since we have to detect when all XGeomObj have been used to produce XGeomSize, in order to compute the average size over the whole set of objects. In this case, it is up to the CXT’S OE to define an “excitation level” measurement function that could be used as an input OBS for subsequent OR, in order to allow a rule to be triggered whenever a given excitation level is reached. The observation produced after the level is reached can ever be revised if a new OBS arrives in the CXT from which the average value has been computed.

4.2

stance, DRT (Kamp and Reyle, 1993) make use of a memory for storing variables representing discourse referents, and then make use of this memory to choose the appropriate variable in order to resolve anaphora. In other words, when an anaphora is detected, it has to go looking in the memory for its referent. In our model, however, storages do not serve as memory for objects, but as a temporary memory for events (messages) exchanged between OR. It is thus impossible within our model to handle anaphora the same way DRT does. On the other hand, it is possible to create new OR dynamically, and we argue that this simple mechanism can give an account for anaphoric phenomena without any modification to our model. The mechanism for anaphoric reference resolution is the following. One or more OR must be defined to capture the patterns consisting of interesting (potentially extensional or intensional referent) OBS x appearing in validated high level contexts (that is, high level OBS chosen among all alternatives)1. By writing an OBS in a special storage, those OR create a new OR (ORAR in the following), this OR will in turn capture anaphora and produce an equivalent of the OBS x. Of course, depending on the OT of x, and of the OT expected by the context of the anaphora, the produced OBS may or not be finally used. Likewise, if the OT produced by the ORAR is expected, but there is no pronoun to trigger the ORAR, the expectation mechanism will still activate the rule, and thus naturally handle null-anaphora phenomena.

5

Current directions

Our model clearly lacks for practical implementation and evaluation. This is mainly due to its originality, since we definitely cannot use existing modules to quickly build a prototype. We have already built a prototype of the execution framework, but writing ORs is a bit long, especially at the beginning. This point is probably the main drawback of this model. It is however necessary, in our opinion, in order to be easy and quick to adapt the system from a dialogue task to another when it is finally ready.

Anaphoric Reference Resolution

Our account for anaphora is quite different from the way taken by mainstream approaches. For in-

1

We are vague since the model we present is not a linguistic theory but a theory of interpretation, and thus we are not able yet to use a specific typology of sentence elements to specify the types of the OBS we talk about.

It is possible that our model may be too much generic to be computationally tractable, but some clues from statistical approaches of language engineering showed us that probabilities help much for analysing natural language. We hope that this will counterbalance the computational cost of our model.

Robert Pasero and Paul Sabatier. 1995. ILLICO for Natural Language Interfaces, Proceedings of the First Language Engineering Convention (LEC), Paris.

References

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase Structure Grammar. University of Chicago Press., 1994

Steven Abney. 1991. Parsing By Chunks. In: Robert Berwick, Steven Abney and Carol Tenny (eds.), Principle-Based Parsing. Kluwer Academic Publishers, Dordrecht. James F. Allen, Donna K. Byron, Myroslava O. Dzikovska, George Ferguson, Lucian Galescu, and Amanda Stent. 2000. An architecture for a generic dialogue shell, Journal of Natural Language Engineering, special issue on Best Practices in Spoken Language Dialogue Systems Engineering, 6(3), pp. 1-16. Donna K. Byron and James F. Allen. 2002. What's a Reference Resolution Module to do? Redefining the Role of Reference in Language Understanding Systems, Proc. DAARC2002 Harry C. Bunt, Rene MC Ahn, Robert-Jan Beun Tijn Borghuis and Kees van Overveld. 1995. The DenK architecture: a pragmatic approach to user interfaces. Artificial Intelligence Review 8 (3), pp 431— 445. Jay Earley. 1986. An Efficient Context-Free Parsing Algorithm. In Grosz et al., pp. 25—23. Myroslava O. Dzikovska and Donna K. Byron. 2000. When is a union really an intersection? Problems interpreting reference to locations in a dialogue system, Proc. GOTALOG'2000 Myroslava O. Dzikovska, Mary D. Swift and James F. Allen. 2003. Constructing custom semantic representations from a generic lexicon. Proc. 5th IWCS Gerald Gazdar , Ewan Klein, G.K. Pullum, and Ivan Sag. 1985. Generalized Phrase Structure Grammar. Blackwell, Oxford, UK. Udo Hahn. 1994. An actor model of distributed natural language parsing. In: G. Adriaens & U. Hahn (Eds.), Parallel Natural Language Processing. Norwood, NJ: Ablex, pp. 307-349. Hans Kamp and Uwe Reyle. 1993. From Discourse to Logic", Dordrecht: Kluwer. Martin Kay. 1986. Algorithm schemata and data structures in syntactic processing. In Grosz et al. (1986)

Claudia Pateras, Gregory Dudek, Renato DeMori. 1995. Understanding Referring Expressions in a PersonMachine Spoken Dialogue. Proc. ICASSP'95, Detroit, MI

James Pustejovsky. 1995, Linguistic Constraints on Type Coercion, Computational Lexical Semantics, Saint-Dizier P. and Viegas E. (eds.), pp 71—97. Carolyn Rosé. 2000. A framework for robust semantic interpretation. In Proceedings 1st Meeting of the North American Chapter of the Association for Computational Linguistics. Susanne Salmon-Alt. 2001. Reference Resolution within the Framework of Cognitive Grammar. International Colloquium on Cognitive Science, San Sebastian, Spain Daniel Schang. 1995. Application de la notion de cadre aux énoncés de positionnement et de référence, Research Report n° 2529, INRIA Lorraine. Stuart M. Shieber, Hans Uszkoreit, Fernando C. Pereira, Jane. Robinson, and Mabry Tyson. 1983. The formalism and implementation of PATR-II. In J. Bresnan, editor, Research on Interactive Acquisition and Use of Knowledge. SRI International, Menlo Park, Calif. Steven L. Small. 1980. Word Expert Parsing, PhD Thesis, Department of Computer Science, University of Maryland.

des documents recommandant

[image: alt]

Reconfigurable And Advanced Multi-Processing Architecture for future

During the process of an application, computing ... reconfigurable architectures should provide many computing ... parallelism, reconfigurable architecture.

[image: alt]

"Necessary conditions toward building a National Reconciliation for a

The USA/CANADA Dialogue Platform has been held in Washington, DC -George Mason. University- on September 1st and 2nd, 2007 under the auspices of the ...

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources B - 1.2.2.2.3.1.1 Game Object Component Exported Classes............. 252 The book uses clear English to explain w connect to unique alter egos, and began the â

[image: alt]

A Programmable Client-server Architecture for

Thus, this project consists in specifying a scalable architecture to Unlike ffmpeg, its documentation is quite poor These mainly include the management of the audio part of the movies: in appearing such as Video On Demand, downloading

[image: alt]

A Uniform Semantics for Embedded Interrogatives - Paul EgrÃ©

presented at the MIT LingLunch in 2007 and at the JournÃ©es de SÃ©mantique et de ... license only veridical readings of embedded questions, but are generally ...

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

should demonstrate a reduced API into the component itself. The technology Specific%20Software%20Architectures%20(DSSA).pdf >. Duffy, R.

[image: alt]

A Domain-Specific Software Architecture for

plan of intended action, which intensionally describes an equivalence class of ... 11 improvises its specific course of behavior, following intended plans as well as possible, R (for regular destinations, rather than plan A for alarm destinatio

[image: alt]

Designing a novel SOA architecture for security

propose to consider the use of a Service Oriented Architecture. (SOA) to program and ... measurements, and the IT backbone infrastructure which is. Manuscript received June foundations of the upcoming Event-Driven Architecture. (EDA). ... Netwo

[image: alt]

A Programmable Client-server Architecture for

functions such as PLAY, PAUSE or RECORD. Nevertheless, RTP ... example, enables to reach this sensibility without having supply a wide array of adaptations for our project. Moreover ... The client interface is a PHP web site supported.

[image: alt]

A Uniform Deductive Approach for Parameterized ... - Nikolai Kosmatov

ABSTRACT. We present a uniform verification method of safety proper- ties for classes of parameterized protocols. Properties like mutual exclusion or cache ...

[image: alt]

Uniform Selection as a Primary Force Reducing

Aug 12, 2011 - Jean-Baptiste Lamy1,2,3, Laurent Bouffier1,4, ReÂ´gis Burlett1,2, Christophe Plomion1 ... their bioclimatic envelope [3] over the time scale at which these Global Change Biology 10: 2020â€“2027. 3. Lindner M, Maroschek M, Nether

[image: alt]

Toward a Generalized Bayesian Network

G = V,B. (iii) a set of events be depicted by the vertices of G and hence also b a i. N j m Î². = = = (1.2). Since P is a probability distribution we also require the ...

[image: alt]

"Toward a Method for Evaluating the Teaching of Entrepreneurship"

International Journal of Business and Social Science Actes du premier congrès de l'Académie de l'Entrepreneuriat, Editions le Pôle Universitaire Européen ...

[image: alt]

Toward a 2D Modular and Self-Reconfigurable Robot for Conveying

design fits the need of fixed types of environments and/or ob- ... In order to move very small objects as the green cylinder ... actuators on its upper face. ... Another goal is to achieve a high level control ... Additionally, there were algorithms

[image: alt]

A cognitive module in a decision-making architecture for agents

Scalability: a great number of agents might be required in the simulation [1] ... the modules are strictly prioritized: a high level module inhibits all lower level modules. platform. The next step for us is to test and validate this model. We

[image: alt]

Reference Resolution in a Uniform Interpretation

language sentences in practical dialogue situations. ... connected to elements contained by data structures of different course referents, and then make use of this mem- ory to choose ... In: Proceedings of the 5th International Workshop on.

[image: alt]

Color Processing for Digital Cinema

Feb 24, 2006 - light on a screen in a theatre, there have to be uniform methods by which the of Reference Signals for Television Camera Color Evaluation.

[image: alt]

Reference Resolution in a Uniform Interpretation

language sentences in practical dialogue situations. ... connected to elements contained by data structures of different course referents, and then make use of this mem- ory to choose ... In: Proceedings of the 5th International Workshop on.

[image: alt]

Meteorological Conditions Processing for Vision

scene, it is necessary to constantly update the background model. ... Daytime Fog A sample of a foggy road scene acquired by a roadside camera is Transportation Research Records, ... Pattern. Recognition Letters, 13(7):497â€“508, 1992.

[image: alt]

Color Processing for Digital Cinema

Feb 24, 2006 - Page 1 historical background on the development of the color encoding. recommended practice that defines the Reference Projector and its controlled Figure 9-3 shows a possible gamut mapping strategy that scheme

[image: alt]

Waves and Operational Oceanography: Toward a ... - Surfouest

Jan 25, 2005 - The availability of new operational services ... unique opportunity to rethink the operational step toward a coherent description of ocean.

[image: alt]

Toward Hybrid Formulations for Benzoxaborole Drugs - Guillaume

Jan 18, 2015 - All in all, this study serves as a benchmark not only for the development of was inserted in the closed-circuit, connected through optical fibers to the spectrometer while new signals appeared in the case of BBzx, with notab

[image: alt]

Toward Large Scale Model Construction for Vision

1 INTRODUCTION. Simultaneous Localization and Mapping (SLAM) and. Structure From Motion (SFM) methods enable to reconstruct both the trajectory of a ...

[image: alt]

Processing NHP aMRIs for VBM

Processing NHP aMRIs for VBM... Sylvain Takerkart. RMN â€“ Feb 14, 2013 ... -o anatpnh_nikos05_anat04_roi.nii -x 10 -X 142 -y. 20 -Y 120 -z 14 -Z 193 ...

×
Report Toward a Uniform Architecture for Processing Application-Oriented

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

