Sol Gel Derived Materials and Biocompatible Structures: the ... - GERM

GERM NMR school – march 2008. C. Bonhomme, C. Gervais, C. Coelho, F. Pourpoint, G. Gasquères , F. Babonneau,. T. Azaïs, G. Laurent, B. Alonso and F.
3MB taille 1 téléchargements 164 vues
Sol Gel Derived Materials and Biocompatible Structures: the Solid State NMR Point of View !

C. Bonhomme, C. Gervais, C. Coelho, F. Pourpoint, G. Gasquères , F. Babonneau, T. Azaïs, G. Laurent, B. Alonso and F. Mauri Laboratoire de Chimie de la Matière Condensée de Paris Laboratoire de Minéralogie-Cristallographie Université P. et M. Curie – Paris 6, France

GERM NMR school – march 2008

NMR interactions a tensorial approach of nuclei by local probes: the NMR interactions (CSA, J, quadrupolar, dipolar) ZT

Bo

XT

XPAS (T)

13C

δ(

13C)

1J(29Si-13C)

YPAS (T)

αo

29Si)

29Si

ZPAS (T) Bo βo YT

δ(

X’(α αo)

29Si

O

D(29Si-1H)

anisotropy: anisotropy: highly informative shapes I = 5/2

1H

O

27Al

Q(27Al)

dipolar D

CSA D ∝ 1/r3

...quantum physics

High resolution in solid state NMR O

O

P

29Si

D

O

D(29Si-31P)

31P

OH HO

OH

φ

D and J !

P O

φ

O

OH Si

Si

Si

Si

Cross Polarization B0

recoupling under high resolution conditions !

rotor axis

*

δ

(29Si)

29Si

θm= 54.7°

O

2J(29Si-31P)

δ(

31P)

Bo

*

*

Hop !

31P

solid state J-INEPT,HMQC

Dynamic Angle Spinning (DAS) I > 1/2 or MQMQ-MAS I > 1/2

*

Cross Polarization experiments (under MAS) CP MAS {1H/X}

Bo

1H

Y

transfer

29Si

2D HETCOR CP MAS {X/Y} X

90° 31P



...

90° RD t1

ramp

CW

n

contact

I

rIS

29Si

tCP

t2

S

DIS ~ rIS-3

2D HETCOR CP MAS {1H/X/Y} 90° 1H

t1

31P

1H

CW

ramp

Bo ramp

CW

tCP

Y

29Si

X

tCP

t2

Methods: solid state NMR, first principles calculations, models ■ D and J-derived solid state NMR

■ ab initio calculations Pickard, Mauri, Phys. Rev. B (2001)

90° CW

ramp

1

H

PAW, GIPAW methods

t1

31

P

ramp

CW

tCP 29

CSA

Si tCP

t2

2D triple res. CP MAS

J

EFG

Bo

■ DFT models material 90° 29Si

90°

90°

180°

τ Φ1

C1

Φ12

Φ11

31P

C2

t1/2

Sol Gel chemistry

t1/2 τ Φ2

2D MAS-J-HMQC

t2

Chimie Douce...

Astala et al., Chem. Mater. 2005 Peroos et al., Biomaterials 2006

♦ CHEMICAL SHIFT δ

29Si

O Si

Si

SiO2

17O

O Ti in: Levitt, spin dynamics, 2002

P

TiO2

■ covalent grafting C. Gervais et al., Chem. Mater. 15 (2003) 4098. C. Bonhomme et al., MRS Proceedings (2007) E-paper.

■ oxide nanoparticles

Covalent grafting on silica nanoparticles

SSiO iO

22

cluster integrity

29Si

CP MAS NMR

solution NMR

local dynamics

reactivity

S. de Monredon (PhD) Coll. : A. Pottier (Rhodia)

model compounds

Covalent grafting on TiO2 nanoparticles a particular probe:

17O

I = 5/2

second-order quadrupolar broadening P=O O3

O2

17O

P-OH

P

O1 Ti-O-P

Ti-O-Ti Ti P O

ZrO2 (rotor)

O P OH OH

TiO2

Coll. : H. Mutin (Montpellier)

600

450

300

150 ppm

0

-150

Sol Gel materials: questions ? «playing» with the dipolar D and scalar J interactions... spatial interaction

H

sol gel oxide glasses

H-15N

hybrid materials

OH 29Si

mesoporous materials

chemical bond

Me Si-O-SiMe

SiO2

D

J

■ connectivities in hybrids ■ organic/inorganic interactions biogenic silica (diatoms)

■ ...

♦ DIPOLAR INTERACTION D

(EtO)3Si

rIS D ∝

molecular recognition H-bonding

hydrolysis

1

Si(OEt)3

condensation

rIS3 O 1.5 Si

SiO 1 .5 n

750!

CRMHT, Orléans

Bo

33 kHz !

hybrid material

■ 1H-1H dipolar interaction ■ ureidopyrimidinone models

M. Wong Chi Man et al., Angew. Chem. 43 (2004) 203. M. Wong Chi Man et al., New. J. Chem. 29 (2005) 653.

■ bio-inspired materials

1H

high resolution solid state NMR. A major problem... thymine/solid !

O

3 NH

CH3 N

Bo

1

O

H

a)

NH

thymine - T

CH

300 MHz/14 KHz

O

3 NH

thymine/solution

CH3

b)

N

1

O

H

750 MHz/33 KHz

thymine - T

CH

O

3 NH

NH c)

N

H

500 MHz/67 KHz G. Arrachart et al., J. Mater. Chem. 18 (2008) 392-399.

(ppm)

20

thymine - T

10

0

-10

1

O

Ureidopyrimidinone based systems

biomolecular assembly

XRD of precursors hydrolysis

O Me

N N

ureidopyrimidinone derivatives inorganic pillars

H-bonding

H O

Si(OEt)3

N H

N R H

Ureidopyrimidinones: 1H high resolution solid state NMR

O Me

Bo

400

N N H

15 KHz

N H O N

H

R

(EtO)3Si

C R-Si(OEt)3

D

H

O

H

?

N

H

N

N

B B

N

A H

N

750!

A, B, C, D

O

Me

33 KHz !

H N

H

N

H

O

Me

O

N R

(EtO)3Si

C

H

ppm

20

10

0

-10

Spatial connectivities: DQ 1H fast MAS spectroscopy excitation

reconversion

t1

1H

τR/2 τR/2

DHH ∝ 1/r3 t2

τR/2 τR/2

synchronization with MAS BAck to BAck

ω1 +ω2

2ω1

2ω2

n

ω1

1-2

1

2

1

2

selectivity 1H

dipolar «links» DQ dim. dim.

SQ dim. dim. δiso. iso.: very fast MAS, very high B0!

I=1/2



1H

2-2

1H

DQ

2Q hamiltonian !

1-1 2-1

r

I=1/2 n

ω2

1H

DQ !

1H

Application to ureidopyrimidinone precursors

O Me

N

H

N

O N N R

H

H

C R-Si(OEt)3

D

H

O

H

O

Me

H

N

N

B

N

A H

N

H

H N

N

Me

B

O

H

N R

(EtO)3Si

N

C

O

H

Application to ureidopyrimidinone derived materials: hybrid silica hydrolysis-condensation

1H

HA,HB,HC,HD

H+ 17.6 T MAS 33 kHz

C R-Si

D

A H

N

N

100

0

R

Si

N

B

O

200

H

N N

O O O

N O

Me

C=O

(ppm)

H

O

H 13C

O O O H N

H

N

H

O

Me

B C

H

Towards bio-inspired materials: adenine (A) and thymine (T) derivatives 1H

BABA NMR 750 MHz/33 KHz

O

3 NH

N

T-C11 9

O

T-C11

O

N

3

N

H

N O (CH ) SQ

N

N N DQ A-C11 N H H 6

♦ silicophosphates Si2 Si3

O5

O4

P O2

O3

Si1 Si Si

Si P P

Si2

Silicophosphates and Si-O-P systems Si(OR)4 H3PO4 ∆T Si-O-P

amorphous gels

■ biocompatible materials P-O-SiO5 6

O Si SiO2

P DSi-O-P 2J

Si-O-P

crystalline Si-O-P phases

Si

P P-O-P P-O-SiO3 4

Si O3Si-O-SiO3 4 4

Si P P-O-SiO5 6

■ grafting on nanoparticles

Calcium phosphates and substituted hydroxyapatite (HAp) 100 nm

Brushite, CaHPO4.2H2O

H6

MCPM, Ca(H2PO4)2.H2O β- and γ-Ca(PO3)2 Ca4P2O9 ...

H3 H4

P2 H1

P2

H2

P1

■ calcium phosphates

P2

H5

P2

CHAp

P1 Ca

nano-crystalline CHAp

bone Ca10-x/2[(PO4)6-x(CO3)x] [(OH)2-2y(CO3)y]

Ca10 (PO4)6 (OH)2 ■ hydroxyapatite (HAp)

carbonated hydroxyapatite x ≠ 0 Coll. : S. Hayakawa, A. Osaka, Okayama, Japan.

Crystalline silicophosphates: Si5O(PO4)6 and SiP2O7 polymorphs Si(OR)4 H3PO4

SiP2O7 tetragonal

31P Si2 Si3

O5

O4

∆T

P O2

Si2

O3

Si5O(PO4)6

SiP2O7 monoclinic 1

Si1

SiP2O7 cubic

SiP2O7 monoclinic 2

Si5P6 crystalline phases

-30

-40

-50

-60

-70

Si Si

Si

SiP2O7-monoclinic 1 SiP2O7-monoclinic 2

P

Si(HPO4)2.H2O ?...

Si

P

SiP2O7-tetragonal SiP2O7-cubic Si5O(PO4)6

6× ×

29Si

SiP2O7

4× × Si -100 -120 -140 -160 -180 -200 -220 ppm

ppm

♦ SCALAR INTERACTION J

J

Si(OCH2CH3)4 EtOH H3PO4 NiCl2.6H2O gel 135°C

chemical bonding

Si2 Si3

O5

O4

P O2

Si2

O3

Si

Si1

Si

Si P P

■ 2JP-O-Si couplings Coelho et al., J. Sol Gel Sc. Technol. 40 (2006) 181. Coelho et al., J. Magn. Reson. 179 (2006) 106. Coelho et al., Inorg. Chem. 46 (2007) 1379.

■ silicophosphates ■ biocompatible Si-O-P gels

MAS-J derived experiments MAS-J spectroscopy

homonuclear and heteronuclear correlations

C. Fyfe, H. Eckert 1990s

Si2 Si3

29Si/29Si

O5

O4

P O2

O3 2J P-O-Si

L. Emsley, S. Brown 1998

Si1

15N/15N

Si D. Massiot, J. P. Amoureux 2003

Si

Si P

27Al/31P

...

P

2J P-O-P

Si2

Heteronuclear J correlations:

31P/29Si

MAS-J-HMQC

Heteronuclear J correlations:

31P

→ 29Si MAS-J-INEPT

Insensitive Nuclei Enhanced by Polarization Transfer

90° 180° 90° 180° 31P

Si2 Si3

P O2

Si2

τ

τ

τ’ τ’

CW

180° 90° 180°

INEPT gain ~ |γS/γγI|

O5

O4

-1

29Si

t2

O3

Si1

P Si3

P

O1

P

Si3 P

O4

O4 O4

P

O5

O5 O2

Si2 O2

P

O5 O2

P

P

P

P

O3

O3 O3

P

P

Si2

Si-O-P (× ×3)

Si-O-P (× ×3)

Si3

Si-O’-P (× ×3)

-100 Coelho et al., Inorg. Chem. 46 (2007) 1379.

O3

O3

O3

P Si1

-200

Si1

(ppm)

Si-O-P (× ×6)

P P

Heteronuclear J correlations:

-2

800

Signal intensity

P-O-Si

300

200

400

300

IS3S’3

200

Si1 Si 1 2J P-O-Si ≈ 15Hz J ~ 15 Hz

400

(arb. unit)

600

(arb. unit)

400

Si2 Si2 J2J~≈ 14Hz 14 Hz 1 J 4 Hz 2J ~ 2 ≈ 4Hz

Signal intensity

Si3 Si3 J ~ 12 Hz 2J ≈ 12Hz

500

(arb. unit)

→ 29Si MAS-J-INEPT 500

600

Signal intensity

31P

100

200

IS6

100

0 0

IS3

0

IS3S’3

IS6

-100

-200

-100 0

10

20

30

0

40

10

20

30

-200

40

0

τ’ (ms)

τ’ (ms)

10

20

P Si3 P

O1

P

Si3 P

O4

O4 O4

O2

P P

Si-O-P (× ×3) Coelho et al., Inorg. Chem. 46 (2007) 1379. -100

P

Si2

O5

O2

O2

P

P

O3

O3 O3

P Si2

P Si3

40

P

O5

O5

30

τ’ (ms)

Si-O-P (× ×3)

-200

O3

O3

O3

P Si1

Si-O’-P (× ×3)

Si1

(ppm)

Si-O-P (× ×6)

P P

First principles calculations: the GIPAW approach Pickard, Mauri, Phys. Rev. B (2001)

M. Profeta, C. J. Pickard, F. Mauri et al.

GIPAW

T. Charpentier et al. R. Dupree et al.

DFT periodic systems

R. K. Harris et al.

all-electron hamiltonians

S. Ashbrook et al.

evaluation of

j(1)(r’)

inorganic and organic

I. Farnan et al.

using pseudopotentials

Bin(1)(r) = 1/c ∫ d3r’ j(1)(r’) ×

r-r’ |r-r’|3

derivatives...

J. W. Zwanziger et al. F. Boucher et al. ...

CSA P-O-P

E (r) = ∫ d3r’ n(r’) ×

r-r’ |r-r’|3

Si

29Si, 31P, 17O

P

EFG

! J !

IDRIS

P-O-SiO5 6

δ, Q

Gervais et al., Magn. Reson. Chem. 42 (2004) 445. Gervais et al., J. Phys. Chem. A 109 (2005) 6960. Gervais et al., J. Magn. Reson. 187 (2007) 181.

2J 2 1 P-O-Si, JP-O-P, JP-O

29Si, 31P

and

17O

CSA and Q parameters: Si5O(PO4)6 and SiP2O7 N.A.

31P



29Si

static CP

MAS experiment

Si5O(PO4)6

Exp.

P

SiO2

Si

Calc.

*

*

* : ZrO2 -120

-140

-160

-180

-200

-220

Exp.

-240

(ppm)

Si

O

-100

17O

Calc. O5

*H3PO4

O4

δiso

O3

∆CSA ηCSA

Bo

O2 200

150

100

50

0

-50

Exp.

Calc. Collab. L. Montagne, G. Tricot, 31P

-44.0 ppm

P-17O-Si

L. Delevoye, Lille, France 800 MHz spectrometer

O1 ppm

Si-17O-Si

Towards first principles calculations of J coupling constants P

the case study of Si5O(PO4)6 INEPT data: J ~ [4 Hz – 15 Hz] Coelho et al., Inorg. Chem. 46 (2007) 1379.

O2

P 2J

Si5O(PO4)6

(Hz)

Sites

exp

calc

Si(1)-O(3)-P

15 ± 2

-17,08

Si(2)-O(2)-P Si(2)-O(5)-P Si(3)-O(4)-P

12 ± 2

-1,17

61.49

1J P-O5

103.73

O2

O2

P P

800

-14,18

calc. (Hz) 1J P-O3

O5

2 inequivalent Si-O-P bonds

-16,22 14 & 4 ± 2

Si2

P

... by courtesy of S. Joyce, J. Yates, C. J. Pickard and F. Mauri (http://arxiv.org/abs/0708.3589) and J. Chem. Phys. 2007

Signal intensity (arb. unit)

Phase

P-O-Si

O5

O5

P

Si2 Si2 J ~ 14 Hz 2 14Hz J J~1 4≈ Hz

600

400

2J 2

≈ 4Hz

200

0

-200

0

10

20

30

τ’(ms)

40

♦ Calcium phosphates and HAp structures

H6

P2

H5

P2

H3 H4

P2 H1

P2

H2

P1

P1 Ca

Biocompatible calcium phosphates Brushite: the GIPAW approach (31P, 1H) Brushite, CaHPO4.2H2O

H3

MCPM, Ca(H2PO4)2.H2O

H2

β- and γ-Ca(PO3)2

H5

H2

static

H4

31P

H3

Ca4P2O9

H1

P

Ca

Ca

Ca10(PO4)6(OH)2 (HAp)

Exp

...

P

Ca

Calc 200

hydrated, dehydrated, 1H

and hydroxylated

100

0 (ppm)

-100

-200

fast MAS

structures

750 !

H2O P1

Exp

P1 P2

H3

Ca1

P3

Ca2

P4

Ca5

Ca2

H2 H4

H5

P-OH1

H

Calc

Ca3

P2

Ca4

P3

H Ca1

Ca2

15

Ca1

P1 Ca4

P1

12.5

10

7.5

5

(ppm)

2.5

0

-2.5

Collab. B. Alonso, D. Massiot, CRMHT, Orléans, France

Pourpoint et al., Appl. Magn. Reson. (2008), in the press.

More from 1H GIPAW data: H-bonding and CSA tensors 1H

isotropic chemical shifts

Brushite: CaHPO4.2H2O H3

H2

H2 δ22 δ33

H3

Ca

δ33

δ22

H5

δ22

δ33

H4 δ33

δ22

δ22 HH1 1

P

Ca

δ

δ3333 O-H...O direction

Ca

P

H-bonding in calcium phosphates and phosphonic acids

Gervais et al., J. Magn. Reson. 187 (2007) 181.

1H

CSA tensors and orientations

Pourpoint et al., Appl. Magn. Reson. (2008), in the press.

Substituted HAp structures the fundamental role of substitutions...

Ca10 (PO4)6 (OH)2 Mg2+, Zn2+, Na+,K+ …

SO42-, CO32- …

Ca10 (PO4)6 (OH)2

B 2-, CO332-

F-,

Cl-…

A

SiO44- or CO32-

Silicate substituted HAp T1ρ(1H) editing selective CP

-72.8

64 hours

90°

-96.0

OH 1

CP

H

29

H2O

TPPM decoupling

-111.7 29

Si 29 Si

a)

Si τ

t CP

90°90°

46 (2008) 342-346

1

1

H

PO4

c)

29

29

TPPM TPPM decoupling decoupling

CP CP

H

16 hours

-87.2

Si

-97.9

Si

t CP

t CP

Ca(2)

b) 90°90° OH

29Si

1

1

H

SiO4

Ca(1)

H 2O

CP

TPPM TPPM decoupling

decoupling

46 hours

Si

Si

τ

τ

selective CP!

CP

H2O 29

29

O1H

OH

H

t CP

t CP

c) 0

-20

-40

-60

-80

-100

(ppm)

Gasquères et al., Magn. Reson. Chem., 46 (2008), 342-346.

Si: 4.6 wt %

-120

-140

-160

Carbonated HAp Peak4

Peak3

N2 Peak2

■ pH = 10

■ 0.3 M

■ 0.3 M

Ca(NO3)2.4H2O

(NH4)2HPO4 ■ 0.15 M NaH 13C:

13C

31P

O3

99 %

4.8 wt %

Peak1 (A)

1 2 3 4

1H

→ 13C CP MAS dynamics

13C

1H

→ 13C → 31P triple resonance exp. (CP MAS)

distribution of carbonated sites...

DFT models, 2D NMR, ab initio calculations: a combined approach C2

C1 Astala et al., Chem. Mater. 2005 Peroos et al., Biomat. 2006

100 nm

■ DFT models

CHAp 13C 31P

■ 1D, 2D NMR experiments

δ (ppm)

δ (ppm)

δ (ppm)

P1

2.1

P7

1.9

C1

166.7

P2

0.1

P8

2.1

C2

165.7

P3

2.1

P9

1.8

H1

1.1

P4

3.3

P10

4.0

H2

1.1

P5

1.1

P11

3.3

H3

-0.7

P6

1.5

■ first principles calculations

distribution of A-, Band A/B sites...

Further reading Advanced solid state NMR techniques for the characterization of sol-gel-derived materials Bonhomme C., Coelho C., Baccile N., Gervais C., Azaïs T., Babonneau F. Acc. Chem. Res., Vol. 40, 2007, pp. 738-746

http://www.labos.upmc.fr/lcmcp/newsite/ Equipe "Matériaux Sol-Gel et RMN"