

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Specifying Integrated Refactorings with Distributed Graph ... - FoTS

public class Audio { protected MusicSource ms; private Environment env; public MusicDescription prefs; protected findMusicSource() { // lookup for a music ...

 Télécharger le PDF

 658KB taille
 5 téléchargements
 480 vues

 commentaire

 Report

Specifying Integrated Refactorings with Distributed Graph Transformations

P. Bottoni – Univ. di Roma “La Sapienza” F. Parisi Presicce - George Mason Univ. and Univ. di Roma “La Sapienza” G. Taentzer - Technische Univ. Berlin

Overview

• Motivations • Modeling code and specifications • Formal approach to modeling coordinated transformations • Recent advances and Future

2

Problem

3

l

Maintaining consistency of code and specification during refactoring

l

Functional equivalence guaranteed, but what about operational equivalence?

l

Existing approaches consider individual diagrams (e.g. class diagrams, state diagrams). Need for coordinating the transformations in different diagrams.

l

Avoid reverse engineering

Complex refactorings

4

public class Audio { protected MusicSource ms; private Environment env; public MusicDescription prefs; protected findMusicSource() { // lookup for a music source } protected void playMusic() { ms = findMusicSource(); Music toPlay = ms.provideMusic(this); // code to set the playing environment env toPlay.play(env); } } public class Music { void play(Environment env) { // code to play in the environment env } } public class MusicSource { public Music provideMusic(Audio requester) { MusicDescription desc = requester.prefs; // code to retrieve music according to desc } } public class Environment { // defining a playing environment }

Towards generic services public class Audio { protected MusicSource ms; private Environment env; private MusicDescription prefs; protected findMusicSource() { // same as before } protected void playMusic() { // same as before } public void setPrefs(MusicDescription desc) {prefs=desc;} public MusicDescription getPrefs() { return prefs; } } EncapsulateVariable

public class MusicSource { public Music provideMusic(Audio requester) { MusicDescription desc = requester.getPrefs(); // same code using desc as before } }

5

Abstracting clients AddClass public abstract class AbstractPlayer { protected ContentSource source; private Description prefs; private Environment env; PullUpVariable protected abstract ContentSource findSource(); protected abstract void setEnvironment(); AddMethod protected void playContent() { PullUpMethod source = findSource(); Content toPlay = source.provideContent(this); setEnvironment(); toPlay.play(env); } public Description getPrefs() { return prefs; } public void setPrefs(Description desc) { prefs = desc; } } RenameMethod

6

public class Audio extends AbstractPlayer { ContentSource findSource() { // code from findMusicSource } void setEnvironment() { // previous code used to set env } } ExtractCodeAsMethod

Abstracting services AddInterface public interface ContentSource { Content provideContent(AbstractPlayer requester); }

public class MusicSource implements ContentSource { Content provideContent(AbstractPlayer requester) { Description desc = requester.getPrefs(); // previous code from provideMusic exploiting desc; RenameMethod } } public interface Content { void play(Environment env); } public class Music implements Content { // same as before } public class Environment { // same as before }

7

Diagram transformations for EncapsulateVariable: Class diagram Audio + MusicDescription preferences # MusicSource findMusicSource () # void playMusic()

ms

MusicSource + Music provideMusic(Audio requester)

Music # play(Environment env)

- env Environment

EncapsulateVariable Audio - MusicDescription preferences # MusicSource findMusicSource () # void playMusic() + MusicDescription getPreferences () + void setPreferences(MusicDescription desc) - env Environment

8

ms

MusicSource + Music provideMusic(Audio requester)

Music # play(Environment env)

Diagram transformations Sequence diagram a:Audio a:Audio

ms:MusicSource ms:MusicSource

toPlay:Music Music toPlay:

playMusic() findMusicSource findMusicSource()()

ms ms provideMusic(a provideMusic(a))

getPreferences () toPlay desc

play(env)

toPlay play(env)

9

Diagram transformations Activity diagram Audio::provideMusic () a:Audio

Audio::provideMusic () ms:MusicSource

a:Audio

start retrieval

a.preferences

start retrieval

getPreferences () retrieve music

EncapsulateVariable

10

ms:MusicSource

retrieve music

Why is this relevant? :C

:C

:D

:C

:E

:E

mOrig

mOrig mOrig mNew

mNew

meth meth

DelegateMethodAcrossObjectBoundary

applied to mNew then mNew restructured to insert call to E

11

… without representing extraction

Effects of Refactorings on Diagrams

12

Refactoring

Affected Diagram

Creation/Deletion

EncapsulateVariable

Class, Sequence, Activity

-

Extract Code As Method

Class, Sequence, State

-

Push Up/Down Method

Class, Sequence, State

-

Add Class

Class

State

Remove Class

Class, Sequence

State

Rename Class

Class, Sequence

-

Remove Method

Class, Sequence, State

-

Add Parameter to Method

Class

-

Need for coordination

l l l

Code and diagrams are different views of a software system Modifications of the system are to be reflected in the views in a consistent way Characteristics of Refactoring: – –

13

changes in code affect several views no diagram changes without code changes

Approach

l

Code and diagrams are abstracted to graphs – –

l l l

14

For code, explicit flow graph For diagrams, UML meta model

Overlapping in common elements expressed by interface graphs Coordinated refactoring by (hierarchical) distributed graph transformation Complex refactorings by transformation units

Distributed typed graph

l

Distributed graph Network graph

Local graphs

l

T(F)

15

Typed graphs

ŒF

œF

Distributed graph transformation l

L

K

r

R

m

16

l

DPO Approach

l

Rewriting occurs at two levels

G

m'

C

H

Type graph for network graphs

Class

CM

StateMachine

17

CS

CF

Sequence

MS

MF

SF Flowgraph (code)

Type graph: code representation Parameter * *

*

Operation

specification

1

feature *

* Method 1 1 local

CallAction actualArgument Argument value: Expression

*

1

definition

Line * access next num: int 1 * definition prev *

actualArgument update

18

UninterpretedAction script: Expression

owner 1 1 type 0..1 specification type Class 1 generalization type

Generalization

argument * * * Variable

*

Association

* Attribute visibility: VisibilityKind

Code transformation (extract_code_as_method) owner

: Line num = x

1: Line

prev next

prev next

prev

prev

next : Line num = y

next

feature owner

3: Line num = first 3: Line num = last

2: Method name = morig

access definition

5: Line

6: Class name = cname

type

type owner

2: Method name = morig 1: Line

3: Line num = first 3: Line num = last

definition : Line

prev next prev next

Variable : :Variable name = v 8:: Variable Variable 7: Class

Attribute condition: x,y < first or x,y > last

19

6: Class name = cname

feature

feature : Method name = mnew local param Parameter : :Parameter name = v instantiation 8:Argument 8:Argument

5: Line :Operation call : CallAction type argument 7: Class : Variable 8:Variable

Class diagram transformation (extract_code_as_method)

: Method name=mnew

: Method name=mnew

: Class

: Class

gen

gen

1: Class name = cname owner

2: Method name=morig

20

owner

: Method name=mnew

1: Class name = cname owner

2: Method name=morig

owner

: Method name=mnew

Transitive Closure of gen 1: Class

1: Class gen

name = cname specialization

name = cname insert_up_gen(string cname) specialization gen

2: Generalization

2: Generalization

generalization

generalization

3: Class

3: Class

1: Class

compute_gen()

gen

gen gen

2: Class

1: Class

specialization

gen

2: Class

3: Generalization

3: Generalization

21

4: Class

generalization

specialization

4: Class

generalization

Sequence diagram transformation 1: Message

2: CallAction

pre

1: Message

2: CallAction

3: Operation

3: Operation

4: Method name=morig

plus transfer of all calls originating from within the new code receiver 4: Method succ (completeE_c_a_m_Sequence) 5: ClassifierRole name=morig : Message receiver

receiver

sender

: CallAction

5: ClassifierRole base

6: Class name = cname

: Method name=mnew

: Operation 6: Class name = cname

22

base

State diagram transformation

1: State Name = sname target

referred

3: CallEvent

trigger

4: Operation name = morig

2: Transition target source 1: State

Name = sname

target

2: Transition trigger

: Transition

: Transition

3: CallEvent referred

4: Operation name = morig owner

23

5: Class name = cname

target trigger

: CallEvent

: State

source trigger

: Event name = „completed“

referred owner 5: Class : Operation name = mnew name = cname

owner

Transformation units for distributed graph transformation l l l l l l

24

Rule expressions used to define sequences of applications Parameters can be passed into rules Expression asLongAsPossible ... end Rules applied on each diagram of a given type Rules applied on each occurrence of an antecedent in a diagram Centralized control on distributed graphs

Sample transformation unit: ExtractCodeAsMethod Approach: DPO on distributed typed graphs Initial and terminal graph classes: all distributed graphs over the given distributed type graph ExtrCodeAsMthd(String cname, String morig, String mnew, int first, int last): asLongAsPossible insert_gen(cname) end; asLongAsPossible insert_down_gen(cname) end; asLongAsPossible compute_gen() end; if ecamAll(cname,morig,mnew,first,last) is applicable then asLongAsPossible e_c_a_m_All(cname,morig,mnew,first,last) end; asLongAsPossible completeE_c_a_m_Sequence(cname, morig, mnew) end; else null end; asLongAsPossible remove_gen() end

25

The Agtive paper ... • •

Description of software refactoring by distributed graph transformation Different kinds of control: • • • • •

• •

26

negative application conditions coordinating transformations over different diagrams specializations of rule schemes set nodes iteration of rule application

Scenario: user chooses refactoring, triggering a transformation unit No implementation available

... recent advances … Use of abstract syntax trees to represent code (JavaML) Simplification of distributed view InterfaceGraph

AST

UML

Construction of interface graph : java-class-file c1‘: class name = c

: java-class-file : superclass name = s

c1‘: class name = c

c2‘: class name = s

: class name = s

c1:Class name= c specialization

27

: superclass name = s

:Class name= s generalization :Generalization

c1:Class name= c specialization

c2:Class name= s generalization :Generalization

... under construction

l l

Complete set of refactorings Correctness of refactorings with respect to – – –

l l

28

Well-formedness Ad-hoc refactoring-specific properties Unwanted side-effects

Integration scheme in refactoring tools (Properties of transformation units, termination, confluence)

des documents recommandant

[image: alt]

Specifying Integrated Refactorings with Distributed Graph ... - FoTS

public class Audio { protected MusicSource ms; private Environment env; public MusicDescription prefs; protected findMusicSource() { // lookup for a music ...

[image: alt]

Specifying distributed object applications Using the ... - CiteSeerX

telecommunication management networking, is based on the RM-ODP viewpoints role, operations associated to the interface and the operations signature.

[image: alt]

Specifying distributed object applications Using the Reference Model

Using the Reference Model for Open Distributed Processing Validation rules : consists of a list of integrity constraints that make the profile self-consistent;.

[image: alt]

"TREATING HEADACHES WITH INTEGRATED EMDR"

EMDR France, a member EMDR Europe : It entitles you to 8 credits theoretical and practical therefore ... Dr. Marcus is an EMDRIA Approved Consultant. He.

[image: alt]

Tree Graph Views for a Distributed Pervasive Environment

PADAWAN Prototype. Conclusion. Data Integration Issues. Data Integration Issues. Source. Autonomous Sources queries more or less supported. Database.

[image: alt]

Reliability of task graph schedules with transient

Keywords Complexity results, algorithms, task graph ... A natural approach to cope with processor fail- ... 1: General schedule of a chain of two tasks (t1 and t2) ... led to four variations of the problem. possible execution with a general sche

[image: alt]

Reliability of task graph schedules with transient

reliability problem is #P'-Complete (hence at least as hard as NP-Complete problems), both for Reliability of task graph schedules. 7 vb va vc vd v1 v2 v3 v4 vb va vc vd e1 e3 e2 e4. Fig. all have a zero probability of success. the failure

[image: alt]

Interactive Random Graph Generation with ... - Evelyne Lutton

of algorithms and layouts, for example if one wants to evaluate graphs with encoding that requires the design of specific genetic operators to ensure efficient and maximal values, while the white circle indicates the desired target value.

[image: alt]

Secure Service Discovery with Distributed Registries - Eurecom

Abstractâ€”This paper discusses how to extend service discovery mechanisms to support a scalable querying and indexing system that addresses security ...

[image: alt]

TREATING HEADACHES WITH INTEGRATED EMDR Presented by

May 13, 2012 - Also Brief descriptions of medication alternatives for the treatment of headaches will be discussed e.g. biofeedback, relaxation training, CBT.

[image: alt]

Distributed version control system with BAZAAR

Distributed version control system with BAZAAR. V1.2b. 2012/03/16 . TridenT "Dev blog" http://tridentjob.blogspot.com/ ...

[image: alt]

Specifying Syntactic Structures

the relative pronoun the type r/(s/np), abbreviating n\n as r, i.e. the pronoun looks to its right ... junction particle 'and' be polymorphically typed as (X\X)/X. With the.

[image: alt]

teletext decoder with 4 integrated pages - Agentcobra

MICROPROCESSOR CONTROL VIA AN I. 2. C ... croprocessor controlling the STV5342 via a 2-wires serial bus. Output Fall Time VOH to VOl from 4.0 to 0.4V.

[image: alt]

Secure Service Discovery with Distributed Registries - Eurecom

[1] S. Trabelsi, J. C. Pazzaglia, and Y. Roudier, â€œEnabling secure discovery in a pervasive environmentâ€�, SPC 2006, 3rd International Conference on. Security in ...

[image: alt]

TREATING HEADACHES WITH INTEGRATED EMDR Presented by

May 1, 2011 - threshold theory, overview of Dr Marcus's Migraine Research, emotions, Yoga, Meditation, how to raise your headache threshold with EMDR ...

[image: alt]

Medical Image Intelligent Access Integrated with Electronic

with Electronic Medical Records System for Brain Degenerative Disease increasing and are scattered in various database systems, so you want to search ...

[image: alt]

Generic Model Refactorings

erences) may have different names. For example, the concept of attribute is named Property in the MOF and. UML metamodels whereas in the Java metamodel, ...

[image: alt]

SPECIFYING HUMAN CAPITAL

expected, over and above the usual wages of common labour, will replace to relevant choice when dealing with questions from a society's point of view. The Philippines For a history of the concept of human capital, see Kiker (1968)

[image: alt]

Spatial interaction analysis with graph based mathematical - Daniel

4Unicancer - Auvergne RhÃ´ne Alpes, Centre Jean Perrin - Service de Pathologie, France nique is adjustable to different application in digital pathol-.

[image: alt]

GRAPH Fonts

See â€œFont Listsâ€� on page 131 for a list of valid font names for The Institute is a private company devoted to the support and further development of its software ...

[image: alt]

Reconstruction and Clustering with Graph optimization and Priors on

Jul 3, 2017 - We note xi,j the binary label of edge presence: xi,j = {. 1 if ei,j âˆˆ Eâˆ—, ... We look for a discrete solution for x â‡” x âˆˆ {0,1}E. July 3th Page 81 ...

[image: alt]

GRAPH Colors

To specify colors in intuitive terms, use the predefined SAS color names, which form The Institute is a private company devoted to the support and further ...

[image: alt]

Distributed regression in sensor networks with a ... - Hichem Snoussi

tional kernel regression methods for functional learning such as support vector machines ... machines and the statistical learning theory [5]. ... In a conventional regression problem, one seeks a function that links the where Î±[1,...,m] denot

[image: alt]

Learning error-correcting graph matching with a ... - Romain Raveaux

For clarity, the rest of the definition is focused on a 2-class problem. available at https://sites.google.com/site/gperceptron along with a video demonstration.

×
Report Specifying Integrated Refactorings with Distributed Graph ... - FoTS

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

