

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Reflective Programming in Smalltalk - Inria

Page 2 www.rolemodelsoftware.com/moreAboutUs/publications/articles/scaffold.php). â€¢ Smalltalk the Language, Golberg Robson, Addison-Wesley. 79 ...

 Télécharger le PDF

 744KB taille
 1 téléchargements
 270 vues

 commentaire

 Report

Reflective Programming in Smalltalk Stéphane Ducasse http://stephane.ducasse.free.fr/ M. Denker and S. Ducasse - 2005

S.Ducasse

1

License: CC-Attribution-ShareAlike 2.0 http://creativecommons.org/licenses/by-sa/2.0/

S.Ducasse

2

LSE

Why... “As a programming language becomes higher and higher level, its implementation in terms of underlying machine involves more and more tradeoffs, on the part of the implementor, about what cases to optimize at the expense of what other cases.... the ability to cleanly integrate something outside of the language’s scope becomes more and more limited” [Kiczales’92a]

S.Ducasse

3

Definition “Reflection is the ability of a program to manipulate as data something representing the state of the program during its own execution. There are two aspects of such manipulation: introspection and intercession. Introspection is the ability for a program to observe and therefore reason about its own state. Intercessory is the ability for a program to modify its own execution state or alter its own interpretation or meaning. Both aspects require a mechanism for encoding execution state as data: providing such an encoding is called reification.” [Bobrow, Gabriel and White in Paepke‘92]

S.Ducasse

4

Consequences • • • •

S.Ducasse

A system having itself as application domain and that is causally connected with this domain can be qualified as a reflective system [Pattie Maes] A reflective system has an internal representation of itself. A reflective system is able to act on itself with the ensurance that its representation will be causally connected (up to date). A reflective system has some static capacity of selfrepresentation and dynamic self-modification in constant synchronization

5

Meta Programming in Prog. Language

• • • S.Ducasse

The meta-language and the language can be different: Scheme and an OO language The meta-language and the language can be same: Smalltalk, CLOS In such a case this is a metacircular architecture 6

S.Ducasse

7

The Essence of a Class • • •

S.Ducasse

A format (number of instance variables and types) A superclass A method dictionary

8

Behavior >> new In Squeak (3.8) Behavior>>new

| classInstance |

classInstance := self basicNew.

classInstance methodDictionary: classInstance emptyMethodDictionary.

classInstance superclass: Object.

classInstance setFormat: Object format.

^ classInstance

S.Ducasse

9

The Essence of an Object • •

class pointer values

•

Can be special:

S.Ducasse

• •

the pointer pointing to the object is the object itself character, smallInteger (compact classes)

10

Some MetaObjects • • • • • • • S.Ducasse

Structure: Behavior, ClassDescription, Class, Metaclass, ClassBuilder Semantics: Compiler, Decompiler, ProgramNode, ProgramNodeBuilder, IRBuilder Behavior: CompiledMethod, CompiledBlock, Message, Exception ControlState: Context, BlockContext, Process, ProcessorScheduler Resources: ObjectMemory, WeakArray Naming: SystemDictionary, Namespace Libraries: MethodDictionary, ClassOrganizer

11

Meta-Operations •

S.Ducasse

MetaOperations are operations that provide information about an object as opposed to information directly contained by the object ...They permit things to be done that are not normally possible [Inside Smalltalk]”

12

Access • • •

Object>>instVarAt: aNumber Object>>instVarNamed: aString Object>>instVarAt: aNumber put: anObject

• •

Browser new instVarNamed: 'classOrganizer' | pt | pt := 10@3. pt instVarNamed: 'x' put: 33. pt > 33@3

• S.Ducasse

13

Access • •

S.Ducasse

Object>>class Object>>identityHash

14

Changes •

Object>>changeClassOfThat: anInstance in VW and Squeak both classes should have the same format, i.e., the same physical structure of their instances

• •

Object>>become: anotherObject Object>>becomeForward: anotherObject

S.Ducasse

15

Implementing Instance Specific Methods In Squeak 3.8

| behavior browser |

behavior := Behavior new.

behavior superclass: Browser.

behavior setFormat: Browser format.

browser := Browser new.

browser primitiveChangeClassTo: behavior new.

behavior compile: 'thisIsATest ^ 2'.

self assert: browser thisIsATest = 2. self should: [Browser new thisIsATest] raise: MessageNotUnderstood S.Ducasse

16

become: and oneWayBecome: •

become: is symmetric and swaps all the pointers

•

oneWayBecome: (in VW) becomeForward: (Squeak) changes pointers only in one way

S.Ducasse

17

become: •

Swap all the pointers from one object to the other and back (symmetric)

•

| pt1 pt2 pt3 |

pt1 := 0@0.

pt2 := pt1.

pt3 := 100@100.

pt1 become: pt3.

self assert: pt2 = (100@100).

self assert: pt3 = (0@0).

self assert: pt1 = (100@100).

S.Ducasse

18

becomeForward: •

Swap all the pointers from one object to the other one

•

| pt1 pt2 pt3 |

pt1 := 0@0.

pt2 := pt1.

pt3 := 100@100.

pt1 becomeForward: pt3.

self assert: (pt2 = (100@100)).

self assert: pt3 = pt2.

self assert: pt1 = (100@100)

S.Ducasse

19

Structure • • • • • S.Ducasse

Objects represent classes Object root of inheritance

• •

default behavior minimal behavior

• •

anymous class format, methodDict, superclass

•

human representation and organization

•

sole instance

Behavior: essence of class

ClassDescription: Metaclass:

20

CompiledMethod Holders

S.Ducasse

21

ClassBuilder •

S.Ducasse

Manages class creation

• • •

unique instance format with superclass checking changes of existing instance when class structure changes

22

Some Selected Protocols •

Illustrated by the tools of the IDE

• • • • •

Class>>selectors Class>>superclass Class>>compiledMethodAt: aSymbol Class>>instVarNames Class>>compiler

S.Ducasse

23

The Smalltalk Compiler

S.Ducasse

24

Compiler •

Fully reified compilation process:

•

Scanner/Parser (build with SmaCC)

• • •

S.Ducasse

•

builds AST (from Refactoring Browser)

•

annotates the AST (e.g., var bindings)

•

uses IRBuilder to build IR (Intermediate Representation)

•

uses BytecodeBuilder to emit bytecodes

Semantic Analysis: ASTChecker Translation to IR: ASTTranslator Bytecode generation: IRTranslator

25

Compiler: Overview Code

Scanner / Parser

Semantic Analysis

AST

SmaCC Scanner Parser

Code Bytecode Generation

AST

ASTChecker

Code generation in detail:

AST

Build IR ASTTranslator IRBuilder

S.Ducasse

IR

Bytecode Generation

Bytecode

IRTranslator BytecodeBuilder

26

Compiler: Syntax • • • • •

S.Ducasse

SmaCC: Smalltalk Compiler Compiler Like Lex/Yacc Input:

• • •

scanner definition: Regular Expressions parser: BNF Like Grammar code that build AST as annotation

• •

class for Scanner (subclass SmaCCScanner) class for Parser (subclass SmaCCParser)

SmaCC can build LARL(1) or LR(1) parser Output:

27

Scanner

S.Ducasse

28

Parser

S.Ducasse

29

Calling Parser code

S.Ducasse

30

Compiler: AST • • • •

S.Ducasse

AST: Abstract Syntax Tree Encodes the Syntax as a Tree No semantics yet! Uses the RB Tree:

• • • • •

RBProgramNode RBDoItNode RBMethodNode RBReturnNode RBSequenceNode RBValueNode visitors RBArrayNode backward pointers in ParseNodes RBAssignmentNode RBBlockNode transformation (replace/add/delete) RBCascadeNode pattern directed TreeRewriter RBLiteralNode PrettyPrinter RBMessageNode RBOptimizedNode RBVariableNode

31

Compiler: Semantics • •

S.Ducasse

We need to analyse the AST

•

names need to be linked to the Variables according to the scoping rules

ASTChecker implemented as a visitor

• • • • •

subclass of RBProgramNodeVisitor visits the nodes grows and shrinks Scope chain method/Blocks are linked with the Scope variable definitions and references are linked with objects describing the variables

32

A Simple Tree

S.Ducasse

33

A Simple Visitor • •

S.Ducasse

RBProgramNodeVisitor new visitNode: tree. does nothing except walking throw the tree

34

LiteralGatherer RBProgramNodeVisitor subclass: #LiteralGatherer

instanceVariableNames: 'literals'

classVariableNames: ''

poolDictionaries: ''

category: 'Compiler-AST-Visitors' initialize

literals := Set new. literals

^literals acceptLiteralNode: aLiteralNode

literals add: aLiteralNode value. (TestVisitor new visitNode: tree) literals #(3 4) S.Ducasse

35

Compiler III: IR •

•

S.Ducasse

IR: Intermediate Representation

• • • • •

semantic like Bytecode, but more abstract independent of the bytecode set IR is a tree IR nodes allow easy transformation decompilation to RB AST

IR build from AST using ASTTranslator:

• •

AST Visitor uses IRBuilder

36

Compiler 4: Bytecode •

IR needs to be converted to Bytecode

• • •

IRTranslator:Visitor for IR tree Uses BytecodeBuilder to generate Bytecode Builds a compiledMethod testReturn1 | iRMethod aCompiledMethod | iRMethod := IRBuilder new numRargs: 1; addTemps: #(self); "receiver and args declarations" pushLiteral: 1; returnTop; ir.

aCompiledMethod := iRMethod compiledMethod. self should: [(aCompiledMethod valueWithReceiver: nil arguments: #()) = 1].

S.Ducasse

37

Behavior • •

S.Ducasse

Method Lookup Method Application

38

The Essence • •

Look on the receiver class (1) Follow inheritance link (2)

(2)

Node accept: aPacket

Workstation (1) originate: aPacket aMac accept S.Ducasse

39

doesNotUnderstand: • • •

S.Ducasse

When the lookup fails

• •

doesNotUnderstand: on the original message receiver reification of the message

• •

2 doesNotUnderstand: aMessage aMessage selector -> #zork

2 zork leads to

40

Invoking a message from its name • • •

Object>>perform: aSymbol Object>>perform: aSymbol with: arg ...

• •

Asks an object to execute a message The method lookup is done!

• •

5 factorial 5 perform: #factorial

S.Ducasse

41

Executing a compiled method CompiledMethod>>valueWithReceiver:argu ments:

(Integer>>factorial) valueWithReceiver: 5 arguments: #() -> 120 No lookup is performed

S.Ducasse

42

Other Reflective Entities • •

S.Ducasse

Execution stack can be reified and manipulated on demand thisContext is a pseudo variable which gives access to the stack

43

What happens on Method • • • •

We need a space for

• •

the temporary variables remembering where to return to

Everything is an Object! So: we model this space as Objects Class MethodContext

ContextPart variableSubclass: #MethodContext instanceVariableNames: 'method receiverMap receiver' classVariableNames: '' poolDictionaries: '' category: 'Kernel-Methods' S.Ducasse

44

MethodContext •

MethodContext holds all state associated with the execution of a CompiledMethod

• • •

• • •

S.Ducasse

Program Counter (pc, from ContextPart) the Method itself (method) Receiver (receiver) and the Sender (sender)

The sender is the previous Context The chain of senders is a stack It grows and shrinks with activation/return

45

Contexts: Stack Reification

S.Ducasse

46

Example: #haltIf: • •

You can’t put a halt in methods that are called often (e.g. OrderedCollection>>add:) Idea: only halt if called from a method with a certain name haltIf: aSelector

| cntxt |

cntxt := thisContext.

[cntxt sender isNil] whileFalse: [

cntxt := cntxt sender.

(cntxt selector = aSelector) ifTrue: [

Halt signal

].

].

S.Ducasse

47

Controling Messages

S.Ducasse

48

Approaches to Control Message • • • • • S.Ducasse

Error Handling Specialization

•

Minimal Objects + doesNotUnderstand:

•

anonymous classes between instances and their classes

•

wrapping methods

Using Method Lookup Method Substitution

Control: instance-based/class/group Granularity: all/unknown/specific

49

Error Handling Specialization • • •

S.Ducasse

Minimal Object

• • •

do not understand too much redefine doesNotUnderstand: wrap normal object in a minimal object

nil superclass or ProtoObject use becomeForward: to substitute the object to control

50

Minimal Object at Work

S.Ducasse

51

Control •

S.Ducasse

MinimalObject>>doesNotUnderstand: aMsg ... originalObject perform: aMsg selector withArguments: aMsg arguments

52

Minimal Behavior in VW MinimalObject class>>initialize superclass := nil. #(doesNotUnderstand: error: ̃ ̃ isNil = == printString printOn: class inspect basicInspect basicAt: basicSize instVarAt: instVarAt:put:) do: [:selector | self recompile: selector from: Object]

S.Ducasse

53

Limits • • •

S.Ducasse

self problem:

• •

messages sent by the object itself are not trapped messages sent to a reference on it passed by the controlled object

Class control is impossible Interpretation of minimal protocol:

•

message sent to the minimal object or to controlled object

54

Evaluation • • • • •

S.Ducasse

Simple In Squeak ProtoObject Some problems Instance-based All messages

55

Approaches to Control Message • • •

S.Ducasse

Error Handling Specialization

•

Minimal Objects + doesNotUnderstand:

•

anonymous classes between instances and their classes

•

wrapping methods

Using Method Lookup Method Substitution

56

Using VM Lookup • • • •

S.Ducasse

Creation of a controlling class that is interposed between the instance and its class Definition of controlling methods Class change Hidding it from the developper/user using anonymous class

57

1@1, 2@2 are controlled, but not 3@3

S.Ducasse

58

Anonymous class in VW Object>>specialize |nCl| (1) nCl :=Behavior new (2) setInstanceFormat: self class format; (2) superclass: self class; methodDictionary:MethodDictionary new. (3) self changeClassToThatOf: nCl basicNew

S.Ducasse

59

Control anAnonymousClass>>setX:t1setY:t2 ...before super setX:t1setY:t2 ...after

S.Ducasse

60

The beauty in VisualWorks AnonymousClass>>installEssentialMethods self compile: ’class ˆ super class superclass’. self compile: ’isControlled ˆ true’. self compile: ’anonymousClass ˆ super class’

In Squeak class is not sent but optimized by the compiler

S.Ducasse

61

Evaluation • • • • • •

S.Ducasse

instance-based or group-based selective control no identity problem good performance transparent to the user requires a bit of compilation (could be avoided using clone as in Method Wrapper)

62

Approaches to Control Message • • •

S.Ducasse

Error Handling Specialization

•

Minimal Objects + doesNotUnderstand:

•

anonymous classes between instances and their classes

•

wrapping methods

Using Method Lookup Method Substitution

63

Method Substitution • •

S.Ducasse

First approach: add methods with offucasted names

•

but the user can see them

Wrapping the methods without poluting the interface

64

MethodWrapper Definition CompiledMethod variableSubclass: #MethodWrapper instanceVariableNames: ’clientMethod selector’ classVariableNames: ’’ poolDictionaries:’’ category: ’Method Wrappers’ (MethodWrapper on: #color inClass: Point) install

S.Ducasse

65

Method Wrappers: The Idea

S.Ducasse

66

Mechanics WrapperMethod>>valueWithReceiver: anObject arguments: args self beforeMethod. ˆ [clientMethod valueWithReceiver: object arguments: args] valueNowOrOnUnwindDo: [self afterMethod] aClass>>originalSelector: t1 |t2| (t2 := Array new: 1) at: 1 put: t1. ˆself valueWithReceiver: self arguments: t2

S.Ducasse

67

Evaluation • • • •

S.Ducasse

Class based: all instances are controlled Only known messages Single method can be controlled Smart implementation does not require compilation for installation/removal

68

Scaffolding Patterns • •

S.Ducasse

How to prototype applications even faster? Based on K. Auer Patterns

69

Patterns •

Extensible Attributes

•

Artificial Delegation

• •

S.Ducasse

•

How do you prepare for additional delegated operations?

Cached Extensibility Selector Synthesis

70

Extensible Attributes Context: multi person project + heavy version control other designers will want to add attributes to your class

How do you minimize the effort required to add additional attributes to the class? Solution: Add a dictionary attribute to your class + a dictionary access

S.Ducasse

71

Extensible Attributes anExtensibleObject attributes at: #attName put: value value := anExtensibleObject attributes at: #attName

S.Ducasse

72

Artificial Accessors Context: you applied Extensible Attributes How do you make it easier for other classes to access your extended attributes? Solution: simulate the presence of accessor for the attributes by specializing doesNotUnderstand:

S.Ducasse

73

Artificial Accessors Code anExtensibleObject widgets: 4 is converted to self attributes at: #widgets put: 4 anExtensibleObject widgets is converted to ^ self attributes at: #widgets S.Ducasse

74

Consequences Accessors do not exist therefore browsing can be a problem tracing also reflective queries (allSelectors, canUnderstand:....) will not work as with plain methods

S.Ducasse

75

Artificial Delegation How do you make ^ self delegate anOperation

easier? Solution: Override doesNotUnderstand: of the delegator to iterate through its attribute looking for an attribute that supports the method selector that was not understood

S.Ducasse

76

Cached Extensibility Context: you used the previous patterns How do you know which artificial accessors or artificial delegate have been used? Solution: Specialize doesNotUnderstand: to create methods as soon as artificial ones are invoked

S.Ducasse

77

Selector Synthesis How can you implement a state-dependent object with a minimal effort? Solution: define state and event as symbols and given a pair synthesise a method selector selector := ‘handle’, anEvent aString, ‘In’, aState asString. self perform: selector asSymbol.

S.Ducasse

78

References • • • • •

S.Ducasse

[Ducasse’99] S. Ducasse, “Message Passing Control Techniques in Smalltalk”, JOOP, 1999 [Rivard’96] F. Rivard, Smalltalk : a Reflective Language, REFLECTION'96,1996 [Bran’98] Wrappers To The Rescue, ECOOP’98, 1998 [Auer] Scaffolding patterns, PLOD 3, Addison-Wesley, (http:// www.rolemodelsoftware.com/moreAboutUs/publications/articles/scaffold.php) Smalltalk the Language, Golberg Robson, Addison-Wesley

79

Smalltalk Reflective Capabilities Both introspection and reflection Powerful Based on everything is an object approach

S.Ducasse

80

des documents recommandant

[image: alt]

Reflective Programming in Smalltalk - Inria

Scheme and an OO language. â€¢ The meta-language 3, Addison-Wesley, (http:// www.rolemodelsoftware.com/moreAboutUs/publications/articles/scaffold.php).

[image: alt]

Reflective Programming and Open ... - StÃ©phane Ducasse

7. Traditional vs Reflective Answers. 8. Role ot Reflective Prog in Software Url: http://www.iam.unibe.ch/~ducasse/ ... >We need a method dispatch that take into account an external context of Note that the definition of the objMethod ini

[image: alt]

A Little Journey in the Smalltalk Syntax - Inria

S.Ducasse. â‰¤&.3. 213. Page 214. S.Ducasse. Smalltalk is fun. Pure simple powerful www.seaside.st. (www.dabbledb.com) www.pharo-project.org. 214.

[image: alt]

A Little Journey in the Smalltalk Syntax - Inria

S.Ducasse. â‰¤&.3. On Integer. asComplex. "Answer a Complex number that represents value of the the receiver." ^ Complex real: self imaginary: 0. 82 ...

[image: alt]

A History of the SmallTalk programming language

I.' 1, i: ii. ; . . (.. i; i --. __ ..__.. 83. Page 16. 84. Page 17. 85. Page 18. I. -. 86. Page 19. 87. Page 20. 88. Page 21. 89. Page 22. 90. Page 23. i. (u. 0. 91. Page 24 .^.

[image: alt]

Computer Programming with GNU Smalltalk - Stephane Ducasse

Apr 10, 2009 - concentrate in the core language in this first edition of the book we are going to show you only the tip II. Chapter 1: Introduction to Programming World 1. What is don't expect GNU Smalltalk as almost the same with English.

[image: alt]

Smalltalk-80, The Interactive Programming ... - Stephane Ducasse

This book is written in a tutorial or "try and see" style. Each section describes the interfaces to applications, will be described in a future companion book,. Smalltalk-80: add the ability to class SequenceableCollection to compute al

[image: alt]

Smalltalk in a Nutshell

2. S.Ducasse. LSE. Smalltalk OO Model. â€¢ ***Everything*** is an object. Only message ... Note that @ is not an element of the syntax, but just a message sent to a number. ... In Java, C, C++, Ada constructs like >>, if, for, etc. are hardcoded into

[image: alt]

Smalltalk

The ball bounces off the sides, bricks, and paddle in a conventional fashion. characters), and graphic elements (such as rectangular areas, drawing pens, to a Smalltalk system, these chapters can be used as a hands-on tutorial about.

[image: alt]

Reflective Account Communication

During afternoon tea, around 3.15pm, one of my resident, let call him Peter, felt upset to not have answer after he did asked several times to the new staff.

[image: alt]

Traits in Perspective - Inria

Traits used by Fortress (SUN Microsystems), Scala (EPFL), Perl-6, Squeak, Slate, Dr-Scheme,. Multiple type systems (Drossopoulos, Reppy, Liquori, Bono...).

[image: alt]

Functional Programming in Erlang

You also learn C, as a part of C++ or by itself (for system programming), so you are also ... which is mainly an introduction to the Prolog programming language,.

[image: alt]

Logic Programming in Prolog

The lower and larger integers are limited by the actual Prolog system in use. ... The general syntax is not given here because Prolog is primarily intended for ...

[image: alt]

Logic Programming in Prolog

How Prolog answers queries. To answer a query, the Prolog interpreter tries to satisfy all the goals. Satisfying a goal means proving that a goal logically follows ...

[image: alt]

Logic Programming in Prolog

the fruitful problems. For instance, some techniques come from a model inspired by the brain, called abstract neural networks, or from genetics, called genetic.

[image: alt]

Logic Programming in Prolog

This pattern is typical of recursive rules: there is at least one rule which is not recursive, to cover base cases, and some others which are recursive. Let us query ...

[image: alt]

Logic Programming in Prolog

P is true if Q and R are true. 2. ... A goal G is true (or logically follows from the program) if ... Given a list G of goals, a list C of clauses and the identity substitution.

[image: alt]

Concepts in Programming Languages

13.4 Java System Architecture. 404 ... In Part 3 we look at program organization using abstract data types, modules, and An example discussed in Chapter 3 is memory management: The Lisp (a) Fill in the missing code in the following defini

[image: alt]

Logic Programming in Prolog

Two atoms match if they are made of the same characters. â€¢ A variable ... Instead, because X is a variable, it must match 5, so the interpreter answers. X = 5. Yes.

[image: alt]

Logic Programming in Prolog

The eight queens problem (cont). The query has the shape ?- template(S), solution(S). Note that ?- solution(S), template(S). is wrong. Why? 109 / 109.

[image: alt]

Functional Programming in Erlang

and logic programming, but not in mainstream programming languages. The latter is ... is the value of the right-hand side (as in C++ â€œa = (b = 1);â€�). 44 / 68 ...

[image: alt]

Logic Programming in Prolog

Queries. This program is composed of six clauses, each declaring a fact about the parent relation. As we shall see later, a clause may not be a fact. We say that ...

[image: alt]

Logic Programming in Prolog

Tuples and lists are a very useful data structure that aggregates objects in a specific order. For example .(a, b). % Pair made of 'a' and 'b' .(a, b, c). % Triple made ...

[image: alt]

Concepts in Programming Languages

former students are successful in research and private industry. structs, it will be useful to distinguish between algorithms of constant-, polynomial-, ... different computing environments and applications require different program char-

×
Report Reflective Programming in Smalltalk - Inria

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

