This chapter is intended to provide a list of known pairs of ... .fr

most cases as to prevent any appreciable solid-solid trans- formation. .... 4-Methyl-l-pentene/4-methyl-l-hexene. 100-0. 1. Isotactic (2*7/2). XRl5 MP. 3.
810KB taille 2 téléchargements 211 vues
l s o m o r p h o u s

P o l y m e r

P a i r s

G . Allegra, S. V. M e i l l e Dipartimento di Chimica del Politecnico, Milano, Italy W . Porzio lstituto di Chimica delle Macromolecole del CN.R., Milano, Italy

A. Introduction B. Techniques C. Tables of lsomorphous Pairs of Monomer Units Table 1. lsomorphous Units Within the Same Macromolecules (Copolymers) 1.1. lsomorphous Units with Different Chemical Constitution 1.2. lsomorphous Units with Different Configurations and/or with Head-toHead, Head-to-Tail Constitutional Disorder Table 2. Isomorphism of Macromolecules D. References A.

VI-399 VI-400 VI-401 VI-401 VI-401

VI-405 VI-405 VI-406

INTRODUCTION

This chapter is intended to provide a list of known pairs of isomorphous monomeric units in synthetic crystalline polymer systems; we shall regard as "isomorphism" the statistical copresence of different units within the crystallites. Additional information will be also given, namely: (a) the approximate range of relative concentrations where isomorphism is observed; (b) the chain conformation in the crystalline state, the type of isomorphism (see below); (c) the physicochemical techniques used in the investigation (see Section B); and (d) the references to the scientific contributions wherein the isomorphism is demonstrated, implied, or claimed. Systems in which the molar fraction of either type of monomeric units does not exceed about 5% have been disregarded. Cocrystallization of hydrogenated and deuterated units has not been considered as relevant in this context either.

Although we are aware of the growing expansion and importance of copolymer systems producing mesophases (92), we have chosen to limit our list to isomorphism in the classical crystallographic sense. In particular, polymer systems were regarded as crystalline either (i) when offmeridional X-ray reflections appear on the nonequatorial layers, or (ii) if the sample is shown to undergo a transition to a mesophase system before melting, as may be revealed by DSC methods. Sometimes distinctions between real crystalline systems and mesophases may be difficult, such as in the case of several polyesters. In all instances in which some degree of uncertainty is implied, an asterisk has been inserted. The isomorphous polymer pairs are subdivided according to the scheme already proposed in a review article on the subject (2). Two basic classes of macromolecular isomorphism were distinguished, namely isomorphism of whole homopolymer chains (Class 1) and isomorphism of monomeric units within copolymer chains (Class 2) (2,62,63). Class 1 may be further subdivided into three different subclasses: subclass 1.1, where the monomeric units differ in chemical constitution (copolymers in the usual sense) (Table 1.1); subclass 1.2, where the monomeric units have randomly opposite, nonsuperimposable configurations (Table 1.2); and subclass 1.3, where the monomeric units, although stereochemically identical, assume different conformations at random. In spite of the scientific relevance of the last subclass in the context of polymer structure, we have preferred to omit the corresponding table, in view of both, the relatively low relevance of the issue for many people interested in polymer isomorphism, and of the wide ensemble of polymers that are presumably affected by this crystallographic disorder under appropriate circumstances. Also, for the sake of greater generality, we have included in subclass 1.2 (Table 1.2) all the cases where the isomorphous units are related either by geometrical stereoisomerism or by random head-to-head, head-to-tail enchainment. Concerning Class 2, the subclass consisting of stereochemically identical chains with randomly opposite orientations of their axes within the crystal is not

reported for the same reasons given above for subclass L3. Consequently, only isomorphous systems consisting of stereochemically different homopolymer chains are reported. In each case, the two units of the isomorphous pair are separated by a slash. From a crystallographic viewpoint the following two types of polymer isomorphism may be distinguished (the different monomeric units will be designated as A and B). Type 1: Homopolymers AN and B M have a similar crystal structure, with sufficiently small differences in unit cell dimensions. Binary systems, whether copolymers or homopolymer mixtures, display the same structure at any intermediate composition, except for a continuous change in cell dimensions (isomorphism in a true sense). The homopolymer chains may possess helical conformations with slightly different ratios of monomeric units per helix pitch, in which case intermediate helix conformations should appear at intermediate compositions. Type 2: The two homopolymers have different crystal structures and in each of them some amount of monomeric units of the other may be accommodated. Accordingly, the structure of the homopolymer corresponding to the monomeric units with prevailing amount is observed, and an abrupt change in the structure of the second homopolymer may take place at a suitable composition. The simultaneous presence of both structures may also be observed within some intermediate composition range, in analogy with lowmolecular weight systems (isodimorphism). These types correspond to the first two types of polymer isomorphism suggested by Natta (62,63), who also proposed a third type whenever one of the two homopolymers is unable to crystallize by itself. We have thought it expedient to include these caseswithin Type 2, particularly in view of the difficulty in ascertaining the complete inability of either homopolymer to crystallize. It should be added in this context that no assumption concerning thermodynamic stability of the following isomorphous systems is implicit here; on the other hand, the crystal packing and friction forces may well be strong enough in most cases as to prevent any appreciable solid-solid transformation. Concerning the partition of the data within each separate heading (1.1, 1.2, etc.), we tried to conform to the standard criteria adopted in this book. Each monomeric unit is assigned to the class corresponding to the higher ranking monomer. Whenever a crystallizable copolymer is constituted by a regularly repeating sequence of monomeric units, isomorphism is usually ruled out in view of the very presence of constitutionally repeating units, i.e.., of an effective homopolymer.

Several vinyl copolymers show macromolecular isomorphism when the side groups are sterically ordered. If, as it always happens in the examples known hitherto, the order is of the isotactic type, we have called them "isotactic" (copolymers). Several cases are known of polymers having long, regular side groups (comb-like copolymers or the like) that may promote crystallization in spite of lack of configurational order in the main chain. These systems are not considered as belonging to the present list if crystallization is basically due to regular packing of the side chains only. Whenever the conformation of the chain skeleton may be described as a regular helix, we have used the symbolism recommended by the document "Terminology Relating to Crystalline Polymers" of IUPAC (1984) and adopted, e.g., by R. L. Miller in the chapter "Crystallographic Data for Various Polymers" of this book. As an example, the helical conformation of the crystalline isotactic copolymers of 3methyl-1-butene and 4-methyl-l-pentene (see Ref. 14), corresponding to four monomeric units in one turn, each unit having two skeletal atoms, is designated as 2*4/1. However, referring to the general notation p/q, we have not considered as helical those conformations where both p and q are equal to unity (i.e., one repetitive unit in one turn). In these instances, qualifications such as "extended", "planar zig-zag", etc. are used to characterize the conformation. Also, whenever the helix structure is not explicitly reported by the author, the general term "helical" is adopted. It may happen that, for a given concentration of the two monomeric units, more than one crystalline phase is observed. Under these circumstances, the corresponding chain conformations are reported. For a discussion of macromolecular isomorphism, see Refs. 2,90,91, and some of the papers quoted therein. B. TECHNIQUES XR

Qualitative evaluation of crystallinity by diffraction methods XRl Structural analysis by diffraction methods (including observation of continuous changes of lattice spacings) MP Optically determined melting point TA Thermal analysis (DSC, DTA, etc.) DM Dynamical-mechanical measurements (e.g., mechanical and dielectric relaxation experiments) MA Morphological analysis (electron microscopy, SAXS etc.) D Density determination by flotation techniques IR Infrared spectroscopy ED Electron diffraction CA Conformational analysis

C. TABLES OF ISOMORPHOUS PAIRS OF MONOMER UNITS TABLE 1. ISOMORPHOUS UNITS WITHIN THE SAME MACROMOLECULES (COPOLYMERS) MoI % of Monomer giving isomorphous copolymers

first

component

Type of

isomorphism

Chain conformation

Techniques

Refs.

1.1. ISOMORPHOUS UNITS WITH DIFFERENT CHEMICAL CONSTITUTION 1.1.1. MAIN-CHAIN CARBON COPOLYMERS CopoJy(alkenamers) trans-\~Pentenamer/trans-l-octenamer frarcs-1-Pentenamer/frans-l-heptenamer trans-l-Octenamer/frans-l-dodecenamer Copoly(alkenes) Ethylene/propylene Propylene/n-l-hexene Propylene/n-1-butene n-l-Butene/3-methyl-l-butene n-1-Butene/rc-l-pentene n-1-ButeneM-l-hexene n-l-Butene/4-methyl-l-pentene /2-1-Butene/rc-l-octene n-1-Butene n-1-Butene/n-l-decene n-l-Butene/«-l-dodecene 3-Methyl-l-butene/4-methyl-l-pentene 4-Methyl-pentene/l-pentene 4-Methyl-l-pentene/n-l-hexene 4-Methyl-l-pentene/4-methyl-l-hexene 4-Methyl-l-pentene/rc-l-octene 4-Methyl-l-pentene/n-l-decene Copoly(vinyls) (nonhalogenated) Ethylene/vinyl alcohol Ethylene/(ethylene + CO) Isopropyl vinyl ether/sec-butyl vinyl ether Copoly(vinyls) (halogenated) Ethylene/tetrafluoroethylene

Vinyl Vinyl Vinylidene

Vinylidene

fluoride/vinylidene fluoride fluoride/tetrafluoroethylene fluoride/trifluoroethylene

fluoride/tetrafluoroethylene

Vinylidene fluoride/chlorotrifluoroethylene Vinylidene fluoride/bromotrifluoroethylene Trifluoroethylene/tetrafluoroethylene Tetrafluoroethylene/chlorotrifluoroethylene Tetrafluoroethylene/bromotrifluoroethylene Tetrafluoroethylene/hexafluoropropylene Vinyl chloride/vinylidene chloride

100-0 100-0 100-0

1 1 1

Extended, planar zig-zag Extended, planar zig-zag Extended, planar zig-zag

XRl XRl XRl

100-70

2

Planar zig-zag

100-50 89-3 100-0 100-0 94-16 100-30 100-75 75-50 50-0 100-50

2 2 2 1 1 2 2 2 2 2

100-90 100-90 100-50 50-0 50-100

2 2 2 2 2

0-50 100-20 100-0 100-70 100-85

2 2 1 2 2

Isotactic (2*3/1)* Isotactic (2*3/1) Isotactic (2*3/1) Isotactic (2*4/1) and (2*29/8) Isotactic (2*3/1) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*7/2) Isotactic (2*7/2) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*29/8) Isotactic (2*4/1) Isotactic (2*4/1) and (2*7/2) Isotactic (2*4/1) (2*4/1) Isotactic (2*7/2) Isotactic (2*7/2) Isotactic (2*7/2) Isotactic (2*7/2) Isotactic (2*7/2)

MP, XRl, XR, TA XR, TA, DM XRl, MP XRl, MP, MA XRl XRl 5 MP XRl, MP XRl 5 MP

100-0

2

Planar zig-zag

100-50 100-0

1 1

Planar zig-zag Isotactic (2*17/5)

100-0

2

Planar zig-zag

100-0 100-20 100-90 88-15 15-0 52 55 100-0 100-0

1 2

2

Planar zig-zag Planar zig-zag Planar zig-zag (TGTG'),, Helical Planar zig-zag, (2*3/1) Planar zig-zag, (TGTG')* Planar zig-zag, (TGTG ')„ Planar zig-zag

100-0 100-10 100-0 100-0 100-55 100-93 100-85, 44-0

2 2 2 1 2 2 2

Planar zig-zag, (2*17/1) Planar zig-zag Helical, planar zig-zag Helical Helical Helical Planar zig-zag, (TGTG'),,

2

20,57,60 20,57,60 20,57,60 5,6,71,77, 8,93, 77 67 84 41 83 84 84 84

XRl 5 MP

84

XRl, MP XRl5 MP XRl, MP

84 84 70

XRl1MP5 XRl TA, DM TA5DM XRl5 MP XRl 5 MP XRl, MP

85 15 41 41 3 85 85

XRl XRl5 DM XRl ED5MA XR, MP

12 58 11,17,18 1 3

XRl, TA, MA XRl CA XRl, MP XRl, MP XR, TA, DM

34 88,55 29 61 61 94

XRl XRl, IR XRl XRl, TA, MA XRl XRl XRl XRl, TA, MA XRI5 TA XRl5 TA XRl, TA XRl, TA, MA

53 80 52 34 55 55 55 34 56 56 87 65

References page VI - 406

TABLE 1. cont'd

Monomer giving isomorphous copolymers

MoI % of first Type of component isomorphism Chain conformation

Copoly(styrenes) Styrene/p-methylstyrene Styrene/o-methylstyrene Styrene/o-fluorostyrene Styrene/p-fluorostyrene

100-50 100-80 100-0 100-50 50-0 100-85 100-85 100-85

2 2 2

Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic

100-84

2

(2*9/5)*

100-0 100-0 100-0 100-0 100-0 100-0

1 1 1 1 1 1

Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic

100-0 100-0

1 1

Equirnolar proportion of the three acids 100-90,40-0

Styrene/p-ethylstyrene Styrene/p-chlorostyrene Styrene/p-bromostyrene

2 2 1 2

(2*3/1) (2*3/1) (2*3/1) (2*3/1) (2*4/1) (2*3/1) (2*3/1)

Techniques

XRl, XRl, XRl, XRl,

Refs.

MP MP MP MP

62,63 62,63 62,63 62,63

XRl, MP XRl, MP XRl, MP

62,63 62,63 62,63

XRl, TA, D

21,22

1.1.2. MAIN-CHAIN HETEROATOM COPOLYMERS Copoly(ethers) Trioxane/l,3-dioxolane Copoly(aldehydes) Acetaldehyde/propionaldehyde Acetaldehyde/w-butyraldehyde Acetaldehyde/isobutyraldehyde Propionaldehyde/n-butyraldehyde w-Butyraldehyde/isobutyraldehyde n-Butyraldehyde/n-heptanal Copoly(carbonates) Hydroquinone/chlorohydroquinone/COCl2 Toluenehydroquinone/chlorohydroquinone/COCl2 Copoly(esters) Ethylene glycol, sebacic acid/undecanedioic acid/dodecanedioic acid Ethylene glycol, terephthalic acid/p-hydroxybenzoic acid Ethylene glycol, terephthalic acid/isophthalic acid Ethylene glycol, terephthalic acid/p-hydroxyoxypropoxybenzoic acid Ethylene glycol, terephthalic acid/l,4-bis-(pcarboxyphenoxy)butane Ethylene glycol, l,4-bis-(p-carboxyphenoxy) butane/p-y-hydroxypropoxybenzoic acid Tetramethylene glycol/decamethylene glycol, adipic acid Pentamethylene glycol/decamethylene glycol, adipic acid Hexamethylene glycol, adipic acid/decamethylene glycol, sebacic acid Hexamethylene glycol, sebacic acid/decamethylene glycol, adipic acid Decamethylene glycol, adipic acid/sebacic acid Decamethylene glycol/hydroquinone, adipic acid Decamethylene glycol/diethylene glycol, adipic acid 4,4'-Dihydroxybiphenyl, pimelic acid/azelaic acid 4,4/~Dihydroxybiphenyl, azelaic acid/ decanedioic acid 4,4'-Dihydroxybiphenyl, decanedioic acid/ tetradecanedioic acid 4,4/-Dihydroxybiphenyl, dodecanedioic acid/ tetradecanedioic acid Lactic acid R/S Copoly(amides) Hexamethylenediamine, adipic acid/sebacic acid Hexamethylenediamine, adipic acid/cyclohexanedicarboxylic acid

copolymer copolymer copolymer copolymer copolymer copolymer

(2*4/1) (2*4/1) (2*4/1) (2*4/1) (2*4/1) (2*4/1)

XRl XRl XRl XRl XRl XRl

78 78 78 78 78 78

Extended, planar zig-zag Extended, planar zig-zag

XR, MP XR, MP

73 73

2

Extended, planar zig-zag

XR

31

2

Extended, distorted planar

XR, TA, D

100-70, 30-0

2

Extended, distorted planar

XR, TA, ED, MA

50 48 39

100-0

2

Extended, distorted planar

only 50

2

Extended, distorted planar

D XR XR, MP XR

48 43 44 45

only 50

2

Extended, distorted planar

XR

46

30-0

2

Extended, planar zig-zag

MP

28

40-0

2

Extended, planar zig-zag

MP

28

100-0

2

Extended, planar zig-zag

XRl, TA

42

100-0

2

Extended, planar zig-zag

XRl, TA

42

100-70 100-70 100-70

2 2 2

Extended, planar zig-zag Extended, planar zig-zag Extended, planar zig-zag

MP MP MP

28 28 28

100-0 100-60, 25-0

2 2

Extended, planar zig-zag Extended, planar zig-zag

XRl, TA XRl, TA

86 86

100-0

2

Extended, planar zig-zag

XRl, TA

86

100-0

2

Extended, planar zig-zag

XRl, TA

86

100-85

2*

Extended, planar zig-zag *

XR, MA, TA

30

100-60,50-0 100-70

2* 2

Extended, planar zig-zag Extended, planar zig-zag

XR MP

7 72

TABLE 1. cont'd

Monomer giving isomorphous copolymers Hexamethylenediamine, adipic acid/terephthalic acid

MoI % of first Type of component isomorphism 100-0

Hexamethylenediamine, adipic acid/ 100-60, 50-0 nonamethylene diamine, azelaic acid Hexamethylenediamine/decamethylene100-70, 60-0 diamine, adipic acid Hexamethylenediamine, adipic acid/deca100-65, 50-0 methylene diamine, sebacic acid Hexamethylenediamine/fram-l,4-cyclohexanebis100-70* methylamine, adipic acid Hexamethylenediamine, suberic acid/4-benzene40-0* diacetic acid Hexamethylenediamine/decamethylene100-0 diamine, adipic acid Hexamethylenediamine/decamethylenediarnine, 100-0 sebacic acid Hexamethylenediamine, sebacic acid//?-phenylene100-0 dipropionic acid Hexamethylenediamine, sebacic acid/ 100-0 3-(/?-carboxy-methyleneoxy) phenylpropionic acid Hexamethylenediamine, sebacic acid/ 100-0 4-(p-carboxy-methylene)phenylbutyric acid Hexamethylenediamine/WV'-diisobutyl100-0 hexamethylene diamine, sebacic acid Hexamethylenediamine, sebacic acid/1,4100-0 (dicarboxy-methyleneoxy)phenylene Hexamethylenediamine, undecanedioic acid/ 100-0 6-oxa-hendecanedioic acid Hexamethylenediamine, undecanedioic acid/ 100-0 6-thio-hendecanedioic acid Hexamethylenediamine/o^a'-p-xylenediamine, 50-0* sebacic acid Hexamethylenediamine,/7-phenylenedipropionic 100-0 acid/4-(/?-carboxymethylene)phenylbutyric acid Hexamethylenediamine,/>phenylene100-0 dipropionic acid/3-(p-carboxymethyleneoxy)phenylpropionic acid Hexamethylenediamine, /7-phenylene100-0 dipropionic acid//?-bis-(carboxymethyleneoxy)phenylene Hexamethylenediamine, 3-(/?-carboxymethyleneoxy) 100-0 phenylpropionic acid//?-bis-(carboxymethyleneoxy) phenylene Heptamethylenediamine, adipic acid/terephthalic 100-0 acid Heptamethylenediamine/4-oxa-heptamethylene75, 50, 25 diamine, adipic acid Heptamethylenediamine, adipic acid/4-oxa-hepta75, 50, 25 methylenediamine, terephthalic acid Heptamethylenediamine, terephthalic acid/4-oxa75, 50, 25 heptamethylenediamine, adipic acid Heptamethylenediamine/4-oxa-heptamethylene75, 50, 25 diamine terephthalic acid Octamethylenediamine, adipic acid/terephthalic 100-0 acid Octamethylenediamine/2,2'-/>phenylene-bis100-0*(100-60) ethylamine, adipic acid Octamethylenediamine/2,2'-/?-phenylene100-0*(100-10) bis-ethylamine, azelaic acid Octamethylenediamine, sebacic acid/ 100-0 4-benzenedipropionic acid

Chain conformation

2

Extended, planar zig-zag

2

Techniques

Refs.

Extended, planar zig-zag

MP XR TA XR

96,66,72 23 40 7

2*

Extended, planar zig-zag

XR

7

2*

Extended, planar zig-zag

XR

7

2

Extended, planar zig-zag

MP

72

2

Extended, planar zig-zag

MP

95

2

Extended, planar zig-zag

XR

7

2

Extended, planar zig-zag

2

Extended, planar zig-zag

XR MP XR, MP

7 28 81

2

Extended, planar zig-zag

XR, MP,

81

2

Extended, planar zig-zag

MP

81

2

Extended, planar zig-zag

XR, MP

89

2

Extended, planar zig-zag

XR, MP

81

1

Extended, planar zig-zag

MP

74

1

Extended, planar zig-zag

MP

74

2

Extended, planar zig-zag

MP

95

2

Extended, planar zig-zag

XR, MP

81

2

Extended, planar zig-zag

XR, MP

81

2

Extended, planar zig-zag

XR, MP

81

2

Extended, planar zig-zag

MP

81

2

Extended, planar zig-zag

1

Extended, planar zig-zag

MP XR, MP, DM XR, MP, DM

96 19 19

2

Extended, planar zig-zag

XR, MP, DM

19

2

Extended, planar zig-zag

XR, MP, DM

19

2

Extended, planar zig-zag

XR, MP, DM

19

2

Extended, planar zig-zag

MP

96

2

Extended, planar zig-zag

MP

95

2

Extended, planar zig-zag

MP

95

2

Extended, planar zig-zag

MP

95

References page VI - 406

TABLEI. cont'd

Monomer giving isomorphous copolymers

MoI % of first Type of component isomorphism

Octamethylenediamine^'-^-phenylenebis-ethylamine, sebacic acid Octamethylenediamine^'-p-phenylenebis-ethylamine, suberic acid Octamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid Nonamethylenediamine, adipic acid/terephthalic acid Nonamethylenediamine/bis(4-aminocyclohexyl) methane, octanedioic acid Nonamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid 5-Methyl-nonamethylenediamine/bis-(4-aminocyclohexyl)methane, dodecanedioic acid Decamethylenediamine, adipic acid/sebacic acid Decamethylenediamine, adipic acid/terephthalic acid Decamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid Undecamethylenediamine, adipic acid/terephthalic acid Dodecamethylenediamine, adipic acid/terephthalic acid Dodecamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid 1,4-Bis(aminomethyl)cyclohexane (cisftrans), adipic acid 1,4-Bis(aminomethyl)cyclohexane (cis/trans), sebacic acid 1,4~Bis(aminomethyl)cyclohexane (cis/trans), dodecanedioic acid a,a'-p-Xylenediamine, nonanedioic acid/5-oxanonanedioic acid a,a'-/?-Xylenediamine, nonanedioic acid/5thio-nonanedioic acid a,a'-p-Xylenediamine, undecanedioic acid/ 6-oxa-undecanedioic acid/6-thio-undecanedioic acid ocaVXylenediamine, triadecanedioic acid/7-oxa-triadecanedioic acid/6-oxatriadecanedioic acid a,a'-/?-Xylenediamine, triadecanedioic acid/7-thio-triadecanedioic acid a,oc'-/7-Xylenediamine, pentadecanedioic acid/6-oxa-pentadecanedioic acid oca'-p-Xylenediamine, pentadecanedioic acid/8-tia-pentadecanedioic acid a,a7-/7-Xylenediamine, 7-oxa-triadecanedioic acid/7-thio-triadecanedioic 4-Oxa-heptamethylenediamine, adipic acid/terephthalic acid Caprolactam/4(-aminomethylcyclohexyl) carboxylic acid Caprolactam/4(-aminomethyl)benzoic acid Caprolactam/Y-4(-aminomethyl)propionic acid Caprolactam-co-laurolactam

Chain conformation

Refs.

100-0* (100-10)

2

Extended, planar zig-zag

MP

95

100-0*(100-30)

2

Extended, planar zig-zag

MP

95

100-0* (90, 50)

2

Extended, planar zig-zag

TA

16

100-0

2

Extended, planar zig-zag

MP

96

100-0

2

Extended, planar zig-zag

TA

16

100-0

2

Extended, planar zig-zag

XR, TA

16

100-0* (90, 50)

2

Extended, planar zig-zag

XR, TA

16

100-0 100-0

2 2

Extended, planar zig-zag Extended, planar zig-zag

XR MP

7 96

100-0* (90, 50)

2

Extended, planar zig-zag

TA

16

100-0

2

Extended, planar zig-zag

MP

96

100-0

2

Extended, planar zig-zag

MP

96

100-0*(90, 50)

2

Extended, planar zig-zag

XR, TA

16

100-0

2

Twist boat, planar zig-zag

XRl

69

100-0

2

Twist boat, planar zig-zag

XRl

69

100-0 100-0

2 1

Twist boat, planar zig-zag Extended, planar zig-zag

XRl MP

69 74

100-0

1

Extended, planar zig-zag

MP

74

All proportions of the three acids

1

Extended, planar zig-zag

XR, MP, D

74

All proportions of the three acids

1

Extended, planar zig-zag

MP

74

100-0

1

Extended, planar zig-zag

MP

74

100-0

1

Extended, planar zig-zag

MP

74

100-0

1

Extended, planar zig-zag

MP

74

100-0

1

Extended, planar zig-zag

MP

74

75, 580,25

2

Extended, planar zig-zag

XR, MP, DM

19

100-70,50-0

2

Extended, planar zig-zag

51 f. 51 75 74 36 38

100-70 100-80, 15-0 100-70,30-0

2 2 2

Extended, planar zig-zag Extended, planar zig-zag Extended, planar zig-zag

MP ' MP XR, TA, IR XRl, TA, D, IR TA DM

100-0 100-0 80 87-0

2 2 2* 1

a-helix, a-helix, a-helix, a-helix,

XRl XRl, IR MA ED XRl, TA, IR, DM

XR MP

F

Copoly(peptides) a-Methyl-5-glutamate/Y-benzyl-5-glutamate a-Methyl-S-glutamate/Y-methyl-/?-glutamate a-Benzyl-S-glutamate/S-phenylalanine Butyl-5 aspartate/benzyl-5-aspartate

Techniques

(3*18/5) (3*18/5) (3*18/5) (3*4/1)

35,4/ 59 /¥ 82

TABLE 1. cont'd

Monomer giving isomorphous copolymers Copoly(diacetylenes)

Mol% of first Type of component isomorphism Chain conformation

Techniques

Refs.

R R' I I (Generalformula K = C - C = C-C=),, ( = C - C = C-C=) 1 _ X )] II R

R R' p-Tolylsulfonyloxymethyl//7-fluorosulfonyloxymethyl /?-Tolylsulfonyloxymethyl//7-chlorosulfonyloxymethyl /7-Tolylsulfonyloxymethyl/p-bromosulfonyloxymethyl /7-Tolylsulfonyloxymethyl//?-naphthylsulfonyloxymethyl /7-Tolylsulfonyloxymethyl//?-methoxysulfonyloxymethyl Methylcarbazolyl/methylcarbazolyl, methylanthryl Copoly(phosphazenes) (General formula [(RO),(R'O) 2-,PN]J R R' Phenyl/^-ethylphenylene 4-Chlorophenylene/4-methylphenylene 4-Chlorophenylene/4-ethylphenylene 4-Chlorophenylene/phenyl 4-Chlorophenylene/3-methylphenylene 4-Chlorophenylene/3-chlorophenylene 4-Methylphenylene/3-rnethylphenylene 3-Chlorophenylene/4-methylphenylene 3-Chlorophenylene/3-methylphenylene

R'

100-0

1

fra/u-Planar

XRl

26

100-80

1

trans-Planar

XRl

24,25

100-93

1

trans-Planar

XRl

25

100-90

1

trans-Planar

XRl

4

100-90

1

trans-Planar

XRl

4

100-94

1

trans-Planar

XRl

27

100-85/15-0 50 only 50 only 50 only 50 only 50 only 50 only 50 only 50 only

2 1* 1* 2 2* 2 2 2 1*

(cis-trans)2 (cis-trans) 2 (cis-trans) 2 (cis-trans)2 (cis-trans) 2 (cis-trans)2 (cis-trans)2 (cis-trans)2 (cis-trans)2

XRl, TA XRl, TA TA XRl, TA TA TA TA TA TA

33 9 9 9 9 9 9 9 9

1.2. ISOMORPHOUS UNITS WITH DIFFERENT CONFIGURATIONS AND/OR WITH HEAD-TO-HEAD, OR HEAD-TO-TAIL CONSTITUTIONAL DISORDER Poly (vinyl alcohol) Poly (vinyl fluoride) Poly(vinylidene fluoride) Poly(chlorotrifluoroethylene)

Atactic polymer Atactic polymer with constitutional disorder Constitutional disorder Atactic polymer

Poly(ethylene-a/rchlorotrifluoroethylene) Poly(p-carboxyphenyl methacrylate) Poly(butadiene-#//-acrylonitrile)

Atactic polymer with constitutional disorder Atactic polymer Atactic polymer

Planar zig-zag Planar zig-zag

XRl XRl

12,13,14 64

Planar zig-zag (2*14/1) (2*16/1) Extended, distorted planar

XRl, CA XRl XRl XRl

29 13 54 76

Extended, distorted planar Extended, distorted planar

XRl, ED, MA, TA XR, IR

10 32

TABLE 2. ISOMORPHISM OF MACROMOLECULES

Monomer giving isomorphous copolymers

MoI % of first Type of component isomorphism

Poly(propylene)/poly(l-butene) 100-80 and 20-0 Poly(4-methylpentene)/poly(4-methylhexene) 100-75 and 20-0 Poly(1-propylvinyl ether)/poly(^c-butyl 100-0 vinyl ether) Poly(styrene)/poly(styrene-co-/?-methyl styrene) 50 (70/30, mol/mol) Poly(oxy-4,4'-biphenylene oxy dodecanoyl)/ 100-0 poly(oxy-4,4 '-biphenylene oxy-tetradecanedioyl)

Chain conformation

Techniques

Refs.

2 1 1

Isotactic polymers (2*3/1) Isotactic polymers (2*7/2) Isotactic polymers (2*17/5)

DM, MA, TA, ED XRl, MP XRl, MP

37 3 3

1

Isotactic polymers (2*3/1)

XRl, IR

63

2

Planar zig-zag

XRl, TA, MA

86

References page VI - 406

D.

REFERENCES

1. G. C. Alfonso, L. Fiorina, E. Martuscelli, E. Pedemonte, S. Russo, Polymer, 14, 373 (1973). 2. G. Allegra, I. W. Bassi, Adv. Polym. ScL, 6, 549 (1969). 3. G. Allegra, I. W. Bassi, C. Carlini, E. Chiellini, G. Montagnoli, Macromolecules, 2, 311 (1969). 4. D. J. Ando, D. Bloor, Makromol. Chem. Rapid Commun., 1, 385 (1980). 5. C. H. Baker, L. Mandelkern, Polymer, 7, 7 (1966). 6. C. H. Baker, L. Mandelkern, Polymer, 7, 71 (1966). 7. W. O. Baker, C. S. Fuller, J. Am. Chem. Soc., 64, 2399 (1942). 8. LW. Bassi, P. Corradini, G. Fagherazzi, A. Valvassori, Eur. Polym. J., 6, 709 (1970). 9. J. J. Beres, N. S. Schneider, C. R. Desper, R. E. Singler, Macromolecules, 12, 566 (1979). 10. A. Blumstein, S. B. Clough, L. Patel, R. B. Blumstein, E. C. Hsu, Macromolecules, 9, 243 (1976). 11. M. M. Brubaker, D. D. Coffman, H. H. Hochn, J. Am. Chem. Soc, 74, 1509 (1952). 12. C. W. Bunn, S. Peiser, Nature, 159, 161 (1947). 13. C. W. Bunn, J. Appl. Phys., 25, 820 (1954). 14. C. W. Bunn, Nature, 161, 929 (1948). 15. T. W. Campbell, J. Appl. Polym. ScL, 5, 184 (1961). 16. R. W. Campbell, H. W. Hill, Jr., Macromolecules, 8, 238 (1975). 17. Y. Chatani, T. Takizawa, S. Murahashi, Y. Sakata, Y. Nishimura, J. Polym. ScL, 55, 811 (1961). 18. Y. Chatani, T. Takizawa, S. Murahashi, J. Polym. ScL, 62, 527 (1962). 19. F. B. Cramer, R. G. Beaman, J. Polym. ScL, 21, 237 (1956). 20. G. Dall'Asta, G. Motroni, G. Carella, It. Pat., 773, 657 (1966). 21. M. Droscher, Makromol. Chem., 178, 1195 (1977). 22. M. Droscher, K. Hertwig, H. Reimann, G. Wegner, Makromol. Chem., 177, 1695 (1976). 23. O. B. Edgar, R. H. Hill, J. Polym. ScL, 8, 1 (1952). 24. V. Enkelmann, Makromol. Chem., 179, 2811 (1978). 25. V. Enkelmann, J. Mat. ScL, 15, 951 (1980). 26. V. Enkelmann, Makromol. Chem., 184, 1945 (1983). 27. V. Enkelmann, G. Schleicr, H. Heichele, J. Mat. ScL, 17,533 (1982). 28. R. D. Evans, H. R. Mighton, P. J. Flory, J. Am. Chem. Soc, 72, 2018 (1950). 29. B. L. Farmer, J. B. Lando, J. Macromol. Sci. Phys. B, 11, 89 (1975). 30. E. W. Fischer, H. J. Sterzel, G. Wegner, Kolloid Z. Z. Polym., 251, 980 (1973). 31. C S . Fuller, J. Am. Chem. Soc, 70, 421 (1948). 32. J. Furukawa, E. Kobayashi, K. Uratani, Y. Iseda, J. Umemura, T. Takenaka, Polym. J., 4, 358 (1973). 33. S. Futamura, J. K. Valaitis, K. R. Lucas, J. W. Fieldhouse, T. C. Cheng, D. P. Tate, J. Polym. Sci., Polym. Phys. EdM 18, 767 (1980).

34. Y. L. Gal'perin, D. Y. Tsvankin, Vysokomol. Soedin. A, 18, 2691 (1976). 35. R. Gehani, J. Watanabe, S. Kasuya, I. Uematsu, Polym. J., 12, 871 (1980). 36. Yu. K. Godovskii, I. I. Dubovik, S. L. Ivanova, V. V. Kurashev, T. Frunze, G. L. Slonimskii, Vysokomol. Soedin. A, 19, 392 (1977). 37. R. M. Gohil, J. Petermann, J. Makromol. Sci. B: Phys., 18, 217 (1980). 38. J. Goodman, A. H. Kehayoglou, Eur. Polym. J., 19, 321 (1983). 39. M. Hachiboshi, T. Fukuda, S. Kobayashi, J. Macromol. Sci. Phys., 3, 525 (1969). 40. E. D. Harvey, F. J. Hybart, Polymer, 12, 711 (1971). 41. W. A. Hewett, F. E. Weir, J. Polym. Sci. A, 1, 1239 (1963). 42. G. J. Howard, S. Knutton, Polymer, 9, 527 (1968). 43. M. Ishibashi, Polymer, 5, 103 (1964). 44. M. Ishibashi, J. Polym. Sci. A, 2, 4361 (1964). 45. M. Ishibashi, J. Polym. Sci. B, 2, 791 (1964). 46. M. Ishibashi, J. Polym. Sci. B, 2, 789 (1964). 47. T. Kanamori, K. Itoh, A. Nakajima, Polym. J., 1, 524 (1970). 48. T. Kawaguchi, Y. Nukushina, Kobunshi Kagaku, 20, 529 (1963). 49. A. H. Kehayoglou, Eur. Polym. J., 19, 183 (1983). 50. R. W. Lenz, J. Jin, K. A. Feichtinger, Polymer, 24, 327 (1983). 51. M. Levine, S. C. Temin, J. Polym. Sci., 49, 241 (1961). 52. A. J. Lovinger, T. Furukawa, G. T. Davis, M. G. Broadhurst, Polymer, 24, 1225 (1983). 53. A. J. Lovinger, G. T. Davis, T. Furukawa, M. G. Broadhurst, Macromolecules, 15, 323 (1982). 54. Y. Miyamoto, C. Nakafuku, T. Takemura, Polym. J., 3, 122 (1972). 55. G. Moggi, P. Bonardelli, J. C. J. Bart, J. Polym. Sci., Polym, Phys. Ed., 22, 357 (1984). 56. G. Moggi, P. Bonardelli, C. Monti, J. C. J. Bart, J. Polym. Sci., Polym. Phys. Ed., 23, 1099 (1985). 57. G. Motroni, G. Dall'Asta, I. W. Bassi, Eur. Polym. J., 9, 257 (1973). 58. K. Nakame, M. Kameyama, T. Matsumoto, Polym. Eng. Sci., 19, 579 (1979). 59. A. Nakajime, T. Hayashi, K. Itoh, T. Fujiwara, Polym. J., 4, 10(1979). 60. G. Natta, I. W. Bassi, G. Fagherazzi, Eur. Polym. J., 5, 239 (1969). 61. G. Natta, G. Allegra, I. W. Bassi, D. Sianesi, G. Caporiccio, E. Torti, J. Polym. Sci. A, 3, 4263 (1965). 62. G. Natta, Makromol. Chem., 35, 93 (1960). 63. G. Natta, P. Corradini, D. Sianesi, D. Morero, J. Polym. Sci., 51, 527 (1961). 64. G. Natta, I. W. Bassi, G. Allegra, Ace Naz. Lincei Rend., 31, 350 (1961). 65. K. Okuda, J. Polym. Sci. A, 2, 1749 (1964). 66. H. Plimmer, R. J. W. Reynolds, L. Wood, H. Hargreaves, I. C. I. Ltd. British Pat. Appl., 604/49.

67. A. Piloz, A. DouiJlard, J. Y. Decroix, J. P. May, G. Vallet, Polym. J., 6, 506 (1974). 68. F. R. Prince, E. M. Pearce, R. J. Fredericks, J. Polym. Sci. A-I, 8, 3533 (1970). 69. F. R. Prince, R. J. Fredericks, Macromolecules, 5, 168 (1972). 70. F. P. Roding, E. R. Walter, J. Polym. Sci., 37, 555 (1959). 71. M. J. Richardson, P. J. Flory, J. B. Jackson, Polymer, 4, 221 (1963). 72. J. Ridgway, J. Polym. Sci. A-I, 8, 3089 (1970). 73. J. D. Rubin, J. Polym. Sci. A, 1, 1645 (1963). 74. K. Saotome, H. Komoto, J. Polym. Sci. A-I, 4, 1475 (1966). 75. S. W. Shalaby, E. A. Turi, P. J. Harget, J. Polym. Sci., Polym. Chem. Ed., 14, 2407 (1976). 76. J. P. Sibilia, L. G. Roldan, S. Chandrasekaran, J. Polym. Sci. A, 10, 549 (1972). 77. H. W. Starkweather Jr., F. A. Van Catledge, R. N. MacDonald, Macromolecules, 15, 1600 (1982). 78. A. Tanaka, Y. Ozumi, K. Hatada, S. Endo, R. Fujishije, Polymer Lett., 2, 181 (1964). 79. Y. Tajima, M. Anderson, P. H. Geil, Int. J. Biol. Macromol., 1, 98 (1979). 80. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Polymer, 22, 1312 (1981).

81. T. C. Tranter, J. Polym. Sci. A, 2, 4289 (1964). 82. Y. Tsujita, M. Fukagawa, I. Uematsu, Polym. J., 14, 773 (1982). 83. A. Turner Jones, Polym. Lett., 3, 591 (1965). 84. A. Turner Jones, Polymer, 7, 23 (1966). 85. A. Turner Jones, Polymer, 6, 249 (1965). 86. J. Watanabe, W. R. Krigbaum, Macromolecules, 17, 2288 (1984). 87. J. J. Woeks, R. K. Eby, E. S. Clark, Polymer, 22, 1496 (1981). 88. F. C. Wilson, H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 11,919(1973). 89. E. L. Wittbecker, R. C. Houtz, W. W. Watkins, Ind. Eng. Chem., 40, 875 (1948). 90. B. Wunderlich, "Macromolecular Physics", Academic Press, New York, 1973, Ch. 2, p. 147. 91. B. Wunderlich, "Macromolecular Physics", Academic Press, New York, 1980, Ch. 10, p. 255. 92. B. Wunderlich, J. Grelowicz, Adv. Polym. Sci., "Liquid Crystal Polymers II/III", Springer-Verlag, Berlin, 1984, Ch. 1, p. 4. 93. B. Wunderlich, D. Poland, J. Polym. Sci. A, 1, 357 (1963). 94. T. Yagi, M. Tatemoto, J. Sako, Polym. J., 12, 209 (1980). 95. A. J. Yu, R. D. Evans, J. Am. Chem. Soc, 81, 5361 (1959). 96. A. J. Yu, R. D. Evans, J. Polym. Sci., 42, 249 (1960).