The operads of planar forests are Koszul

Hopf algebra of rooted tree introduced in [1, 7, 8, 9] in the context of Quantum ... 1. Graphically, the relations defining P↘ can be written in the following way:.
329KB taille 1 téléchargements 323 vues
The operads of planar forests are Koszul L. Foissy Laboratoire de Mathématiques, Université de Reims Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France e-mail : [email protected]

ABSTRACT. We describe the Koszul dual of two quadratic operads on planar forests introduced to study the infinitesimal Hopf algebra of planar rooted trees and prove that these operads are Koszul. KEYWORDS. Koszul quadratic operads, planar rooted trees. AMS CLASSIFICATION. 05C05, 18D50.

Contents 1 Operads of planar forests 1.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Free algebras on these operads . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2 3

2 The 2.1 2.2 2.3 2.4

operad P& is Koszul Koszul dual of P& . . . . . . Free P!& -algebras . . . . . . . Homology of a P& -algebra . . Homology of free P& -algebras

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

3 3 4 6 7

3 The 3.1 3.2 3.3 3.4

operad P% is Koszul Koszul dual of P% . . . . . . Free P!% -algebras . . . . . . . Homology of a P% -algebra . . Homology of free P% -algebras

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

11 11 12 12 14

Introduction The Hopf algebra of planar rooted trees, described in [4, 6], is a non-commutative version of the Hopf algebra of rooted tree introduced in [1, 7, 8, 9] in the context of Quantum Field Theories and Renormalisation. An infinitesimal version of this object is introduced in [3], and is related to two operads on planar forests in [2]. These two operads, denoted by P& and P% , are presented in the following way: 1. P& is generated by m and &∈ P& (2), with relations:   m ◦ (&, I) = & ◦(I, m), m ◦ (m, I) = m ◦ (I, m),  & ◦(m, I) = & ◦(I, &). 1

2. P% is generated by m and %∈ P% (2), with   m ◦ (%, I) m ◦ (m, I)  % ◦(%, I)

relations: = % ◦(I, m), = m ◦ (I, m), = % ◦(I, %).

The algebra of planar rooted trees is both the free P% - and P& -algebra generated by q , with products % and & given by certain graftings. The operads P% and P& are quadratic. Our aim in this note is to prove that they are both Koszul, in the sense of [5]. We describe their Koszul dual (it turns out that they are quotient of P& and P% ) and the associated homology of P% - or P& -algebras. We compute these homologies for free objects and prove that they are concentrated in degree 0. This proves that these operads are Koszul.

1

Operads of planar forests

1.1

Presentation

We work in this text with operads, whereas we worked in [2] with non-Σ-operads. In other terms, we replace the non-Σ-operads of [2] by their symmetrization [10]. Definition 1 1. P& is generated, as an operad, by m and &, with the relations:   & ◦(m, I) = & ◦(I, &), & ◦(I, m) = m ◦ (&, I),  m ◦ (m, I) = m ◦ (I, m). 2. P% is generated, as an operad, by m and %, with the relations:   % ◦(%, I) = % ◦(I, %), % ◦(I, m) = m ◦ (%, I),  m ◦ (m, I) = m ◦ (I, m). Remarks. 1. Graphically, the relations defining P& can be written in the following way: 1

2

@ m @ &

2 3

1

=

3

@

@ &

&

1

2

2 3

@ m @ m

,

1

=

@ @m

3

1

2

2 3

@ &

m

@ m

,

3

1

=

@m @&

.

˜ & the sub-non-Σ-operad of P& generated by m and &. Then P& is the 2. We denote by P ˜&. symmetrization of P 3. Graphically, the relations of P!% can be written in the following way:

@ % @ %

@

=

@

%

%

,

@ m @ m

=

@ @m

@ %

m

,

@ m

=

@m @%

.

˜ % the sub-non-Σ-operad of P% generated by m and %. Then P% is the 4. We denote by P ˜%. symmetrization of P 2

Both of these non-Σ-operads admits a description in terms of planar forests [2]. In particular, ˜ & (n) and P ˜ % (n) is given by the n-th Catalan number [11, 12]. Multiplying the dimension of P by a factorial, for all n ≥ 1: dim P& (n) = dim P% (n) =

(2n)! . (n + 1)!

In particular, dim P& (2) = dim P% (2) = 4 and dim P& (3) = dim P% (3) = 30.

1.2

Free algebras on these operads

We described in [2] the free P& - and P% -algebras on one generators, using planar rooted trees. We here generalise (without proof) these results. Let D be any set. We denote by TD the set of planar trees decorated by D and by FD the set of non-empty planar forests decorated by D. 1. The free P& -algebra generated by D has the set FD as a basis. The product m is given by concatenation of forests. For all F , G ∈ FD , the product F & G is obtained by grafting F on the root of G, on the left. 2. The free P% -algebra generated by D has the set FD as a basis. The product m is given by concatenation of forests. For all F , G ∈ FD , the product F % G is obtained by grafting F on the left leaf of G. In both cases, we identified d ∈ D with q d ∈ FD . Moreover, for all F ∈ FD , F & q d = F % q d is the tree obtained by grafting the trees of F on a common root decorated by d: this tree will be denoted by Bd (F ).

2

The operad P& is Koszul

2.1

Koszul dual of P&

(See [5, 10] for the notion of Koszul duality for quadratic operads). We denote by P!& the Koszul dual of P& . Theorem 2 The operad P!& is generated by m and &∈ P!& (2), with the relations:  & ◦(m, I)      m ◦ (m, I) m ◦ (&, I)   & ◦(&, I)    m ◦ (I, &)

= = = = =

& ◦(I, &), m ◦ (I, m), & ◦(I, m), 0, 0.

Proof. Let P(E) be the operad freely generated by the S2 -module freely generated by m and &. Then P& can be written P& = P(E)/(R), where R is a sub-S3 -module of P(E)(3). As dim(P(E)) = 48 and dim(P& (3)) = 30, dim(R) = 18. So dim(R⊥ ) = 48 − 18 = 30. We then verify that the given relations for P!& are indeed in R⊥ , that each of them generates a free S3 -module, which are in direct sum. So these relations generate entirely P(E)(3). 2 Remarks. 1. So P!& is a quotient of P& . 3

2. Moreover, P!& is the symmetrisation of the the relations:  & ◦(m, I)      m ◦ (m, I) m ◦ (&, I)   & ◦(&, I)    m ◦ (I, &)

˜ ! generated by m and & and non-Σ-operad P & = = = = =

& ◦(I, &), m ◦ (I, m), & ◦(I, m), 0, 0.

This is a general fact: the Koszul dual of the symmetrisation of a quadratic non-Σ operad is itself the symmetrisation of a certain quadratic non-Σ-operad. 3. Graphically, the relations defining P!& can be written in the following way: 1

2

@ m @ &

2 3

1

=

3

@

@ &

1

&

2 3

@ m

, 1

3

1

=

@ @m

2

@ & @ &

2.2

2

@ m

1

= 0,

2

m

@ m

,

2 3

@ &

2 3

1

3

1

=

@m @&

,

3

@

@& m

= 0.

Free P!& -algebras

Let V be finite-dimensional vector space. We put:  n M    V ⊗n for all n ≥ 1, T (V )(n) =  &  k=1

    

T& (V ) =

∞ M

T& (V )(n).

n=1

In order to distinguish the different copies of V ⊗n , we put: T (V )(n) =

n  M

 A ⊗ . . . ⊗ A ⊗ A˙ ⊗ A ⊗ . . . ⊗ A . {z } k=1 | the k-th copy of A is pointed.

˙ The elements of A⊗. . .⊗A⊗ A⊗A⊗. . .⊗A will be denoted by v1 ⊗. . .⊗vk−1 ⊗ v˙ k ⊗vk+1 ⊗. . .⊗vn . We define m and & over T& (V ) in the following way: for v = v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm and w = w1 ⊗ . . . ⊗ w˙ l ⊗ . . . ⊗ wn ,  0 if l 6= 1, vw = v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm ⊗ w1 ⊗ . . . ⊗ wn if l = 1;  0 if k 6= 1, v&w = v1 ⊗ . . . ⊗ vm ⊗ w1 ⊗ . . . ⊗ w˙ l ⊗ . . . ⊗ wn if k = 1. Lemma 3 T& (V ) is a P!& -algebra generated by V . Proof. Let us first show that the relations of the P!& -algebras are satisfied. Let u = u1 ⊗ . . . ⊗ u˙ j ⊗ . . . ⊗ um , v = v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vn and w = w1 ⊗ . . . ⊗ w˙ l ⊗ . . . ⊗ wp . (uv) & w = 0 if j 6= 1 or k 6= 1, = u1 ⊗ . . . ⊗ um ⊗ v1 ⊗ . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ w˙ l ⊗ . . . ⊗ wp if j = k = 1, u & (v & w) = 0 if j 6= 1 or k 6= 1, 4

= u1 ⊗ . . . ⊗ um ⊗ v1 ⊗ . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ w˙ l ⊗ . . . ⊗ wp if j = k = 1, (uv)w = 0 if k 6= 1 or l 6= 1, = u1 ⊗ . . . ⊗ u˙ j . . . ⊗ um ⊗ v1 ⊗ . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ wp if k = l = 1, u(vw) = 0 if k 6= 1 or l 6= 1, = u1 ⊗ . . . ⊗ u˙ j . . . ⊗ um ⊗ v1 ⊗ . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ wp if k = l = 1, (u & v)w = 0 if j 6= 1 or l 6= 1, = u1 ⊗ . . . ⊗ um ⊗ v1 ⊗ . . . ⊗ v˙ k . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ wp if j = l = 1, u & (vw) = 0 if j 6= 1 or l 6= 1, = u1 ⊗ . . . ⊗ um ⊗ v1 ⊗ . . . ⊗ v˙ k . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ wp if j = l = 1, (u & v) & w = 0, u(v & w) = 0. So (T& (V ), m, &) is a P!& -algebra. Moreover, for all v1 , . . . , vn ∈ V : v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vn = (v˙ 1 . . . v˙ k−1 ) & (v˙ k . . . v˙ n ). 2

Hence, T& (V ) is generated by V .

The P!& -algebra T& (V ) is also graded by putting V in degree 1. It is then a quotient of the free P!& -algebra generated by V , which is: ∞ M

˜ ! (n) ⊗ V ⊗n . P &

n=0

˜ ! (n)) ≥ n and dim(P! (n)) ≥ ˜ ! (n) ⊗ V ⊗n ) ≥ dim(T& (V )(n)), so dim(P So, for all n ∈ N, dim(P & & & nn!. Lemma 4 For all n ∈ N, dim(P!& (n)) ≤ nn!. Proof. P!& (n) is linearly generated by the binary trees with n indexed leaves, whose internal vertices are decorated by m and &. By the four first relations of P!& , we obtain that P!& (n) is generated by the trees of the following form: σ(n − 1) σ(n) σ(n − 2) σ(2)

@ an−1 @. an−2

..

σ(1)

@ a2 @ a1

,

with σ ∈ Sn , a1 , . . . an−1 ∈ {m, &}. With the last relation, we deduce that P!& (n) is generated by the trees of the following form: σ(n − 1) σ(n) σ(n − 2) σ(i) σ(i − 1) σ(2)

@ m @. &

..

σ(1)

@& @&

5

@ @. m

,

..

m

2

where σ ∈ Sn , 1 ≤ i ≤ n. Hence, dim(P!& (n)) ≤ nn!. As a consequence: Theorem 5 Let n ≥ 1. 1. dim(P!& (n)) = nn!. 2. P!& (n) is freely generated, as a Sn -module, by the following trees: n−1 n−2 i

@ @. m

n m

..

i−1 2

@ m @. &

..

1

@& @&

,

where 1 ≤ i ≤ n. 3. T& (V ) is the free P!& -algebra generated by V .

2.3

Homology of a P& -algebra

Let us now describe the cofree P& -algebra cogenerated by V . By duality, it is equal to T& (V ) as a vector space, with coproducts given in the following way: for v = v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm , ∆(v) =

∆& (v) =

m−1 X

(v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vi ) ⊗ (v˙ i+1 ⊗ . . . ⊗ vm ),

i=k k−1 X

(v˙ 1 ⊗ . . . ⊗ vi ) ⊗ (vi+1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm ).

i=1

Let A be a P& -algebra. The homology complex of A is given by the shifted cofree coalgebra T& (V )[−1], with differential d : T& (V )(n) −→ T& (V )(n − 1), uniquely determined by the following conditions: 1. for all a, b ∈ A, d(a˙ ⊗ b) = ab. ˙ = a & b. 2. for all a, b ∈ A, d(a ⊗ b) 3. Let θ : T& (A) −→ T& (A) be the following application:  θ:

T& (A) −→ T& (A) x −→ (−1)degree(x) x for all homogeneous x.

Then d is a θ-coderivation: for all x ∈ T& (A), ∆(d(x)) = (d ⊗ Id + θ ⊗ Id) ◦ ∆(x), ∆& (d(x)) = (d ⊗ Id + θ ⊗ Id) ◦ ∆& (x). 6

So, d is the application which sends the element v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm to: k−2 X

(−1)i−1 v1 ⊗ . . . ⊗ vi vi+1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm

i=1

.

z }| { +(−1) v1 ⊗ . . . ⊗ vk−1 & vk ⊗ . . . ⊗ vm . z }| { k−1 +(−1) v1 ⊗ . . . ⊗ vk vk+1 ⊗ . . . ⊗ vm n−1 X + (−1)i−1 v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vi vi+1 ⊗ . . . ⊗ vm . k−2

i=k+1

The homology of this complex will be denoted by H∗& (A). More clearly, for all n ∈ N:   Ker d|T& (A)(n+1)  . Hn& (A) = Im d|T& (A)(n+2) Examples. Let v1 , v2 , v3 ∈ A.                       

d(v1 ) = 0, d(v˙1 ⊗ v2 ) = v1 v2 , d(v1 ⊗ v˙2 ) = v1 & v2 , . z}|{ d(v˙1 ⊗ v2 ⊗ v3 ) = v1 v2 ⊗v3 − v˙1 ⊗ v2 v3 , . . z }| { z}|{ d(v1 ⊗ v˙2 ⊗ v3 ) = v1 & v2 ⊗v3 − v1 ⊗ v2 v3 , . z }| { d(v1 ⊗ v2 ⊗ v˙3 ) = v1 v2 ⊗ v˙3 − v1 ⊗ v2 & v3 .

So:  2  d (v˙1 ⊗ v2 ⊗ v3 ) = (v1 v2 )v3 − v1 (v2 v3 ), d2 (v1 ⊗ v˙2 ⊗ v3 ) = (v1 & v2 )v3 − v1 & (v2 v3 ),  2 d (v1 ⊗ v2 ⊗ v˙3 ) = (v1 v2 ) & v3 − v1 & (v2 & v3 ). So the nullity of d2 on T& (A)(3) is equivalent to the three relations defining P& -algebras (this is a general fact [5]). In particular: H0& (A) =

2.4

A . A.A + A & A

Homology of free P& -algebras

The aim of this paragraph is to prove the following result: Theorem 6 let N ≥ 1 and let A be the free P& -algebra generated by D elements. Then is D-dimensional; if n ≥ 1, Hn& (A) = (0).

H0& (A)

Proof. Preliminaries. We put, for all k, n ∈ N∗ :           

Cn = T& (A)(n), Cnk = |A ⊗ . . . ⊗ {z A˙ ⊗ . . . ⊗ A} ⊆ Cn if k ≤ n, A in position k L ≤k i Cn = i≤k,n Cn ⊆ Cn . 7

For all k ∈ N∗ , C∗≤k is a subcomplex of C∗ . In particular, C∗≤1 is isomorphic to the complex defined by Cn0 = A⊗n , with a differential defined by:  A⊗n −→ A⊗(n−1)   n−1 X d0 :  v ⊗ . . . ⊗ v −→ (−1)i−1 v1 ⊗ . . . ⊗ vi−1 ⊗ vi vi+1 ⊗ vi+2 ⊗ . . . ⊗ vn . 1 n  i=1

The homology of C∗0 is then the shifted Hochschild homology of A. AsA is afree (non unitary) associative algebra, this homology is concentrated in degree 1. So, Ker d|C ≤1 ⊆ Im(d) if n ≥ 2. n   First step. Let us fix n ≥ 2 and let us show that Ker d|C ≤k ⊆ Im(d) for all 1 ≤ k ≤ n − 1 n by induction on k. For k = 1, this is already done. Let us assume that 2 ≤ k < n and k     X Ker d|C ≤k−1 ⊆ Im(d). Let x = xi ∈ Ker d|C ≤k , with xi ∈ Cni . If xk = 0, then n n i=1   x ∈ Ker d|C ≤k−1 by the induction hypothesis. Otherwise, we put: n

xk =

X

v1 ⊗ . . . ⊗ v˙k ⊗ . . . ⊗ vn .

k . we obtain: We project d(x) over Cn−1

0 =

k−1 X

πk (d(xi )) +

i=1

k−2 XX

(−1)i−1 πk (v1 ⊗ . . . ⊗ vi−1 ⊗ vi vi+1 ⊗ vi+2 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vn )

i=1

+

X

+

X

.

k−2

z }| { πk (v1 ⊗ . . . ⊗ vk−2 ⊗ vk−1 & vk ⊗vk+1 ⊗ . . . ⊗ vn )

k−1

z }| { πk (v1 ⊗ . . . ⊗ vk−1 ⊗ vk vk+1 ⊗vk+2 ⊗ . . . ⊗ vn )

(−1)

.

+

(−1)

X n−1 X

(−1)i−1 πk (v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vi−1 ⊗ vi vi+1 ⊗ vi+2 ⊗ . . . ⊗ vn )

i=k+1 .

= 0+0+0+ +

X n−1 X

X

z }| { (−1)k−1 v1 ⊗ . . . ⊗ ⊗vk−1 ⊗ vk vk+1 ⊗vk+2 ⊗ . . . ⊗ vn

(−1)i−1 v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vi−1 ⊗ vi vi+1 ⊗ vi+2 ⊗ . . . ⊗ vn

i=k+1 k−1

= (−1)

X

v1 ⊗ . . . ⊗ vk−1 ⊗ d0 (vk ⊗ . . . ⊗ vn ).

Hence, we can suppose that d0 (vk ⊗ . .P . ⊗ vn ) = 0. As n − k + 1 ≥ 2 and the complex C∗0 is exact in degree n − k + 1 ≥ 2, there exists wk ⊗ . . . ⊗ wn+1 ∈ A⊗(n−k+2) , such that: X  d0 wk ⊗ . . . ⊗ wn+1 = vk ⊗ . . . ⊗ vn . P P We put w = v1 ⊗. . .⊗vk−1 ⊗( w˙k ⊗ .  . . ⊗ wn+1). Then d(w) = xk +Cnk−1 , so x−d(w) ∈ Cnk−1 . As Im(d) ⊆ Ker(d), x − d(w) ∈ Ker d|C ≤k−1 ⊆ Im(d) by the induction hypothesis. So, n x ∈ Im(d).     Second step. Let us show that Ker d|C ≤n ⊆ Im(d) if n ≥ 3. Let x ∈ Ker d|C ≤n . As n n n X before, we put x = xi , with xi ∈ Cni and: i=1

xn =

X

v1i ⊗ . . . ⊗ v˙ki ⊗ . . . ⊗ vni .

i

8

We can assume that the vji ’s are homogeneous. Let us fix an integer N , greater than the degree of xn and an integer M , smaller than max{weight(vni )}. Let us show by decreasing induction the  i  following property: For allx ∈ Ker d|C ≤n of weight ≤ N and such that max{weight(vni )} ≥ M , n

i

then x ∈ Im(d). If M > N , such an x is zero and the result is trivial. Let us assume the property at rank M + 1 and let us prove it at rank M . Let AM be the homogeneous component (for the weight of forests) of degree M of A. We project d(x) over A ⊗ . . . ⊗ A˙M . Then: i d0 (v1i ⊗ . . . ⊗ vn−1 ) ⊗ v˙ni .

X

0 = $M (d(x)) =

i )=M i, weight(vn

i Hence, we can suppose that, for all i such that weight(vni ) = M , d0 (v1i ⊗ . . . ⊗ vn−1 ) = 0. As X i,j i,j ⊗n 0 n ≥ 3 and C∗ is exact at n − 1 ≥ 2, there exists w1 ⊗ . . . ⊗ wn ∈ A such that: j

  X i,j i d0  w1 ⊗ . . . ⊗ wni,j  = v1i ⊗ . . . ⊗ vn−1 . j

As d0 is homogeneous for the weight, the weight of this element than  can be supposed smallest  X X i,j i  the weight of v1i ⊗ . . . ⊗ vn−1 . We then put w = w1 ⊗ . . . ⊗ wni,j  ⊗ v˙ni . So j

i )=M i, poids(vn





x − d(w) is in x ∈ Ker d|C ≤n , with weight ≤ N , and satisfies the property on the vni ’s for n M + 1. By induction hypothesis, x − d(w) ∈ Im(d), so x ∈ Im(d).    Hence, if n ≥ 3, Ker d|C ≤n ⊆ Im(d). As Cn≤n = Cn , for all n ≥ 3, d(Cn+1 ) ⊆ Ker d|Cn ⊆ n

d(Cn+1 ). Consequently, if n ≥ 2, Hn& (A) = (0). Third step. We now compute H1& (A). We take an element x ∈ C2 and show that it belongs to Im(d). This x can be written under the form: X

x=

X

aF,G F ⊗ G˙ −

F,G∈FD −{1}

bF,G F˙ ⊗ G.

F,G∈FD −{1}

So: X

d(x) =

aF,G F & G −

F,G∈FD −{1}

X

bF,G F G.

F,G∈F−{1}

Hence, the following assertions are equivalent: 1. d(x) = 0. 2. For all H ∈ FD − {1},

X F &G=H

aF,G =

X

bF,G .

F G=H

0 0 First case. For all F, G ∈ FD − {1}, aF,G = 0, that is to say x ∈ A˙ ⊗ A. So d(x) X= d (x ). As C∗0 is exact in degree 2, there exists v1 ⊗ v2 ⊗ v3 ∈ A⊗3 such that d0 (v1 ⊗ v2 ⊗ v3 ) = bF,G F ⊗ G. F,G

Consequently, d(v˙1 ⊗ v2 ⊗ v3 ) =

X

bF,G F˙ ⊗ G = x.

F,G

Second case. x = F1 ⊗ F˙2 − G˙ 1 ⊗ G2 , F1 , F2 , G1 , G2 ∈ FD , such that F1 & F2 = G1 G2 = H. We put H = t1 . . . tn and t1 = Bd (s1 . . . sm ), t1 , . . . , tn , s1 , . . . , sm ∈ TD . There exists 9

i ∈ {1, . . . , n − 1} such that G1 = t1 . . . ti and G2 = ti+1 . . . tn ; there exists j ∈ {1, . . . , m − 1} such that F1 = s1 . . . sj and F2 = Bd (sj+1 . . . sm )t2 . . . tn . Then: .

z }| { d(s1 . . . sj ⊗ Bd (sj+1 . . . sm )t2 . . . ti ⊗ti+1 . . . tn ) . }| { z = (s1 . . . sj ) & Bd (sj+1 . . . sm )t2 . . . ti ⊗ti+1 . . . tn . z }| { −s1 . . . sj ⊗ Bd (sj+1 . . . sm )t2 . . . ti ti+1 . . . tn = G˙ 1 ⊗ G2 − F1 ⊗ F˙2 . So, x ∈ Im(d). Third case. We suppose now the following condition: (aF,G 6= 0) =⇒ (G ∈ / TD ). So, x can be written: .

z}|{ X aF,tG F ⊗ tG − bF,G F˙ ⊗ G.

X

x=

F,G∈FD , t∈TD . .

F,G∈FD

z}|{ z }| { By the second case, F ⊗ tG − F & t ⊗G ∈ Im(d) ⊆ Ker(d). So the following element belongs to Ker(d): .

.

z}|{ z }| { aF,tG (F ⊗ tG − F & t ⊗G)

X

x−

F,G∈FD , t∈TD .

X

= −

bF,G F˙ ⊗ G +

F,G∈FD

z }| { aF,tG F & t ⊗G.

X F,G∈FD , t∈TD

By the first case, this element belongs to Im(d), so x ∈ Im(d). Fourth case. We suppose now the following condition: (aF,G 6= 0) =⇒ (G ∈ / TD ou G = q d , d ∈ D). Let H = Bd+ (t1 . . . tn ) ∈ TD , different from a single root. Then: 0=

X

X

aF,G −

F &G=H

bF,G =

F G=H

Consequently, for all F ∈

FD ,

n X

at1 ...ti ,Bd (ti+1 ...tn ) − 0 = at1 ...tn , q d + 0 = aF, q d .

i=1

d ∈ D, aF, q d = 0. By the third case, x ∈ Im(d).

General case. The following element belongs to Ker(d): X x0 = x + aF,Bd (G) d(F ⊗ G ⊗ q˙d ) F,G∈FD , d∈D .

X

= x+

F,G∈FD ,

aF,Bd (G) F G ⊗ q˙d −

= F ∈FD ,



F,G∈FD

˙ aF,Bd (G) F ⊗ Bd (G)

F,G∈FD , d∈D

X

aF,G F ⊗ G˙ +

G∈FD −TD

X

X

aF,Bd (G) F G ⊗ q˙d −

F,G∈FD , d∈D

X

z }| { aF,Bd (G) F ⊗ G & q d

F,G∈FD , d∈D

d∈D

X

= x+

X

bF,G F˙ ⊗ G +

F ∈FD ,

X F,G∈FD ,

aF,G F ⊗ q˙d

d∈D

aF,Bd (G) F G ⊗ q˙d . d∈D

10

So x0 satisfies the condition of the fourth case, so x0 ∈ Im(d). Hence, x ∈ Im(d). This proves finally that Ker(d|C2 ) = d(C3 ), so H1& (A) = (0) It remains to compute H0& (A). This is equal to A/(A.A + A & A), so a basis of H0& (A) is given by the trees of weight 1, so dim(H0& (A)) = D. 2 As an immediate corollary: Corollary 7 The operad P& is Koszul.

3

The operad P% is Koszul

3.1

Koszul dual of P%

We denote by P!% the Koszul dual of P% . Theorem 8 The operad P!% is generated by m and %∈ P!% (2), with the relations:  % ◦(%, I)      m ◦ (m, I) m ◦ (%, I)   % ◦(m, I)    m ◦ (I, %)

% ◦(I, %), m ◦ (I, m), % ◦(I, m), 0, 0.

= = = = =

2

Proof. Similar as the proof of theorem 2. Remarks. 1. So P!% is a quotient of P% .

˜ ! , generated by m and %, 2. The operad P!% is the symmetrization of the non-Σ-operad P % with relations:  % ◦(%, I) = % ◦(I, %),      m ◦ (m, I) = m ◦ (I, m), m ◦ (%, I) = % ◦(I, m),   % ◦(m, I) = 0,    m ◦ (I, %) = 0. 3. Graphically, the relations of P!% can be written in the following way:

@ % @ %

=

@% @%

@ m @ m

,

@ m @ %

= 0, 11

=

@m @m

@ @m

@ % @ m

,

%

= 0.

=

@m @%

,

3.2

Free P!% -algebras

Let V be finite-dimensional vector space. We put:  n M    V ⊗n for all n ≥ 1,   T% (V )(n) = k=1

    

T% (V ) =

∞ M

T% (V )(n).

n=1

In order to distinguish the different copies of V ⊗n , we put:  T (V )(n) =



n M

  . A % ⊗ . . . % ⊗ A % ⊗ A ⊗ A ⊗ . . . ⊗ A | {z } k=1 (k − 1) signs % ⊗

The elements of A % ⊗ ... % ⊗ A ⊗ . . . ⊗ A will be denoted by v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vn . We define m and % over T% (V ) in the following way: for v = v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vm and w = w1 % ⊗ ... % ⊗ wl ⊗ . . . ⊗ wn ,  0 if l 6= 1, vw = v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vm ⊗ w1 ⊗ . . . ⊗ wn if l = 1;  0 if k 6= m − 1, v%w = v1 % ⊗ ... % ⊗ vm % ⊗ w1 % ⊗ ... % ⊗ wl ⊗ . . . ⊗ wn if k = 1. As for P& , we can prove the following result: Theorem 9 Let n ≥ 1. 1. dim(P!% (n)) = nn!. 2. P!% (n) is freely generated, as a Sn -module, by the following trees: σ(n − 1) σ(n) σ(n − 2) σ(i)

@ @. m

m

..

σ(i − 1) σ(2)

@ m @. %

..

σ(1)

@% @%

,

where 1 ≤ i ≤ n. 3. T% (V ) is the free P!% -algebra generated by V .

3.3

Homology of a P% -algebra

Let us now describe the cofree P% -algebra cogenerated by V . By duality, it is equal to T% (V ) as a vector space, with coproducts given in the following way: for v = v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vm , ∆(v) =

m−1 X

(v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vi ) ⊗ (vi+1 ⊗ . . . ⊗ vm ),

i=k

∆% (v) =

k−1 X

(v1 % ⊗ ... % ⊗ vi ) ⊗ (vi+1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vm ).

i=1

12

Let A be a P% -algebra. The homology complex of A is given by the shifted cofree coalgebra T% (V )[−1], with differential d : T% (V )(n) −→ T% (V )(n − 1), uniquely determined by the following conditions: 1. for all a, b ∈ A, d(a ⊗ b) = ab. 2. for all a, b ∈ A, d(a % ⊗ b) = a % b. 3. Let θ : T% (A) −→ T% (A) be the following application:  θ:

T% (A) −→ T% (A) x −→ (−1)degree(x) x for all homogeneous x.

Then d is a θ-coderivation: for all x ∈ T% (A), ∆(d(x)) = (d ⊗ Id + θ ⊗ Id) ◦ ∆(x), ∆% (d(x)) = (d ⊗ Id + θ ⊗ Id) ◦ ∆% (x). So, d is the application which sends the element v1 ⊗ . . . ⊗ v˙ k ⊗ . . . ⊗ vm to: d(v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vn ) =

k−1 X

(−1)i−1 v1 % ⊗ ... % ⊗ vi−1 % ⊗ vi % vi+1 % ⊗ vi+2 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vn

i=1 n−1 X

+

(−1)i−1 v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vi−1 ⊗ vi vi+1 ⊗ vi+2 ⊗ . . . ⊗ vn .

i=k

This homology will be denoted by H∗% (A). More clearly, for all n ∈ N:   Ker d|T% (A)(n+1)  . Hn% (A) = Im d|T% (A)(n+2) Examples. Let v1 , v2 , v3 ∈ A.               

d(v1 ) d(v1 ⊗ v2 ) d(v1 % ⊗ v2 ) d(v1 ⊗ v2 ⊗ v3 ) d(v1 % ⊗ v2 ⊗ v3 ) d(v1 % ⊗ v2 % ⊗ v3 )

= = = = = =

0, v1 v2 , v1 % v2 , v1 v2 ⊗ v3 − v1 ⊗ v2 v3 , v1 % v2 ⊗ v3 − v1 % ⊗ v2 v3 , v1 % v2 % ⊗ v3 − v1 % ⊗ v2 % v3 .

So:  2  d (v1 ⊗ v2 ⊗ v3 ) = (v1 v2 )v3 − v1 (v2 v3 ), d2 (v1 % ⊗ v2 ⊗ v3 ) = (v1 % v2 )v3 − v1 % (v2 v3 ),  2 d (v1 % ⊗ v2 % ⊗ v3 ) = (v1 % v2 ) % v3 − v1 % (v2 % v3 ). So the nullity of d2 on T% (A)(3) is equivalent to the three relations defining P% -algebras, as for P& . In particular: A . H0% (A) = A.A + A % A 13

3.4

Homology of free P% -algebras

The aim of this paragraph is to prove the following result: Theorem 10 let N ≥ 1 and let A be the free P% -algebra generated by D elements. Then is D-dimensional; if n ≥ 1, Hn% (A) = (0).

H0% (A)

Proof. Preliminaries. We put, for k, n ∈ N∗ :  0   C n = T% (A)(n),     C 0k = A % ⊗ ... % ⊗ A ⊗ . . . ⊗ A ⊆ C 0 n if k ≤ n, n {z } |  k − 1 signs % ⊗     i  C 0 ≤k = L 0 0 C ⊆C . n

n

n

i≤k,n

0 0 ≤1 For all k ∈ N∗ , C 0 ≤k ∗ is a subcomplex of C n . In particular, C ∗ is isomorphic to the complex defined by C 0 n = A⊗n , with differential given by:  A⊗n −→ A⊗(n−1)   n−1 X d0 :  (−1)i−1 a1 ⊗ . . . ⊗ ai−1 ⊗ ai ai+1 ⊗ ai+2 ⊗ . . . ⊗ an .  a1 ⊗ . . . ⊗ an −→ i=1

Hence, the homology of C 0 ∗ is the (shifted) Hochschild homology of A. As A is a free (non unitary) associative algebra, this homology is concentrated in degree 1. So:   (1) Ker d|C 0 ≤1 ⊆ Im(d) if n ≥ 2. n

⊗ ... % ⊗ A, with differential given Moreover, C∗0 admits a subcomplex defined by C∗00 (n) = A % by: C∗00 (n) −→ C∗00 (n − 1) n−1 X d: v % ⊗ . . . % ⊗ v −→ (−1)i−1 v1 % ⊗ ... % ⊗ vi−1 ⊗ vi % vi+1 % ⊗ vi+2 % ⊗ ... % ⊗ vn .  1 n    

i=1

Hence, the homology of this subcomplex is the shifted Hochschild homology of the associative algebra (A, %). Lemma 11 Every forest F ∈ FD − {1} can be uniquely written as F1 % . . . % Fn , where the Fi ’s are elements of FD of the form Fi = q di Gi . Proof. Existence. By induction on the weight of F . If weight(F ) = 1, F = q d and the result is obvious. If weight(F ) ≥ 2, we put F = Bd+ (H1 )H2 , with weight(H1 ) < weight(F ). If H1 = 1, the result is obvious. If H1 6= 1, we apply the induction hypothesis on H1 , so it can be written as H1 = F1 % . . . % Fn , with Fi = q di Gi . We put Fn+1 = q d H2 , so F = F1 % . . . % Fn+1 . Unicity. By induction on the weight of F . If weight(F ) = 1, then F = q d and this is obvious. If weight(F ) ≥ 2, we put F = Bd (H1 )H2 , with weight(H1 ) < weight(F ). If F = F1 % . . . % Fn , then Fn = q d H2 and F1 % . . . % Fn−1 = H1 . Hence, Fn is unique. We conclude with the induction hypothesis. 2 This lemma implies that (A, %) is freely generated by forests of the form q d G. So:  Ker d|Cn00 ⊆ Im(d) if n ≥ 2. 14

(2)

First step. Let us fix n ≥ 2. We show by induction on k the following property:   Ker d|C 0 ≤k ⊆ Im(d) for all 1 ≤ k ≤ n − 1. n





k X

For k = 1, this is (1). Let us suppose 2 ≤ k < n and Ker d|C 0 ≤k−1 ⊆ Im(d). Let x = xi ∈ n i=1     Ker d|C 0 ≤k , with xi ∈ C 0 in . If xk = 0, then x ∈ Ker d|C 0 ≤k−1 and the induction hypothesis n n holds. We then suppose xk 6= 0, and we put: X xk = v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vn . Let us project d(x) over C 0 kn−1 . We get: k−1 X

πk (d(xi )) +

i=1 n−1 X

+

k−1 X

(−1)i−1

X

πk (v1 % ⊗ ... % ⊗ vi % vi+1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vn )

i=1

(−1)i−1

X

πk (v1 % ⊗ ... % ⊗ vk ⊗ . . . ⊗ vi vi+1 ⊗ . . . ⊗ vn )

i=k

= 0 + 0 + (−1)k−1

X

v1 % ⊗ ... % ⊗ vk−1 % ⊗ d0 (vk ⊗ . . . ⊗ vn )

= 0. Hence, we can suppose d0 (vk ⊗ . . . ⊗ vn ) = 0. As n − k + 1 ≥ 2, by (1), there exists an element P wk ⊗ . . . ⊗ wn+1 ∈ A⊗(n−k+2) , such that: X  wk ⊗ . . . ⊗ wn+1 = vk ⊗ . . . ⊗ vn . d0 P P 0 k−1 We put w = v1 % ⊗ ... % ⊗ vk−1 % ⊗ ( wk ⊗ . .. ⊗ wn+1 ).  Then, d(w) = xk +C n , so x−d(w) ∈ ⊆ Im(d) by the induction hypothesis. C 0 k−1 n . As Im(d) ⊆ Ker(d), x − d(w) ∈ Ker d|C 0 ≤k−1 n Hence, x ∈ Im(d).     Second step. Let us show that, if n ≥ 3, Ker d|C 0 ≤n ⊆ Im(d). Take x ∈ Ker d|C ≤n , n n n X X written as x = xi , with xi ∈ Cni and xn = v1i % ⊗ ... % ⊗ vni . We can suppose the vji ’s i=1

i

homogeneous. Let us fix an integer N , greater than the degree of xn , and an integer M , smaller than min{weight(vni )}. Let us show by a decreasing induction on M the following property: for i   all x ∈ Ker d|C 0 ≤n , of weight ≤ N , and such that min{weight(vni )} ≥ M , then x ∈ Im(d). If n

i

M > N , such an x is zero, and the result is obvious. Suppose the result at rank M + 1 and let us show it at rank M . Let AM be the homogeneous (for the weight) component of degree M of A and let us project d(x) over A % ⊗ ... % ⊗ A% ⊗ AM . We get: X i 0 = $M (d(x)) = d(v1i % ⊗ ... % ⊗ vn−1 )% ⊗ vni . i )=M i, weight(vn

i Hence, we can suppose that, for all i such that weight(vni ) = M , d(v1i % ⊗ ... % ⊗ vn−1 ) = 0. As X i,j i,j 0 n ≥ 3, by (2), there exists w1 % ⊗ ... % ⊗ wn ∈ C n such that: j

  X i,j i d w1 % ⊗ ... % ⊗ wni,j  = v1i % ⊗ ... % ⊗ vn−1 . j

15

As d is homogeneous for the weight, we can suppose that the weight of this element is smaller i than the weight of v1i ⊗ . . . ⊗ vn−1 . We then put: X

X

i )=M i, weight(vn

j

w=

w1i,j % ⊗ ... % ⊗ wni,j % ⊗ vni .

  So x − d(w) ∈ Ker d|C 0 ≤n , with a weight ≤ N , and satisfies the property on the vni ’s for M + 1. n By the induction hypothesis, x − d(w) ∈ Im(d), so x ∈ Im(d). % 0 So, if n ≥ 2, as C 0 ≤n n = Cn , Hn (A) = (0).

Third step. We now compute H1% (A). We take an element x ∈ C20 and show that it belongs to Im(d). This element can be written as: X

x=

X

aF,G F % ⊗ G−

F,G∈FD −{1}

bF,G F ⊗ G.

F,G∈FD −{1}

so: d(x) =

X

X

aF,G F % G −

F,G∈FD −{1}

bF,G F G.

F,G∈FD −{1}

As a consequence, the following assertions are equivalent: 1. d(x) = 0. 2. for all H ∈ FD − {1},

X

aF,G =

F %G=H

X

bF,G .

F G=H

First case. For all F, G ∈ FD − {1}, aF,G = 0, that is to say x ∈ A ⊗ A: then the result comes directly from (1). Second case. x = F1 % ⊗ F2 − G1 ⊗ G2 , F1 , F2 , G1 , G2 ∈ FD , such that F1 % F2 = G1 G2 = H. We put H = t1 . . . tn et t1 = H1 % . . . % Hm , t1 , . . . , tn ∈ TD , the Hi ’s of the form q di Hi0 (lemma 11). Then there exists i ∈ {1, . . . , n − 1}, such that G1 = t1 . . . ti and G2 = ti+1 . . . tn ; there exists j ∈ {1, . . . , m − 1}, such that F1 = H1 % . . . % Hj and F2 = (Hj+1 % . . . % Hm )t2 . . . tn . So: d(H1 % . . . % Hj % ⊗ (Hj+1 % . . . % Hm )t2 . . . ti ⊗ ti+1 . . . tn ) = (H1 % . . . % Hj ) % (Hj+1 % . . . % Hm )t2 . . . ti ⊗ ti+1 . . . tn ) −H1 % . . . % Hj % ⊗ (Hj+1 % . . . % Hm )t2 . . . ti ti+1 . . . tn ) = G 1 ⊗ G 2 − F1 % ⊗ F2 . Hence, x ∈ Im(d). Third case. We suppose that the following condition holds: (aF,G 6= 0) =⇒ (G ∈ / TD ). So, x can be written as: x=

X F,G∈FD ,

aF,tG F % ⊗ tG −

t∈TD

X F,G∈FD

16

bF,G F ⊗ G.

By the second case, F % ⊗ tG − F % t ⊗ G ∈ Im(d) ⊆ Ker(d). So, the following element belongs to Ker(d): X

x−

F,G∈FD ,

X

= −

aF,tG (F % ⊗ tG − F % t ⊗ G)

t∈TD

X

bF,G F ⊗ G +

aF,tG F % t ⊗ G.

F,G∈FD , t∈TD

F,G∈FD

By the first case, this element belongs to Im(d), so x ∈ Im(d). Fourth case. We suppose that the following condition holds: (aF,G 6= 0) =⇒ (G ∈ / TD or G = q d , d ∈ D). Let H ∈ FD − {1}. Let us write Bd+ (H) = H1 % . . . % Hn , withHi = q di Hi0 for all i (lemma 11). As Bd+ (H) ∈ TD , Hn = q dn and H1 % . . . % Hn−1 = H. So: X

0 =

=

X

aF,G −

F %G=Bd (H) n X

bF,G

F G=Bd (H)

aH1 %...%Hi ,Hi+1 %...%Hn − 0

i=1

= aH1 %...%Hn−1 , q d + 0 = aH, q d . (We used the condition on x for the third equality). So, for all F ∈ FD , d ∈ D, we obtain aF, q d = 0. As a consequence, by the third case, x ∈ Im(d). General case. The following element belongs to Ker(d): X

x0 = x +

F,G∈FD ,

aF,Bd (G) d(F % ⊗ G% ⊗ qd) d∈D

X

= x+

F,G∈FD ,

F,G∈FD ,

F ∈FD ,



F,G∈FD ,

d∈D

X

X

aF,G F % ⊗ G+

G∈FD −TD

bF,G F ⊗ G +

F,G∈FD

F ∈FD ,

X F,G∈FD ,

aF,Bd (G) F % ⊗ G % qd d∈D

X

aF,Bd (G) F % G % ⊗ qd −

X

=

F,G∈FD ,

d∈D

X

= x+

X

aF,Bd (G) F % G % ⊗ qd −

aF,Bd (G) F % ⊗ Bd (G) d∈D

aF,G F % ⊗ qd

d∈D

aF,Bd (G) F G % ⊗ qd. d∈D

So, x0 satisfies the condition of the fourth cas, so x0 ∈ Im(d). Hence, x ∈ Im(d). It remains to compute H0% (A). This is equal to A/(A.A + A % A), so a basis of H0% (A) is given by the trees of weight 1, so dim(H0% (A)) = D. 2 As an immediate corollary: Corollary 12 The operad P% is Koszul. 17

References [1] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203–242, arXiv: hep-th/98 08042. [2] Loïc Foissy, The infinitesimal Hopf algebra and the operads of planar forests, arXiv:????.???? [3]

, The infinitesimal Hopf algebra and the poset of planar forests, arXiv: 0802.0442.

[4] Loïc Foissy, Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002), 193– 239. [5] Victor Ginzburg and Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272. [6] Ralf Holtkamp, Comparison of Hopf Algebras on Trees, Arch. Math. (Basel) 80 (2003), no. 4, 368–383. [7] Dirk Kreimer, On the Hopf algebra structure of pertubative quantum field theories, Adv. Theor. Math. Phys. 2 (1998), no. 2, 303–334, arXiv: q-alg/97 07029. [8]

, On Overlapping Divergences, Comm. Math. Phys. 204 (1999), no. 3, 669–689, arXiv: hep-th/98 10022.

[9]

, Combinatorics of (pertubative) Quantum Field Theory, Phys. Rep. 4–6 (2002), 387–424, arXiv: hep-th/00 10059.

[10] Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, no. 90, American Mathematical Society, Providence, RI, 2002. [11] Richard P. Stanley, Enumerative combinatorics. Vol. 1., Cambridge Studies in Advanced Mathematics, no. 49, Cambridge University Press, Cambridge, 1997. [12]

, Enumerative combinatorics. Vol. 2., Cambridge Studies in Advanced Mathematics, no. 62, Cambridge University Press, Cambridge, 1999.

18