Spin torque memristor

1.2 mA. 1.0 mA. Powe r den sity (nW/GHz/mA. 2. ) frequency (GHz). 0.8 mA. Precessionnal state. Spin Transfer Nano-Oscillators. 6. H > H c. STT. H. P. AP. E ...
3MB taille 6 téléchargements 375 vues
The Spin Torque Lego from spin torque nano-devices to advanced computing architectures J. Grollier et al., CNRS/Thales, France

NanoBrain

Spintronics : roadmap Giant Magneto-Resistance - 1988

Magnetic Nanostructures

reading the magnetization configuration

sensors

HDD read heads

Spin Transfer - 1996 J. Slonczewski JMMM 1996 L. Berger PRB 1996 julie.grollier.free.fr

ISAMMA 2013

writing the magnetization configuration 1

Spintronics : roadmap Giant Magneto-Resistance - 1988

Magnetic Nanostructures

reading the magnetization configuration

New devices - digital memories - nano-oscillators

- memristors J. Slonczewski JMMM 1996 L. Berger PRB 1996 julie.grollier.free.fr

ISAMMA 2013

sensors

HDD read heads

Spin Transfer - 1996 writing the magnetization configuration 1

Spintronics : roadmap Giant Magneto-Resistance - 1988

Magnetic Nanostructures

reading the magnetization configuration

New Computing Architectures ?

New devices - digital memories - nano-oscillators

- memristors

J. Slonczewski JMMM 1996 L. Berger PRB 1996 julie.grollier.free.fr

ISAMMA 2013

sensors

HDD read heads

Spin Transfer - 1996 writing the magnetization configuration 1

Principle of spin-torque devices I(t)

spin

m

torque

R magnetoresistance

magnetization dynamics

julie.grollier.free.fr

ISAMMA 2013

resistance variations

t, ns

2

Principle of spin-torque devices I(t)

m

spin torque

R magnetoresistance

magnetization dynamics

TIP

spin torque =

+

in-plane torque

resistance variations

t, ns

TOOP out-of-plane torque

2 torques  2 knobs to engineer the dynamic response julie.grollier.free.fr

ISAMMA 2013

2

In-plane versus out-of-plane torques

H

Mfixed Tdamping eq. position

Tfield

Mfree

julie.grollier.free.fr

ISAMMA 2013

3

In-plane versus out-of-plane torques in-plane torque  anti-damping H

Mfixed Tdamping eq. position

TIP P

Tfield TIP

E

AP

destabilizes magnetization

Mfree

julie.grollier.free.fr

ISAMMA 2013

3

In-plane versus out-of-plane torques TIP

in-plane torque  anti-damping H

Mfixed Tdamping eq. position

TOOP

E

P

AP

destabilizes magnetization

Tfield TIP

E

Mfree

HOOP

out-of-plane torque  field-like torque P

AP

modifies energy barrier julie.grollier.free.fr

ISAMMA 2013

3

In-plane versus out-of-plane torques TIP

in-plane torque  anti-damping

TIP

P

E

AP

destabilizes magnetization

Magnetization dynamics with the in-plane torque  3 scenarios depending on H

julie.grollier.free.fr

ISAMMA 2013

3

Binary Memory H < Hc

E STT P

AP

Hysteretic Switching 400

Resistance ()

350

AP

300 250

P

200 150

-2

-1

0

1

2

d.c. current (mA)

julie.grollier.free.fr

ISAMMA 2013

4

Binary Memory H < Hc

E

First observations :

STT

Katine et al. PRL 2000 Grollier et al. APL 2001

P

AP

Hysteretic Switching

Application : STT-MRAM

400

www.everspin.com

Resistance ()

350

AP FREE LAYER TUNNEL BARRIER FIXED LAYER

300 250

P

200 150

Isolation transistor OFF

-2

-1

0

www.nec.co.jp

1

2

target : D-RAM replacement

d.c. current (mA)

julie.grollier.free.fr

ISAMMA 2013

4

Stochastic device H  Hc

E STT

P

H

AP

Telegraphic Switching

Resistance ()

340

- 2.7 mA

320 300

340

- 2.9 mA

320 300 0

10

20

30

40

50

60

Time (µs)

julie.grollier.free.fr

ISAMMA 2013

5

Stochastic device H  Hc

E STT

First observations :

H

Fabian et al. PRL 2003 Urazhdin et al. PRL 2003

P

AP

Telegraphic Switching

Dwell times controlled by current spin torque =

Resistance ()

340

- 2.7 mA

320

handle to control probabilities

300

340

- 2.9 mA

320

Fukushima et al. SSDM 2010

300 0

10

20

30

40

Time (µs)

julie.grollier.free.fr

50

60

: spin dice

 nanoscale random number generators

ISAMMA 2013

5

Spin Transfer Nano-Oscillators H > Hc

E

H

STT P

AP

Precessionnal state 2

Power density (nW/GHz/mA )

7 6 5

1.2 mA 1.0 mA 0.8 mA

4 3 2 1 0 2

4

6

frequency (GHz)

julie.grollier.free.fr

ISAMMA 2013

6

Spin Transfer Nano-Oscillators H > Hc

E

H

STT P

AP

Precessionnal state 2

Power density (nW/GHz/mA )

7 6 5

1.2 mA 1.0 mA 0.8 mA

4 3 2 1 0 2

4

6

frequency (GHz)

julie.grollier.free.fr

ISAMMA 2013

6

Spin Transfer Nano-Oscillators H > Hc

E

H

First observations : Kiselev et al. Nature 2003 Rippard et al. PRL 2004

STT P

AP

Precessionnal state

small - work directly at the GHz tunable with I and H – radiations proof

7 2

Power density (nW/GHz/mA )

ST microwave devices

6 5

1.2 mA 1.0 mA 0.8 mA

4 3

Applications telecommunication, radars, read heads…

2 1 0 2

4

6

frequency (GHz)

julie.grollier.free.fr

ISAMMA 2013

6

Challenges for ST nano-oscillators

initial performances: power 100 pW, linewidth 10 MHz Requirements for applications: - Power > 1 µW - Linewidth < 1 KHz julie.grollier.free.fr

ISAMMA 2013

7

Challenges for ST nano-oscillators

initial performances: power 100 pW, linewidth 10 MHz Requirements for applications: - Power > 1 µW : P  DR2  high TMR MgO based MTJs   - Linewidth < 1 KHz julie.grollier.free.fr

ISAMMA 2013

7

Challenges for ST nano-oscillators

initial performances: power 100 pW, linewidth 10 MHz Requirements for applications: - Power > 1 µW : P  DR2  high TMR MgO based MTJs   - Linewidth < 1 KHz  julie.grollier.free.fr

ISAMMA 2013

7

Strategies to decrease LW • 1st source of LW : mode hopping (freq. spread)

T0

• 2d source of LW : phase/amplitude noise

Tiberkevich et al, PRB 2008

julie.grollier.free.fr

ISAMMA 2013

8

Strategies to decrease LW • 1st source of LW : mode hopping (freq. spread)

work with a dynamic mode well separated in energy from other modes

• 2d source of LW : phase/amplitude noise

Tiberkevich et al, PRB 2008

 Vortex gyrotropic mode

P = 0.6 µW LW = 590 kHz

A. Dussaux , JG et al., Nature Com. 2010 julie.grollier.free.fr

ISAMMA 2013

8

Strategies to decrease LW • 1st source of LW : mode hopping (freq. spread)

• 2d source of LW : phase/amplitude noise

work with a dynamic mode well separated in energy from other modes

rigidify the phase

 Vortex gyrotropic mode

 Synchronization

P = 0.6 µW LW = 590 kHz

A. Dussaux , JG et al., Nature Com. 2010 julie.grollier.free.fr

ISAMMA 2013

B. Georges , JG et al., PRL 2008 A. Dussaux, JG et al, APL 2011 8

Microwave oscillator I

Idc

stt

ST

t

m

MR

V=RI

V

t

stt

dc current

R

sustained precession

resistance osc.

t ac voltage

Voltage (µV)

40 20 0

-20 -40 0

20

40

Time (ns)

 strong advances towards applications julie.grollier.free.fr

ISAMMA 2013

9

Spin wave emitter I

Idc t

dc current

stt

ST

m

exch. inter.

stt local sustained precession

spin wave emission

Tsoi et al. PRL 1998 Demidov et al. Nat. Mat. 2010, Madami et al., Nat. Nano. 2011

Applications: Magnonics (computing with spin waves)

julie.grollier.free.fr

ISAMMA 2013

10

Microwave detector sttI>0

I

Idc

ST

m sttI 600 m/s 800

∆T = 0.8 ns v = 621 m/s

0.8 0.6

DW velocity (m/s)

normalized resistance

1.0

0.4 0.2

J=-7.8

0.0 0

1

2

MA/cm2 3

4

5

time (ns)

julie.grollier.free.fr

ISAMMA 2013

600

400

200

0

0

2

4

6

8 2

Jpulse (MA/cm )

10

12

J. Sampaio, JG et al. in preparation 19

Spin torque Lego

Magnetic Field

stochastic device

microwave detector

Time

memristor Resistance

d.c. voltage

Voltage Time

d.c. current

spin wave emitter

microwave oscillator

Resistance

binary memory Resistance

Resistance

detector (GMR,TMR)

Frequency

d.c. current

Assembling the bricks to compute julie.grollier.free.fr

ISAMMA 2013

20

Spintronic logic • MTJs logic

Ohno et al. IEDM 2010

• DW logic

Allwood et al. Science2005

• Nano-magnet logic

• All-Spin logic

Niemier et al. J. Phys. C. Matter 2011 Behin-Aein et al. Nature Nano. 2010

Boolean logic: compete with CMOS + exploit only two bricks: detector

READ julie.grollier.free.fr

binary memory

WRITE / STORE ISAMMA 2013

21

Spin torque Lego Architectures • innovative, non-boolean, hybrid CMOs/spintronic architectures • take full advantage of spin-torque functionalities

ST-Magnonics

julie.grollier.free.fr

ST-Neuromorphic architectures

ISAMMA 2013

22

Spin Torque Magnonics spin wave creation, manipulation and detection Kruglyak et al, Khitun et al., Serga et al. J.Phys.D: Appl. Phys. 2010

Spin wave emitter

ST-Magnonics gates

ST nanocontact

Spin wave manipulator

Spin wave detector

ST damping/anti-damping

dc detector microwave detector GMR/TMR spin diode

Slavin and Krivorotov, US 7,678,475 B2 julie.grollier.free.fr

ST soliton bursting

ISAMMA 2013

Bonetti and Akerman, Magnonics, 2013 23

Spin Torque Neuromorphic Architectures Synapse

ST memristor

ST stochastic synapse

Neuron

ST nanooscillators

julie.grollier.free.fr

ISAMMA 2013

ST stochastic neuron

24

Neuromorphic architectures : motivation Semiconductor industry hurdles :

- Excessive dissipation - Multicore scaling - Defects

- Massively parallel - Analog - Relatively uniform

- Fast - Low energy demand - Defect tolerant

Artificial Neural Networks algorithms:

- very performant (deep networks) - key applications : « Recognition, Mining and Synthesis » Temam, ISCA 2010 julie.grollier.free.fr

Chen, Temam et al. IISWC 2012 ISAMMA 2013

P. Dubey, Tech. Intel Magazine 2005 25

Neuromorphic architectures : basics Neuron : - processing unit - integrates information sent from other neurons through synapses - Spikes when threshold reached - « integrate and fire »

threshold

1

Synapse : - define how well the information is

w1 2 w2 w3 3

transmitted : synaptic weight - the weigths are adjustable (synaptic plasticity) - all synapes : network memory

xi neuron

julie.grollier.free.fr

ISAMMA 2013

xj

outputs

- interconnectivity (human brain 104 synapses / neuron) - scale of the network

inputs

Network performances :

w1 and w3 reinforced

synapse

wij

26

Spin torque Synapse CMOS implementation

memristor implementation

1) Store synaptic weights

SRAM banks

 10 µm

plasticity

R

2) Synaptic plasticity:

OFF

1 memristor = 1 nano-synapse

ON

V

1) Store synaptic weights : non-volatile 2) Synaptic plasticity: tunable Resistance

STDP

STDP Jo et al., Nanoletters 2010 d.c. current

Schemmel et al., IJCNN 2006 julie.grollier.free.fr

Spin torque memristor = ST synapse ISAMMA 2013

27

Spin torque Neurons Biological neuron: « integrate and fire » neuron threshold

CMOS implementation

relaxation oscillators

neuristor

ST neuron

Voltage

~ 100 µm

Time

Zamarreño-Ramos et al., Frontiers Neuroscience 2011

julie.grollier.free.fr

Pickett et al. Nature Mat. 2013

ISAMMA 2013

28

Spin torque Neurons Biological neuron: « integrate and fire » neuron threshold

CMOS implementation

relaxation oscillators

neuristor

relaxation oscillator

~ 100 µm

Zamarreño-Ramos et al., Frontiers Neuroscience 2011

julie.grollier.free.fr

ST neuron

Pickett et al. Nature Mat. 2013

ISAMMA 2013

Petit, Kim, JG et al. Nature Phys. 2012

29

ST oscillators can synchronize Neural synchronization between different parts of the brain is a key operation for information processing, in particular memory Buzsaki, « Rhythms of the brain » 2006

coupling : spin waves

Fell and Axmacher, Nature Reviews Neuroscience 2011

coupling : microwaves

exp. demonstrated : up to 4

RL Mancoff et al. Nature 2005 Kaka et al. Nature 2005 julie.grollier.free.fr

Grollier at al., PRB 2006 ISAMMA 2013

Ruotolo, Cros, JG et al., Nat. Nano 2009 30

ST Synchronization: associative memories  Code information in the phase of each oscillator

 brain-inspired associative memories

? pattern recognition - classification

 Applications: pattern recognition / classification Csaba et al., CNNA 2012 julie.grollier.free.fr

Roska et al., CNNA 2012 ISAMMA 2013

Macia et al., Nanotechnology 2011 31

Spin Torque Neural Networks  Several recent proposals of hybrid spintronic/CMOS neural networks Sharad et al., IEEE Trans Nano 2012, IEDM 2012, Arxiv 2012

inspired from all-spin logic inspired from ST-induced DW motion

Krysteczko et al., Adv. Mater. 2012 Synapse = resistive switching

julie.grollier.free.fr

Neuron = stochastic firing due to backhopping

ISAMMA 2013

32

Spin Torque Neural Networks  Several recent proposals of hybrid spintronic/CMOS neural networks Sharad et al., IEEE Trans Nano 2012, IEDM 2012, Arxiv 2012

inspired from all-spin logic inspired from ST-induced DW motion

Synapse = resistive switching

Neuron = stochastic firing due to backhopping

stochastic device Resistance

Krysteczko et al., Adv. Mater. 2012

Time

julie.grollier.free.fr

ISAMMA 2013

33

Advantages of stochasticity Noise : key element of neural computation near-threshold signaling/decision making

Compute with stochastic devices = Saving energy 1) Working below threshold • Switching becomes probabilistic • Ex : binary probabilistic synapses

Modha and Parkin, US2010/0220523 A1

2) Decrease non-volatility degree • Long term memory not required for all synapses • Reduce the energy barrier  drastically reduce critical currents

 Ultra-low power hybric CMOS/ Spintronic stochastic architectures julie.grollier.free.fr

ISAMMA 2013

34

Spin torque Lego - Spin torque versatility: engineering complex functions at the nanoscale f(x)

- Assembling ST bricks: promising for novel computing architectures Let’s build something different !

julie.grollier.free.fr

ISAMMA 2013

35

Spin torque Lego - Spin torque versatility: engineering complex functions at the nanoscale f(x)

- Assembling ST bricks: promising for novel computing architectures

julie.grollier.free.fr

ISAMMA 2013

35

Acknowledgements Nicolas Locatelli, Vincent Cros, Albert Fert, André Chanthbouala, Steven Lequeux, Joao Sampaio, Peter Metaxas, Sören Boyn, Eva Grilmadi, Paolo Bortolotti, Antoine Dussaux, Alexei Khvalkovskiy, Benoit Georges, Olivier Boulle, Sana Laribi, Cyrile Deranlot, Stéphanie Girod, Rie Matsumoto, Akio Fukushima, Hitoshi Kubota, Kay Yakushiji, Shinji Yuasa, Olivier Temam, Damien Querlioz, Pierre Bessière, Jacques Droulez

CNRS/Thales

College de France AIST

julie.grollier.free.fr

INRIA

ISAMMA 2013

IEF

36

Thank you

julie.grollier.free.fr

ISAMMA 2013