Right Harmonic Spectrum for the Back-Electromotive ... - eric semail

a n-phase PM Synchronous Machine …in order to use efficient algorithms developed for ... regular manufacturing ;. • no reluctance effect ;. • no damper winding ...
16MB taille 0 téléchargements 249 vues
Laboratory of Power Electronics of Lille, France

IEEE-IAS’2004 Seattle

Right Harmonic Spectrum for the Back-Electromotive Force of a n-phase PM Synchronous Machine …in order to use efficient algorithms developed for sinusoidal 3-phase machines 1

E. Semail, X. Kestelyn and A. Bouscayrol

Outline

IEEE-IAS’2004 Seattle

Introduction 1>Multi-machine Modeling of n-phase machine (equivalence to a set of fictitious 2-phase machines) 2>Deduced ideal harmonic spectrum 3>Experimental control for a 5-phase machine Conclusion 2

Introduction Generalization of 3-phase machine concepts: IEEE-IAS’2004 Seattle

Efficient vector control of wye coupled 3-phase machines with SINUSOIDAL back electromotive force

 i*a     ib*  =  *  ic 

3

  cos (θ r )  2  2π cos  θ r − 3  3  cos θ r + 2π 3  

− sin (θ r ) 2π    − sin θ r − 3   2π    − sin θ r + 3  

     

1   2   ids  1    iqs  2  1   0  2 

Equivalent to a 2-phase machine Concordia-Park transformation

(from « AC Motor Speed Control », T.A. Lipo, Karel Jezernik)

Introduction Generalization by using Multimachine Modeling. IEEE-IAS’2004 Seattle

n-phase PM machine equivalent to a set of 2-phase machines Each 2-phase machine with a sinusoidal back EMF ! Particular trapezoidal back EMF required 3-phase machine control used For the machine designer: trapezoidal EMF easier to achieve than sinusoidal EMF (Windings and spatial repartition of Permanent Magnet ) For the drive designer: 4

to achieve several times the same control of 3-phase machines

Introduction • Support: a 5-phase PM motor ν IEEE-IAS’2004 Seattle

i1

1

Back-electromotive force 50 40 30 20 10 0 -10

Vbus

-20 -30 -40 -50

8cm

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

D-Space1103 board

5

0.04

1>Multi-machine modeling of the machine

IEEE-IAS’2004 Seattle

Multi-Machine modeling of n-phase machines

im is 6

vs

Tm

im

vm em

Tem =Tm +Ts

MM Ts

is

es

SM





1>Multi-machine modeling of the machine

IEEE-IAS’2004 Seattle

Assumptions for the machine: • regular manufacturing ; • no reluctance effect ; • no damper winding effects ; • no saturation effect. 7

1>Multi-machine modeling of the machine Tools to get the results ? IEEE-IAS’2004 Seattle

* Vectorial formalism ; * Energetic Macroscopic Representation EMR; For a wye coupled 3-phase machine3-phase machine For a perfect electromechanical wye coupled

Actions on the basic electromechanical converter

im

Tm Puts MM No resistance and no inductance…only energy conversion Emphasis on em Ω energetic laws 8

im . e m = Tm Ω

Mechanical load

Reactions of the electromechanical converter

1>Multi-machine modeling of the machine

IEEE-IAS’2004 Seattle

Tools to get the results ? * Energetic Macroscopic Representation For a wye coupled 3-phase PM machine

Electrical source

im

vm im Voltage Source Inverter

em

Tm MM Ω

2  1 d 2 Lm im  2  + Rm im = vm .im − em .im dt

9

Mechanical load im . em = Tm Ω

Power = Dot product of vectors (action and reaction)

1>Multi-machine modeling of the machine EMR for a 5-phase motor:

IEEE-IAS’2004 Seattle

Equivalence with two 2-phase fictitious drives FOR a 5-phase motor

Two fictitious machines

vm im is

vs

Tm MM em Ts is SM Ω es im

Fictitious machines 10



Mechanical coupling is . es = Ts Ω

di Ls d iss + Rs is = vs − es Ls dt + Rs is = vs − es i . e = T Ω s s s

dt

Tem=Tm+Ts

Load

IEEE-IAS’2004 Seattle

1>Multi-machine modeling of the machine

For a 5-phase machine: Origin of equivalence with two 2-phase fictitious machines

11

1>Multi-machine modeling of the machine Equivalent set of two 2-phase fictitious drives Deduced from properties of stator inductance matrix: IEEE-IAS’2004 Seattle

SYMMETRY and CIRCULARITY Linear operator  L M1 M 2 M 2   M1 L M1 M 2 Ls =  φ =Λ i M 2 M1 L M 1  M M 2 M1 L 2  Flux Stator current • ONLY three eigenvalues Lm, Ls and L0 of Λ

( )

[ ]

M1   M2  M2   M1 

• three orthogonal eigenspaces Gm, Gs and G0 of Λ

12

For every vector:

y = y m + y s + y0

1>Multi-machine modeling of the machine Equivalent set of two 2-phase fictitious drives Three independent flows of energy? IEEE-IAS’2004 Seattle

φ = φm + φs + φ0 = Lm jm + Ls js + L0 j0

r  ddφi  m + e v =imR+i L+ vm = R   + em m  dt  Voltage vector

eigenvalues (II) Back electromotive vector

Current vector

Electrical stator power:

(I)

ps =

k =5

∑v

k ik

= v .i

k =1

Orthogonality 13

p s = v . i = vm .im + v s .is + v0 .i0

(III)

1>Multi-machine modeling of the machine Equivalent set of two 2-phase fictitious drives Three independent flows of energy IEEE-IAS’2004 Seattle

From (III)

i0 = 0

Wye coupling

2 1 d  Lm im  2 2   vm .im = + R im + em . im dt 2

14

1 d  Ls is  2 2   v s .i s = + R i s + es . i s dt

Tm Ω = em . im Tem=Tm+Ts

Ts Ω = es . is

IEEE-IAS’2004 Seattle

2>Deduced ideal harmonic spectrum

Deduced ideal harmonic spectrum of back electromotive force

15

2>Deduced ideal harmonic spectrum

IEEE-IAS’2004 Seattle

Harmonic analysis of fictitious machines Analysis of projections of

For a 5-phase

spatial periodic vector onto Gmand Gs

motor

• the Main Machine (MM) is associated with odd harmonics of order: 1, 9, 11, 19,…, 5 h ± 1 • the Secondary Machine (SM) is associated with odd harmonics of order: 3, 7, 13, 17,… 5 h ± 3 Other fictitious machines if n=7, 9, 11,... 16

(same families by Klingshirn: time harmonic analysis)

2>Deduced ideal harmonic spectrum Harmonic analysis of fictitious machines

IEEE-IAS’2004 Seattle

Fictitious machine First 2-phase machine

Sinusoidal EMF

Eigenspace G2

Families of odd harmonics 1, 5, 7,…, 3h ± 1

3-phase machineImply Torque Ripples

Generalization: only one harmonic per fictitious machine If each 2-phase fictitious machine has a sinusoidal back electromotive force … 17

no torque ripples, usual 3-phase algorithms

2>Deduced ideal harmonic spectrum Harmonic analysis of fictitious machines

IEEE-IAS’2004 Seattle

Fictitious machine Eigenspace Families of odd harmonics First 2-phase machine G2 1, 9, 11,…, 5 h ± 1 Second 2-phase machine G4 3, 7, 13…, 5h ± 2

Possible trapezoidal EMF

5-phase machine

Fictitious machine Eigenspace Families of odd harmonics First 2-phase machine G2 1, 13, 15,…, 7h ± 1 Second 2-phase machine G4 5, 9, 19…, 7h ± 2 Third 2-phase machine G6 3, 11, 17…, 7h ± 3

18

Possible trapezoidal EMF

7-phase machine

IEEE-IAS’2004 Seattle

Deduced Control of experimental set-up for a 5-phase PM motor Multimachine Control Structure

8cm

19

Deduced Control of experimental set-up Multimachine Control Structure Electrical coupling

IEEE-IAS’2004 Seattle

DC bus

vem

vbus

iem ibus

Mechanical Fictitious machines coupling

Fictitious VSI

ies m

ves

vm im is

vs

Tm MM em Ts is SM Ω es im

Load

Tem =Tm +Ts Ω

Ts_ref Tem_ref T 20

m_ref

??

Blue control blocks obtained by systematic inversion

Deduced Control of experimental set-up Multimachine Control Structure Electrical coupling

IEEE-IAS’2004 Seattle

DC bus

vem

vbus

iem ibus

Mechanical Fictitious machines coupling

Fictitious VSI

ies m

ves

vm im is

vs

Tm MM em Ts is SM Ω es im

Load

Tem =Tm +Ts Ω

T s_ref i s_ref im_ref 21

Tem_ref Tm_ref

??

Blue control blocks obtained by systematic inversion

Deduced Control of experimental set-up Multimachine Control Structure DC bus

IEEE-IAS’2004 Seattle

m

Electrical coupling

vem

vbus

iem ibus

Mechanical Fictitious machines coupling

Fictitious VSI

ies m

ves

vm im is

vs

Tm MM em Ts is SM Ω es im

Load

Tem =Tm +Ts Ω

Ts_ref vs_ref vm_ref 22

is_ref im_ref

Tem_ref Tm_ref

??

Blue control blocks obtained by systematic inversion

Deduced Control of experimental set-up Multimachine Control Structure Electrical coupling

IEEE-IAS’2004 Seattle

DC bus

vem

vbus

iem ibus

Mechanical Fictitious machines coupling

Fictitious VSI

ies m

ves

Tm MM em Ts is SM Ω es im

vm im

vs

is

Load

Tem =Tm +Ts Ω

Ts_ref vs_ref

is_ref

vm_ref im_ref 23

Tem_ref Tm_ref

??

Blue control blocks obtained by systematic inversion

Deduced Control of experimental set-up Multimachine Control Structure Electrical coupling

IEEE-IAS’2004 Seattle

DC bus

vem

vbus

iem ibus

SM branch 3rd harmonic MM branch 1st harmonic

24

Fictitious machines

Fictitious VSI

ies

ves

Tm MM em Ts is SM Ω es im

vm im

Mechanical coupling

vs

is

Load

Tem=Tm+Ts Ω

Ts_ref vs_ref

is_ref

vm_ref im_ref

Tem_ref Tm_ref

??

Vector control for 2-phase machine with sine-wave EMF

Deduced Control of experimental set-up Multimachine Control Structure 0

IEEE-IAS’2004 Seattle

Tem-ref

Ωréf



vsα-ref

PIs

sd-ref

R(3θr)v + -

sq-ref

vpβ-ref

+ -

0

− sin pθ r  i cos pθ r 

PIm

θ i

cos pθ r R( θ ) =   sin pθ r

R(θr) +

imq-ref

v1ref

vpα-ref

PIm

-

imd-ref

Repartition of reference torques

IP

+ -

+

PIs

sβ-ref

Trans forma tion

v 2ref

v3ref

PWM VSI

v 4ref

C v5ref

     2  C= 5 r     r 

1

 0   4π  sin 5  6π   sin 5  12π  sin  5  16π  sin 5 

1 0 1  2 (θr4)π  cos(θ1 r ) cos 2π sin−2πsincos 5 5 5 2  1 4π 4π 6π 2 π 2 π cosθ −2 cos 5 −sinsin5θ cos 5  −      1 3cos6π sin 6π rcos 123π  5 5 5  2 2π π  1 2π 8π 8π 16 cosθ + cos −sin cos θ sin +   r 5 5 3   2 3  5 

1  2 1 2 1  2 

Concordia ’s transformation 25

machine θr Resolver

R -1(θr) θr

R -1 (3θr)

Trans forma tion

If 3-phase machine

C-1

i1, i2, i3, i4

Deduced Control of experimental set-up Using the two fictitious machines 4 1

isq

IEEE-IAS’2004 Seattle

3

isq-ref

0 -1

2

-2

SM

SM

1

imd-ref

imd

-3

MM MM

-4

-5

0

imq-ref

imq

-6

-1

-2 0

isd-ref

isd 0.005

0.01

0.015

0.02

0.025

0.03

0.035

-7

0.04

0.045

0.05

-8 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Currents in the two fictitious 2-phase machines ‘MM’ and ‘SM’. 26

Ts-ref =10% Tm-ref

0.05

Deduced Control of experimental set-up Using the two fictitious machines 25

Ωmes

IEEE-IAS’2004 Seattle

20

15

Ωref

imq

10

5

0

-5

isq -10

-15

-20

-25 0

27

1

2

3

4

5

6

7

8

9

Experimental active currents in MM and SM

10

Deduced Control of experimental set-up Using the two fictitious machines 56

4.5

IEEE-IAS’2004 Seattle

Tem-ref

4 4

Fundamental of i1: i1-1 i1

3.5 2

=

Ts-ref

3

100%

2.50

Tm-ref

-2

+ Ts-ref

=

2

3rd harmonic of i1: i1-3

1.5

29%

0.5 -6 00 0

10% Tm-ref

SM

1 -4

0.005 50

0.01 100

0.015 150

0.02 200

7th harmonic 0.025 250

0.03 300

0.035 350

0.04 400

0.045 450

0.05 500

Experimental i1 current in phase n°1 at 1250 rpm 28

repartition between MM and SM: isq-ref = (29%) imq-ref.

Conclusion For n-phase (n odd number) PM machines, IEEE-IAS’2004 Seattle

generalization of 3-phase sinusoidal machine high performance controls

if back EMF of 5-phase machines has only 1st, 3rd. if back EMF of 7-phase machines has only 1st, 3rd, 5th. then Independent implementations of 3-phase machine algorithms. (1 time for 3-phase; 2 times for 5-phase ; 3 times for 7-phase) 29