

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Refinement-Based CFG Reconstruction from Unstructured Programs -

Outline. â€¢ A gentle introduction to binary-level program analysis safe CFG reconstruction (refinement-based static analysis) Problem during ispl search.

 Télécharger le PDF

 999KB taille
 1 téléchargements
 331 vues

 commentaire

 Report

Refinement-Based CFG Reconstruction from Unstructured Programs

S´ebastien Bardin, Philippe Herrmann, Franck V´edrine CEA LIST (Paris, France)

Bardin, S., Herrmann, P., V´ edrine, F.

1/ 49

Binary code analysis

Bardin, S., Herrmann, P., V´ edrine, F.

2/ 49

Binary code analysis at a glimpse Recent renew interest [Codesurfer/x86, SAGE, Jakstab, Osmose, TraceAnalyzer, McVeto, Vine, BAP]

Many promising applications off-the-shelf components (including libraries) mobile code (including malware) third-party certification Advantages over source-code analysis always available no “compilation gap” allows precise quantitative analysis (ex : wcet) Very challenging conceptual challenges practical issues Bardin, S., Herrmann, P., V´ edrine, F.

3/ 49

Outline

• A gentle introduction to binary-level program analysis • Focus : refinement-based CFG reconstruction • Conclusion and perspectives

Bardin, S., Herrmann, P., V´ edrine, F.

4/ 49

Main challenges of binary code analysis

Low-level semantic of data Low-level semantic of control [see technical focus] Practical issues

Bardin, S., Herrmann, P., V´ edrine, F.

5/ 49

PB1 : Low-level semantic of data

machine (integer) arithmetic overflows, flags bit-vector operations bitwise logical operations, shifts, rotate, etc. systematic usage of memory (stack) only very few variables and one single very large array up-to-date formal techniques do not adress well these issues

Bardin, S., Herrmann, P., V´ edrine, F.

6/ 49

PB1 : Low-level semantic of data (2) Example 1 : value analysis with machine arithmetic (8 bit) [250..255] + 5 = [0..4] ∪ [255] with any convex-domain : [250..255] +# 5 = [0..255] Example 2 : decision procedures with machine arithmetic V a popular theory on integers is difference logic i xi − yi ≤ ki reasonably expressive and in P but difference logic over modular arithmetic is NP-hard Example 3 : reified comparisons + move from memory to registers R := @100 ; Flag := cmp(R,0); assert(Flag == 1); perfect deduction after assert : Flag = 1 ∧ R = 0 ∧ @100 = 0 standard forward deduction after assert : Flag = 1 Bardin, S., Herrmann, P., V´ edrine, F.

7/ 49

PB2 : Low-level semantic of control

No clear distinction between data and control No clean encapsulation of procedure calls Dynamic jumps (goto R0) [the enemy !] And others : instruction overlapping, self-modifying code Recovering the Control Flow Graph (CFG) is already non-trivial

Bardin, S., Herrmann, P., V´ edrine, F.

8/ 49

PB3 : Practical issues Engineering issue : many different (large) ISAs supporting a new ISA : time-consuming, error-prone, tedious consequence : each tool support only a few ISAs (often one !) Semantic issue : each tool comes with its own formal(?) model exact semantics seldom available modelling hypothesises often unclear

Consequences lots of redundant engineering work between analysers difficult to achieve empiric comparisons difficult to combine / reuse tools

Bardin, S., Herrmann, P., V´ edrine, F.

9/ 49

A renew of interest since 2000’s

CFG reconstruction [Reps et al.] [Kinder et al.] [Brauer et al.] [BHV] variables and types recovery [Reps et al.] test data generation [Godefroid et al.] [BH] malware analysis and other security analyses [Song et al.] semantics [Reps et al.] [Bardin et al.] [Brumley et al.] dedicated Dagstuhl seminar in 2012

Bardin, S., Herrmann, P., V´ edrine, F.

10/ 49

More or less related topics Analysis of low-level C programs many low-level constructs : *f, longjump, stack overflow, etc. BUT ◮ ◮

ANSI-C forbids most of the nasty behaviours most analyzers consider a very nice subset of C

Analysis of Java bytecode Java byte-code is very high level ◮ ◮ ◮

strong static typing for primitive types clean functional abstraction very restricted dynamic jumps

Analysis of assembly languages should be the same than binary code but often rely on very optimistic assumptions ◮

no hidden instruction, sets of dynamic jumps known in advance, call/return policy

Bardin, S., Herrmann, P., V´ edrine, F.

11/ 49

Binary-level program analysis at CEA Osmose [ICST-08,ICST-09,STVR-11] automatic test data generation (dynamic symbolic execution) bitvector reasoning [TACAS-10] front-ends : PPC, M6800, Intel c509 TraceAnalyzer [VMCAI-11] [see technical focus] safe CFG reconstruction (refinement-based static analysis) front-end : PPC Dynamic Bitvector Automata [CAV-11] concise formal model for binary code analysis basic tool support : OCaml type, XML DTD safe DBA reduction Bardin, S., Herrmann, P., V´ edrine, F.

12/ 49

Outline

• A gentle introduction to binary-level program analysis • Focus : Refinement-based CFG reconstruction • Conclusion and perspectives

Bardin, S., Herrmann, P., V´ edrine, F.

13/ 49

CFG recovery

A key issue for binary-level program analysis prior to any other static analysis (SA) must be safe : otherwise, other SA unsafe must be precise : otherwise, other SA imprecise Our approach [VMCAI-11] safe, precise, efficient and robust technique based on abstraction-refinement

Bardin, S., Herrmann, P., V´ edrine, F.

14/ 49

CFG reconstruction Input an executable file, i.e. an array of bytes the address of the initial instruction a basic decoder : exec f. × address 7→ instruction × size

Output : CFG of the program

Bardin, S., Herrmann, P., V´ edrine, F.

15/ 49

CFG reconstruction (2)

Successor addresses are often syntactically known h addr: move a b i → h addr: goto 100 i → h addr: ble 100 i →

Bardin, S., Herrmann, P., V´ edrine, F.

16/ 49

CFG reconstruction (2)

Successor addresses are often syntactically known h addr: move a b i → successor at addr+size h addr: goto 100 i → successor at 100 h addr: ble 100 i → successors at 100 and addr+size

Bardin, S., Herrmann, P., V´ edrine, F.

16/ 49

CFG reconstruction (2)

Successor addresses are often syntactically known h addr: move a b i → successor at addr+size h addr: goto 100 i → successor at 100 h addr: ble 100 i → successors at 100 and addr+size But not always : successors of haddr: goto a i ?

Bardin, S., Herrmann, P., V´ edrine, F.

16/ 49

CFG reconstruction (2)

Successor addresses are often syntactically known h addr: move a b i → successor at addr+size h addr: goto 100 i → successor at 100 h addr: ble 100 i → successors at 100 and addr+size But not always : successors of haddr: goto a i ?

Dynamic jump is the enemy !

Bardin, S., Herrmann, P., V´ edrine, F.

16/ 49

Know your enemy

Dynamic jumps are pervasive [introduced by compilers] switch, function pointers, virtual methods, etc. Sets of jump targets lack regularity [arbitrary values from compiler] convex sets plus congruence information are not well-suited False jump targets cannot be easily detected almost any address in an exec. file correspond to a legal instruction no pragmatic trick like “detect pb - warn user - correct value”

Bardin, S., Herrmann, P., V´ edrine, F.

17/ 49

Unsafe approaches to CFG recovery ... current industrial practise ...

Linear sweep decoding [brute force] decode instructions at each code address • miss every “dynamic” edge of the CFG • may still miss instructions [too optimistic hypothesises] Recursive traversal decode recursively from entry point, stop on dynamic jump • miss large parts of CFG

Bardin, S., Herrmann, P., V´ edrine, F.

18/ 49

Safe CFG recovery VA and CFG reconstruction must be interleaved

Very difficult to get precise : imprecision on jumps in VA → imprecision on CFG → more propagation / imprecision on VA → . . .

Bardin, S., Herrmann, P., V´ edrine, F.

19/ 49

Existing safe approaches CodeSurfer/x86 [Balakrishnan-Reps 04,05,07,...] abstract domain : strided intervals (+ affine relationships) • imprecise : abstract domain not suited to sets of jump targets (arbitrary values from compiler)

• in practise many false targets

Jakstab [Kinder-Veith 08,09,10] abstract domain : sets of bounded cardinality (k-sets) precise when the bound k is well-tuned • not robust to the parameter k : possibly inefficient if k too large, very imprecise if k not large enough

Bardin, S., Herrmann, P., V´ edrine, F.

20/ 49

Our work Key observations k-sets are the only domain well-suited to precise CFG reconstruction for most programs, only a few facts need to be tracked precisely to resolve dynamic jumps good candidate for abstraction-refinement

Contribution [VMCAI 2011] A refinement-based approach dedicated to CFG reconstruction An implementation and a few experiments The technique is safe, precise, robust and efficient

Bardin, S., Herrmann, P., V´ edrine, F.

21/ 49

Formalisation Unstructured Programs : P = (L, V , A, T , l0) L ⊆ N finite set of code addresses V finite set of program variables A finite set of arrays T maps code addresses to instructions l0 initial code address Instructions assignments v :=e and a[e1]:=e2 static jumps goto l branching instructions ite(cond ,l1 ,l2) dynamic jumps cgoto(v)

Bardin, S., Herrmann, P., V´ edrine, F.

22/ 49

Formalisation (2)

Our problem input : an unstructured program P output : compute an invariant of P such that no dynamic target expression evaluates to ⊤, or fail Informal requirements do not fail “too often” do not add “too many” false targets

Bardin, S., Herrmann, P., V´ edrine, F.

23/ 49

Sketch of the procedure Abstract domain : k-sets with local cardinality bounds gain efficiency through loss of precision still a global bound Kmax over local bounds domain refinement = increase some k-set cardinality bounds Ingredient 1 : (slightly) modified forward propagation propagation takes local bounds into account add tags to ⊤-values to record origin : ⊤, ⊤init , ⊤hc1 ,...,cn i ◮ ◮ ◮

dedicated propagation rules : ⊤init and ⊤h...i stay in place pinpoint “initial sources of precision loss” (ispl) give clues for refinement (where and how much)

Ingredient 2 : refinement mechanism decide which local bound must be updated, to which value helped by ⊤-tags Bardin, S., Herrmann, P., V´ edrine, F.

24/ 49

The procedure

Procedure PaR : (P, Kmax) 7→?Invariant(P) 1. Dom := {(loc, v) 7→ 0} 2. forward propagate until a dynamic target exp. evaluates to ⊤ 3. if no target exp. evaluates to ⊤, return the fixpoint (OK !) else, try to refine the domain to avoid fault ◮ ◮

if no refinement then fail (KO !) else restart with refined domain (goto 2)

Bardin, S., Herrmann, P., V´ edrine, F.

25/ 49

Refinement For each target evaluating to ⊤ follows backward data dependencies only interested in ⊤-values (other locations are safe until now) only interested in correcting initial causes of precision loss Finding the initial causes of precision loss initial causes of precision loss are of the form ⊤init , ⊤hc1 ,...,cn i How to correct ⊤init cannot be avoided ⊤hc1 ,...,cn i may be avoided if n ≤ Kmax (set local bound to n)

Bardin, S., Herrmann, P., V´ edrine, F.

26/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Example

Bardin, S., Herrmann, P., V´ edrine, F.

27/ 49

Technical detail I : failure policy Two possible failure policies during refinement optimistic : fails only when no ispl is corrected pessimistic : fails as soon as one ispl cannot be corrected Optimistic policy succeeds more, but more refinements Pessimistic policy fails earlier, but may unduly fail

ispl computation pessimistic optimistic

under-approx x x

exact RC RC

over-approx x RC (perf --)

RC : relative completeness [see after]

Bardin, S., Herrmann, P., V´ edrine, F.

28/ 49

Technical detail II : journal Problem during ispl search syntactic computation of (data) predecessors (for assignments with alias and dynamic jumps) is either unsafe or imprecise [cf failure policy]

Bardin, S., Herrmann, P., V´ edrine, F.

29/ 49

Technical detail II : journal Problem during ispl search syntactic computation of (data) predecessors (for assignments with alias and dynamic jumps) is either unsafe or imprecise [cf failure policy]

Bardin, S., Herrmann, P., V´ edrine, F.

29/ 49

Technical detail II : journal Problem during ispl search syntactic computation of (data) predecessors (for assignments with alias and dynamic jumps) is either unsafe or imprecise [cf failure policy]

Solution : a journal of the propagation record observed feasible branches / alias / dynamic targets prune backward data dependencies accordingly updated during propagation, used during ispl search Bardin, S., Herrmann, P., V´ edrine, F.

29/ 49

Basic theoretical properties

Soundness : PaR(P,Kmax) returns either an invariant such that no jump target evaluates to ⊤, or FAIL Complexity : polynomial number of refinements Completeness : perfect relative completeness for a non trivial subclass of programs (see next)

Bardin, S., Herrmann, P., V´ edrine, F.

30/ 49

What about the quality of the refinement ?

Relative completeness (RC) : PaR is relatively complete if PaR(P, Kmax) returns successfully when the forward k-set propagation with parameter Kmax does

Bad news : no RC in the general case mainly because of control dependencies Good news : RC for a non trivial subclass of programs

Bardin, S., Herrmann, P., V´ edrine, F.

31/ 49

RC : why it does not work let us suppose Kmax = 1

Bardin, S., Herrmann, P., V´ edrine, F.

32/ 49

RC : why it does not work let us suppose Kmax = 1

Bardin, S., Herrmann, P., V´ edrine, F.

32/ 49

RC : why it does not work let us suppose Kmax = 1

Bardin, S., Herrmann, P., V´ edrine, F.

32/ 49

RC : why it does not work let us suppose Kmax = 1

Bardin, S., Herrmann, P., V´ edrine, F.

32/ 49

RC on a subclass

RC holds for a subclass of unstructured programs [even with “pessimistic failure”]

 Non-deterministic branching [new : all branches feasible] only ⊤-propagating operators (+, −, ×k ok, but not ×) guarded aliases skip proof

Bardin, S., Herrmann, P., V´ edrine, F.

33/ 49

RC on a subclass : sketch of proof Reason over traces of the forward propagation procedure From faulty trace in PaR, build faulty trace in →∗D max ⋆ Assume π

M0 − →D Mn , Mn (ln , vn) = ⊤

// failure

refinement fails on Mn and (ln , vn) ⋆ Prove that M0 − →D max Mn′ , Mn′ (ln , vn) = ⊤ π

Proof steps prove for restricted2 subclass : no jump / alias generalisation : guarded jumps and guarded aliases Bardin, S., Herrmann, P., V´ edrine, F.

34/ 49

sketch of proof (2) Fragment with < NDBranching - no alias - no dynamic jump > Find a non correctable ispl of (ln , vn) such that π = π1 · π2 π1 π2 M0 −→ →D M n D Mk − and (lk , vk) ispl of (ln , vn) and k = 0, Mk (lk , vk) = ⊤init or Mk (lk , vk) = ⊤hc1 ...cq i , q > Kmax and Mk−1 (lk , vk) 6= ⊤ We want to prove that Goal1 ispl (lk , vk) still evaluates to ⊤ in D max after π1 π1 ′ ′ M0 −→ D max Mk and Mk (lk , vk) = ⊤ Goal2 value of (lk , vk) still propagate to (ln , vn) in D max after π2 π2 ′ ′ Mk′ −→ D max Mn and Mn (ln , vn) = ⊤ Bardin, S., Herrmann, P., V´ edrine, F.

35/ 49

sketch of proof (2’)

Bardin, S., Herrmann, P., V´ edrine, F.

36/ 49

sketch of proof (3)

Two fundamental lemmas σ

σ

Lemma 1 : − →D and − →D max computes the same proper k-sets hint : the only cause of precision loss is early ⊤-cast . does not create bigger proper k-sets, but ⊤ . we can know if a set is (relatively) approximated or not note : very specific to k-sets, false when unfeasible branches σ

σ

Lemma 2 : − →D and − →D max define the same data dependencies easy here, all data dep. are static [the two proofs are interleaved]

Bardin, S., Herrmann, P., V´ edrine, F.

37/ 49

sketch of proof (4) : goal 1, case 1 Goal1 : ispl (lk , vk) still evaluates to ⊤ in D max after π1 π1 ′ ′ M0 −→ D max Mk and Mk (lk , vk) = ⊤ Case 1 : Mk (lk , vk) = ⊤init ⊤init created in initial state (lk , vk) will also take value ⊤ in Mk′

Bardin, S., Herrmann, P., V´ edrine, F.

38/ 49

sketch of proof (5) : goal 1, case 2 Goal1 : ispl (lk , vk) still evaluates to ⊤ in D max after π1 π1 ′ ′ M0 −→ D max Mk and Mk (lk , vk) = ⊤ Case 2 : Mk (lk , vk) = ⊤hc1 ...cq i and q > Kmax π

1 (⋆) predecessors of (k, lk , vk) for −→ D are all proper k-sets // rest. op : otherwise Mk (lk , vk) = ⊤

lemma 2 + (⋆) + lemma 3 : predecessors of (k, lk , vk) for π1 π1 →D , and evaluate to −→ D max are the same locations than for − the same proper k-sets hence, Mk′ (lk , vk) = αKmax ({c1 . . . cq }) = ⊤ // q > Kmax

Bardin, S., Herrmann, P., V´ edrine, F.

39/ 49

sketch of proof (5’) : goal 1, case 2

Bardin, S., Herrmann, P., V´ edrine, F.

40/ 49

sketch of proof (5’) : goal 1, case 2

Bardin, S., Herrmann, P., V´ edrine, F.

40/ 49

sketch of proof (5’) : goal 1, case 2

Bardin, S., Herrmann, P., V´ edrine, F.

40/ 49

sketch of proof (5’) : goal 1, case 2

Bardin, S., Herrmann, P., V´ edrine, F.

40/ 49

sketch of proof (6)

Goal2 : value of (lk , vk) still propagate to (ln , vn) in D max after π2 π2 ′ ′ Mk′ −→ D max Mn and Mn (ln , vn) = ⊤ ok because of lemma 2 and restricted operators (⊤-must propagate) Full Proof of RC : goal1 + goal2

Bardin, S., Herrmann, P., V´ edrine, F.

41/ 49

sketch of proof (7) : generalisation More general case : guarded alias and guarded dynamic jumps

Basically same technique, handle alias and jumps with care Key : guarded jumps enforce proper ksets on jump exp, or fail lemma 1 still holds (until failure state) lemma 2 still holds (until failure state) note for both lemma : need the journal to track back only “feasible” ispl Same trick for guarded aliases

Bardin, S., Herrmann, P., V´ edrine, F.

42/ 49

Relative Precision (not in VMCAI 2011)

Relative precision (RP) : PaR is relatively precise if when PaR(P, Kmax) returns successfully, it returns the same set of targets than the forward k-set propagation with parameter Kmax does RP holds for the subclass of unstructured programs Summary : RC+RP (on the restricted subclass) PaR(P, Kmax) terminates iff forward k-set propagation with parameter Kmax does in case of success, they compute the same set of targets

Bardin, S., Herrmann, P., V´ edrine, F.

43/ 49

Experiments Implementation input : PPC executable + entrypoint output : cfg, callgraph, sets of targets, assembly code details : procedure inlining, efficient data-structures limitation : no dynamic memory allocation 29 kloc of C++ Test bench 1 : 12 small hand-written C programs compiled with gcc. From 60 to 1000 PPC instructions Test bench 2 : Safety-critical program from Sagem 32 kloc, 51 dynamic jumps, up to 16 targets a jump

Bardin, S., Herrmann, P., V´ edrine, F.

44/ 49

Experiments (2) Experimental results for the aeronautic program precision : resolve every jump, only 7% of false targets (standard program analysis cannot recover better than between 400% and 4000% of false targets)

robustness : efficiency independent of Kmax (if large enough) locality : tight value of max-k, low value of mean-k efficiency : terminates in 5 min ◮ ◮ ◮

already sufficient for some (safety-critical) applications however procedure inlining may be an issue rooms for improvement

Bardin, S., Herrmann, P., V´ edrine, F.

45/ 49

Outline

• A gentle introduction to binary-level program analysis • Focus : Refinement-based CFG reconstruction • Conclusion and perspectives

Bardin, S., Herrmann, P., V´ edrine, F.

46/ 49

News from the front

Improved algorithm [efficiency, robustness] # refinements indep. of Kmax chaining of updates Compositionality : product of domains KSET × D more precise than just KSET Implementation domain = KSET × I × Formulas x{}y Sagem : ≈ 10 sec

Bardin, S., Herrmann, P., V´ edrine, F.

47/ 49

Conclusion on CFG reconstruction

Result : an original refinement-based procedure truly dedicated to CFG reconstruction [domains, refinement] safe, precise, robust and efficient both theoretical and empirical evidence Future work experiments on non-critical programs [dynamic alloc] ultimate goal : executables coming from large C++ programs

Bardin, S., Herrmann, P., V´ edrine, F.

48/ 49

A few last words Binary code analysis shows both great promises and challenges Many open problems which semantic for binary code ? common formal model ? which properties are worth to investigate ? is binary-code analysis so different than program analysis ?

A few years ago, only a few scattered teams and works Things are changing [CAV 11, VMCAI 11, EMSOFT 11, SSV 11] time for more collaboration ? benchmarks, meetings, workshops / conference, projects ? Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Backup slides

Dynamic bitvector automata (DBA) Osmose

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Dynamic Bitvector Automata

Main design ideas small set of instructions concise and natural modelling of common ISAs low-level enough to allow bit-precise modelling Can model : instruction overlapping, return address smashing, endianness, overlapping memory read/write Limitations : (strong) no self-modifying code, (weak) no dynamic memory allocation, no FPA

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Dynamic Bitvector Automata (2) Extended automata-like formalism bitvector variables and arrays of bytes all bv sizes statically known, no side-effects standard operations from BVA Feature 1 : Dynamic transitions for dynamic jumps Feature 2 : Directed multiple-bytes read and write operations for endianness and word load/store Feature 3 : Memory zone properties for (simple) environment

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Dynamic Bitvector Automata (2) Feature 1 : Dynamic transitions some nodes are labelled by an address dynamic transitions have no predefined destination destination computed dynamically via a target expression Feature 2 : Directed multiple-bytes read and write operations array[expr ; k #], where k ∈ N and # ∈ {←, →} Feature 3 : Memory zone properties specify special behaviour for some segments of memory volatile, write-aborts, write-ignored, read-aborts

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Modelling with DBA

Procedure calls / returns : encoded as static / dynamic jumps Memory zone properties, a few examples : ROM (write-ignored), memory controlled by env (volatile), code section (write-aborts) Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

DBA toolbox

Open-source Ocaml code for basic DBA manipulation Features a datatype for DBAs basic “typing” (size checking) over DBAs import (export) from (to) a XML format DBA simplification (see next) GPL license, based on xml-light, ≈ 3 kloc

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

DBA toolbox - simplifications

Goal : simplify unduly complex DBAs typically obtained from instruction-wise translation useless flag computations / auxiliary variables / etc. Inspired by standard compilation techniques [peephole, dead code, etc.] beware of partial DBAs and dynamic jumps ! rethink these standard techniques in a partial CFG setting Results : size reduction of −50% (all instrs), and between −30% and −50% (non-goto instrs)

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Osmose : test data generation

Osmose (CEA) [ICST-08, STVR-11] automatic test data generation (dynamic symbolic execution) 75 kloc of OCaml, front-ends : PPC, M6800, Intel c509 case-studies : programs from aeronautics and energy Supported architectures : Motorola 6800, Intel 8051, Power PC 550

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

Key technologies

Multiple-architecture support [BH-11] Generic assembly language (GAL)

[current move to DBAs]

Test data generation through Concolic Execution [BH-08,BH-11] exploration of all (bounded) paths of the program symbolic reasoning to discover new dynamic targets path pruning optimisations [BH-09] Bit-precise constraint solving [BHP-10]

Bardin, S., Herrmann, P., V´ edrine, F.

49/ 49

des documents recommandant

[image: alt]

Refinement-Based CFG Reconstruction from Unstructured Programs -

Unstructured Programs. SÃ©bastien ... Need to mix value analysis and standard CFG analysis ... Formalisation : unstructured programs and the VAPR problem.

[image: alt]

Refinement-based CFG Reconstruction from

Automatic analysis of programs from their executable files has many po- ... the problem of (safe) CFG reconstruction, i.e. constructing a both safe and precise ap-.

[image: alt]

Refinement-based CFG Reconstruction from

Abstract. This paper addresses the issue of recovering a both safe and precise approximation of the Control Flow Graph (CFG) of an unstructured program,.

[image: alt]

Refinement-based CFG Reconstruction from

code and malware, security testing or worst case execution time estimation. We address the problem of (safe) CFG reconstruction, i.e. constructing a both safe ...

[image: alt]

Refinement-Based CFG Reconstruction from

test suite completion bitvector reasoning [TACAS-10] front-ends : PPC, M6800, Intel c509. CGFBuilder [VMCAI-11] safe CFG reconstruction (refinement-based ...

[image: alt]

Refinement-based CFG Reconstruction from

code and malware, security testing or worst case execution time estimation. This paper addresses the problem of (safe) CFG reconstruction, i.e. constructing a ...

[image: alt]

From Concurrent Programs to Simulating Sequential Programs

Frama-C. Invited Tutorial Paper. In: TAP, LNCS 7942, Springer, pp. 168â€“177, doi:10.1007/978- ... In J.-P. Finance, editor: Fundamental Approaches to Software ...

[image: alt]

From Concurrent Programs to Simulating Sequential Programs

For sequentially consistent programs [12], a concurrent program can be cinit, we first move each program counter to the first instruction of each main The only tricky part is in function call and returns where we have to ensure that from

[image: alt]

Demosaicing: image reconstruction from color

to construct an algorithm for image reconstruction from CCD sensors samples. ... Office of Naval Research under Grant NOOO14-96-1-0381. Part of this.

[image: alt]

From Projective to Euclidean Reconstruction

of the stereo rig, the three-dimensional structure of the scene can be in general uniquely recovered up to a similitude transformation using some elementary ma.

[image: alt]

Demosaicing: image reconstruction from color

color digital image from its color CCD sensors' information. We limit our discussion to ... seen in color at www.cs.technion.ac.il/ ron/demosaic.html. nonlinear ...

[image: alt]

From Projective to Euclidean Reconstruction - Computer ... - CiteSeerX

as selecting a special euclidean frame among all pos- sible ones 'This process was done manually in our experiment but. Figure 4: ... In the near future we plan to enhance the system in ... would be a good starting point) a to perform fusion.

[image: alt]

Quasi-Dense Reconstruction from Image Sequence

quasi-dense w.r.t. sparse reconstruction both in accuracy and robustness. ... stereo/motion analysis is not yet efficient and robust enough to be integrated into.

[image: alt]

reconstruction of piecewise homogeneous images from partial

O. FÃ©ron, Z. Chama and A. Mohammad-Djafari. Laboratoire des signaux et syst`emes (CNRS-SupÃ©lec-UPS),. Plateau de Moulon, 91192 Gif-sur-Yvette, France.

[image: alt]

2-MANIFOLD RECONSTRUCTION FROM SPARSE VISUAL

2-MANIFOLD RECONSTRUCTION FROM SPARSE VISUAL FEATURES. Vadim Litvinov, Shuda Yu, and Maxime Lhuillier. Institut Pascal, UMR 6602 ...

[image: alt]

Experimentation project: Disparity map reconstruction from ... - CNRS

Aug 29, 2014 - ground truth for future references. The camera matrix â€œC# Startupâ€�, it does appear to still behave linear in the amount of pixels. When we ...

[image: alt]

Reconstruction of piecewise homogeneous images from partial

Most classical methods of inversion are based on interpolation of the data and fast that P(z|f,Î¸) is still a PMRF where the probabilities are weighted by p(f|z,Î¸).

[image: alt]

RECONSTRUCTION OF COLOR IMAGES FROM CCD

ABSTRACT. Digital color images from single chip digital cameras are obtained by interpolating a color filter array. In our paper we present an algorithm for ...

[image: alt]

Volume reconstruction from unregistered ... - Bernard Chalmond

Jun 2, 2008 - this approach is not valid since the center of mass of each 2D slice is not related to the center of mass given (f, Ï•i) is. P (Ii|f, Ï•i) âˆ� exp. (. âˆ’. âˆ‘ x. |Ii(x) âˆ’ f (Ï•i(x))|2/Ïƒ2. Ïµ.) ... the region in which the volum

[image: alt]

Programs Required

go to the D:\3d folder and rename the video streams to left.h264 and right.h264 the larger file is ... On the settings window click on Video, then Edit settings... 15 ...

[image: alt]

Unstructured Road Detection

and Lane Detection) system[2], reduce the road detection to the localization of specific structured features painted on the road surface, such as lane markings.

[image: alt]

Part II: Unstructured Grids

grids begins with a geometrical definition of the domain to be meshed (see Part III). Such a ... to be so effective in many unstructured grid generation algorithms, ...

[image: alt]

A Quasi-Dense Approach to Surface Reconstruction from Uncalibrated

dense approach gives more robust and accurate geometry estimations than the is also developed for an efficient evaluation of the reconstruction accuracy.

[image: alt]

automatic 3d building reconstruction from dems : an application ... - Inria

extracted from the DEM through an automatic method based on marked point processes : they are represented by an association of ... advantages of satellite data compared to aerial images are a high Lecture Notes in Computer Sci-.

×
Report Refinement-Based CFG Reconstruction from Unstructured Programs -

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

