

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Realizability and implicit PTIME characterization

characterizations based on tiered recursion (see [15] and [17] for PTIME, [18] for. PSPACE). Data tiering τ1 → ...τn → o, and every q : τ. ↓ [p] =↓ [p (λx1...xk.0).

 Télécharger le PDF

 373KB taille
 3 téléchargements
 289 vues

 commentaire

 Report

Realizability and implicit PTIME characterization Alo¨ıs Brunel∗

Supervisor: Kazushige Terui†

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

∗ http://perso.ens-lyon.fr/alois.brunel † http://www.kurims.kyoto-u.ac.jp/

- terui

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Contents 1 Introduction

3

2 DIAL∀l µl 2.1 The dual typing system . 2.2 Data structures and notations . 2.3 Properties .

4 4 5 6

3 Realizability relation: bounding time 3.1 Computational Model 3.2 Higher-order polynomials 3.3 Mapping 3.4 Realizability 3.5 Adequacy Lemma

6 6 7 8 8 9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4 Realizability relation: bounding size

15

5 FP Soundness 16 5.1 The principle . 17 6 The 6.1 6.2 6.3 6.4

polytime functions are representable Notations Polynomial Various terms Turing machine

7 Concluding remarks

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

18 19 19 19 20 22

2

Realizability and implicit PTIME characterization

1

Alo¨ıs Brunel

Introduction

The field of algorithmic complexity has been intensively studied for decades. However, concerning the study of complexity classes (like P, NP or PH), no significant separation result has been discovered yet. Some think that this lack of results comes from the fact that both definitions and existing characterizations of theses complexity classes are still unsatisfactory. The implicit complexity field aims to provide machine-independant characterizations of these complexity classes. We can distinguish two major traditions: • The light logics is a research program introduced by Girard [9] (although preliminary works like bounded linear logic already existed, see [10]), where the modality rules are weakened in order to control the time complexity of the cut-elimination process. For instance, we can obtain systems where the cut-elimination always takes a polynomial time (like LLL), or elementary time (ELL) . • Another research direction has been initiated by Bellantoni and Cook in 1992 (see [4]) with the safe recursion . It consists in restricting the structures of some programming language (like the primitive recursive functions), in order to obtain the desired complexity bounds. One of the most conclusive work is the data tiering, or tiered recursion, introduced by Leivant and Marion. In the tiered recursion, we have a countable number of copies of the binary words algebra. Tiers (numbers) are assigned to variables and functions. The substitution of a variable by a term of tier m is allowed only if this variable lives in a higher tier n. The way the recursions overlap is controlled by requiring that a function defined by recursion has a lower tier than the variable we recurse on. Leivant and Marion gave several characterizations based on tiered recursion (see [15] and [17] for PTIME, [18] for PSPACE). Data tiering and λ-calculus In [17], a λ-calculus called 1λ is introduced, which internalizes the concept of tiers. Indeed, it uses two representations of data: the algebra of binary words (of base type o), and the Church abstraction terms (of type (o → o) → o → o. We can only use binary words as ”bits string”, whereas the Church words can be used to recurse on words. In this calculus, the set of programs from Church type to base type (words algebra) captures exactly the complexity class FP of functions computable in polynomial time by a turing machine. But this characterization is not fully satisfactory in the sense that we consider the terms with abstract input and concrete output. In this work, we propose a characterization where the output is also abstract. We use a linear logic system, called DIAL∀l µl as a typing system for the pure λ-calculus and characterize the class of polynomial algorithms as the terms from Church words to Scott words (a flat representation of words): these two representations of binary words play the role of the two tiers. Realizability A logical system is said to be sound w.r.t a given complexity class iff each function which can be represented in this logical system is in the desired complexity class. Dal Lago and Hofmann have introduced in [14] a new semantic framework based on realizability, where the realizers are bounded-time algorithms and the bounds expressed as elements of a resource monoid. This framework gives new and simpler proofs of the soundness of various systems, such as LAL, EAL, LFPL and SAL, with respect to different complexity classes. We try here to use the same kind of approach to prove that all the functions typable by Church to Scott in the system DIAL∀l µl are polytime (soundness w.r.t FP). We define a realizability semantic that differs slightly from the Dal Lago & Hofmann definition. In particular, the bounds are not expressed as elements of a monoid but as higher-order polynomials. We hope that this simple framework can be used in future works to prove characterizations of others complexity classes. 3

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Outline Section 2 introduces the system DIAL∀l µl and formulates the main results. Section 3 introduces the realizability semantics used to bound time complexity. In the sections 4 and 5 the remaining elements of the PTIME soundness proof can be found: we prove that every term from Church numerals to Scott numerals represents an algorithm computable in polynomial time by a Turing machine. Section 6 discloses an encoding of all the polytime Turing machines in terms from Church numerals to Scott numerals (completeness). The section 7 concludes this work.

Notations Given a λ-term t, we denote by |t| the size of t, i.e the number of symbols composing t. We denote by F V (t) the set of its free variables. Moreover t∗ will be the normal form of t when we will consider β-reduction. The identity term λx.x will be noted id. We denote by FP the class of functions f : {0, 1}∗ −→ {0, 1}∗ computable by a Turing Machine in polynomial time.

2

DIAL∀l µl

We now introduce a dual type system derived from affine linear logic with fixpoint. We emulate the two tiers of the Leivant-Marion system respectively by linear formulas (and more particularly, Scott numerals) and Church numerals. We then weaken the universal quantifier elimination rule and fixpoint rules to bound the power of the system.

2.1

The dual typing system

The system does not possess the ! connective but distinguishes linear and non-linear function spaces like in [3]. This is the dual system of Intuitionnistic Affine Linear Logic with fixpoint where the fixpoint and universal quantifier elimination are limited to linear formulas. We suppose we dispose of a infinite and countable set V of second-order variable. We first define the grammar of the linear formulas: L, L0 ::= α | ∀αL | µαL(∗) | L (L0

α∈V

(∗) : we add the condition that we can build µαL only if α only appears in positive occurence in L. This condition will allow us to interpret µ as a fixpoint. We can then define the general formulas (which includes linear formulas): A, B ::= L | ∀αA | L (B | A ⇒ B

α∈V

The linear formulas are basically the formulas that do not contain any ⇒. We will call non-linear a formula A that is not linear. As an example, it is possible to build the formula ∀α((α (α) ((α ⇒ α)) but not ∀α((α ⇒ α) ((α (α)). We can now define the typing rules. L always is a linear formula.

4

Realizability and implicit PTIME characterization

x : A; ` x : A

(ax1)

Γ; ∆ ` t : µαL Γ; ∆ ` t : L[µαL/α] Γ; ∆ ` t : C

;x : L ` x : L

Γ; ∆ ` t : ∀βC

Γ; ∆ ` t : µαL Γ; ∆ ` t : ∀βC (∀i)

Γ2 ; ` u : A

(⇒e)

Γ1 , Γ2 ; ∆ ` tu : B Γ1 ; ∆1 ` t : L (B

Γ2 ; ∆2 ` u : L

Γ1 , Γ2 ; ∆1 , ∆2 ` tu : B Γ, x : A, y : A; ∆ ` t : B Γ, u : A; ∆ ` t[u/x, u/y] : B Γ; ∆ ` t : B Γ, Γ0 ; ∆, ∆0 ` t : B

(ax2)

Γ; ∆ ` t : L[µαL/α]

(µe)∗

β∈ / F V (Γ; ∆)

Γ1 ; ∆ ` t : A ⇒ B

Alo¨ıs Brunel

((e)

(Contr)

Γ; ∆ ` t : C[L/β]

(∀e)

Γ, z : A; ∆ ` t : B Γ; ∆ ` λz t : A ⇒ B Γ; ∆, z : L ` t : B Γ; ∆ ` λz t : L (B Γ; ∆, x : L ` t : B Γ, x : L; ∆ ` t : B

(µi)∗

(⇒i)

((i)

(Derel)

(W)

When we have two formulas T = ∀α.T 0 and A a formula, we will note T (A) the formula T [A/α]. 0

2.2

Data structures and notations

We can easily represent integers and binary words in this system. We define Church and Scott integers and words. N

≡

∀α(α (α) ⇒ (α (α)

W

≡

∀α(α (α) ⇒ (α (α) ⇒ (α (α)

The inhabitants of these two types are the Church encodings of integers and binary words: n ¯

= λf a. f (...f (a))...) | {z }

w ¯

=

n times

λf0 .λf1 .λa.fi1 (fi2 (...(fik (a)...)))

We can define flat integers (and also flat binary words), that is a purely linear representation of integers, using the fixpoint. NS

≡

∀αµβ(β (α) ((α (α)

WS

≡

∀αµβ(β (α) ((β (α) ((α (α)

The inhabitants of these two types are the Scott integers and Scott words (see [20]): n ˜

= λxy.x(λxy.x(...(λxy.y)...)) {z } | n times

If w ∈ {0, 1}∗ , we denote by ΦS (w) the Scott encoding of w: 5

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

ΦS () = λxyz.z ΦS (0.w) = λxyz.x(ΦS (w)) ΦS (1.w) = λxyz.y(ΦS (w)) The Scott encoding of binary words (and also integers) enjoys a constant time predecessor: p ≡ λw.(w)(id)(id)(λxyz.z)

2.3

Properties

We present the main properties that DIAL∀¯ ¯ µ enjoys. We only present the statements, and present the proofs in the next sections. First, the system enjoys F P -soundness: the terms from Church to Scott numerals catch all the polytime functions. We prove this theorem in the sections 4, 5 and 6. Theorem 1 (FP-soundness). If a λ-term t is typable in DIAL by W ⇒ WS , then the function ft : {0, 1}∗ → {0, 1}∗ defined by ft (w) = w0 such that ΦS (w0) = ((t)w) ¯ ∗ (the β-normal form of tw) ¯ is computable in time Q(n) for some polynomial Q by a turing machine. Secondly, we can represent in our system all the PTIME functions by λ-terms of type W ⇒ WS . This is what the completeness property states: Theorem 2 (FP-completeness). If a function f : {0, 1}∗ → {0, 1}∗ is computable by a Turing Machine in time O(P (n)) where P is some polynomial, then there exists a λ-term t such that `DIAL t : W ⇒ WS and such that if w ∈ {0, 1}∗ then: (t)w →∗ ΦS (f (w)) We prove this theorem in section 7. Altogether, these two theorems prove that our system precisely captures the complexity class FP of the functions computable in polynomial time by some Turing machine.

3

Realizability relation: bounding time

The first step of the soundness proof consists of defining a realizability relation between untyped realizers (λ-terms) and formulas from DIAL. In order to study the computational behavior of realizers, we will use weak call-by-value, a variant of the call-by-value strategy where we cannot reduce under the λ. We moreover define an invariant time measure on the λ-terms (originally introduced in [7]) that allows us not to reason with Turing machine (see [22] for more details on the invariance thesis) but directely on λterms. To prove that these realizers enjoy various complexity and size properties, we add to the realizability relation majorizers to bound time complexity. These features make our work really close to the previous work of Dal Lago and Hofmann in [6]. We then show that we have a realizability semantic for our system by proving the adequacy lemma. As a corollary, we obtain that the weak call-by-value normal form of every W ⇒ WS typable term can be computed in polynomial time (in the sense of our time measure), which is still not soundness (we need to compute the β-normal form) but will be useful.

3.1

Computational Model

The realizers will be the closed terms of the pure and untyped λ-calculus defined by: M, N, L ::= x | λx.M | M N

6

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

and the values are: V ::= x | λx.M We use weak call-by-value as reduction strategy, which is defined by:

(λx.M)V → M [V /x]

M →N

M →N

ML → NL

LM → LN

We denote by {t}u the normal form of the application tu when considering weak callby-value. Moreover, we will denote by →w the weak call-by-value reduction if there is any ambiguity with β-reduction (also denoted by →β). We define the cost of computing the normal form of some term t in the weak call-byvalue strategy like it is originally defined in [7]. We first define a relation → → ⊆ Λ×N×Λ: M →N

n = max{|N | − |M |, 1}

0

M→ →M

n

m

M→ →N

n

N→ →L n+m

M→ →N

M → → L n

It is known that if L is the normal form of M N , and if M N → → L then n is unique ([7]), so we can define T ime({M }N) to be n, the time needed to compute L. We have some useful properties: Properties. For every t, u and x, y ∈ F V (t), then T ime({λz.t[z/x, z/y]}u) = T ime({λxy.t}uu) + |u| + 1

(1)

If y ∈ / F V (t), then: T ime({t}(u¯ y)) = T ime({u}¯ y) + T ime({t}({u}¯ y))

(2)

T ime({λy.tu}¯ y) = T ime({t}((λy.u)¯ y))

(3)

Moreover, this cost model is known to be invariant, which means that lambda calculus and Turing machines can simulate each other using a polynomial time overhead. In particular, there exists a Turing Machine Meval s.t: Theorem 3 (2008, Dal Lago & Martini). If t is a λ-term and we know that T ime(t) ≤ n then Meval computes the weak-CBV normal form of t in time O(n4).

3.2

Higher-order polynomials

We now define the set of the majorizers. The majorizers will be used to bound time complexity and the size of the realizers. Using higher-order polynomials instead of only numbers will allow us to capture the difference between linear and non-linear formulas. Definition (Monotonic additive terms) We define monotonic additive terms: p ::= x

| λx.p

| p+p

| n

(n ∈ N)

And their types: τ ::= o | τ → τ If we have q : τ1 → ... → τk → o and n ∈ N, we denote by q + n the term λx1 ...xk .(q(x1 , ..., xk) + n). 7

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Definition (Closure) Moreover we define the closure of a term. If : • p : σ1 → σ2 → ... → σn → o • ∀i, σi = τ1 → ... → τki → o Then the closure is ↓ [p] = (p)u1 ...un where ui = λx1 ...xki .0 : σi . We also need to compare additive closed terms in order to fully use their monotonicity properties. Here is a description of such an order and the properties it enjoys. Definition (Additive term order) If σ is an additive type, we define an order relation ≤σ on closed terms by induction on the types: • If n, m : o then n ≤o m iff n ≤ m • If p, q : σ1 → σ2 then p ≤σ1 →σ2 q iff ∀x : σ1 , p(x) ≤σ2 q(x)

Remark. 1. Every typed additive term p is monotonic: if p : σ → τ and x ≤σ y then p(x) ≤τ p(y). 2. If p : σ → τ then λx. ↓ [p(x)] : σ → o is still a typed term and so is monotonic. 3. By monotonicity, we know that for every τ ≡ (σ1 → ... → σk → o) and p : τ → τ1 → ...τn → o, and every q : τ ↓ [p] =↓ [p (λx1 ...xk .0)] ≤o ↓ [p(q)] | {z } ≤τ q

3.3

Mapping

We define a mapping o from the formulas to the monotonic additive types. This mapping allows us to capture the structure of the formulas and transpose it to the higher-order polynomials. It is defined by:

3.4

o(α)

=

o

o(µβL)

=

o

o(L (A)

=

o(A)

o(A ⇒ B)

=

o(A) → o(B)

o(∀α A)

=

o(A)

Realizability

In this section, we introduce the realizability relation. Definition (Realizer) A realizer is an untyped λ-term in normal form for the weak call-by-value reduction strategy. The set of realizers is denoted by Λ. Intuitively, t, p A where t is a realizer and p a higer-order polynomial will signify that A is the specification of t and that p majorizes both the time needed for t to normalize and its size. We will see that p must have the same structure as the formula A. 8

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Definition (Realizability relation) We define the realizability relation t, p η A, where t is a realizer, p : o(A), |t| ≤↓ [p] and η is a partial function from V (the second-order variables) to P(Λ × N). • t, n η α iff (t, n) ∈ η(α)

• t, p η L (B if when u, mu η L then {t}u, p0 η B and: – p0 ≤o(B) p + mu – T ime({t}u) ≤↓ [p] + mu − ↓ [p0]

• t, p η A ⇒ B if when u, qu η A then ∃p0 : o(B), {t}u, p0 η L, and moreover: – p0 ≤o(B) p(qu) – T ime({t}u) ≤↓ [p(qu)]− ↓ [p0]

• t, p η ∀αA iff ∀C ⊂ Λ × N, t, p η{α←C} A Fixpoint realizability Let L(β) be a linear formula where β is a free variable appearing only in positive occurrence. Let U be P(Λ × N) and η be a valuation. Then, L(β) induces an application ˆ η (C) where (t, n) ∈ L ˆ η (C) iff t, n η{β←C} L. C 7→ L We have a little commutation property (proved by induction on the formula structure): Properties. Commutation We note |B| the set of (t, n) realizing B. Then: t, p η A[B/β] iff t, p η{β←|B|} A ˆ η : U → U is monotonic (because β only appears in positive occurrence), Moreover, L ˆ η has a greatest fixpoint and U is a complete lattice (as a powerset ordered by ⊆), so L S ˆ η (C) }. We then by the Tarski-Knapster Fixpoint Theorem, noted F = { C ∈ U | C ⊆ L define the fixpoint interpretation by: [ˆ η (C) } t, n η µβL ⇔ (t, n) ∈ F = { C ∈ U | C ⊆ L We can deduce from all of these that: ˆ η (F) ⇔ t, n η{β←F } L ⇔ t, n η L[µβL/β] t, n η µβL ⇔ (t, n) ∈ F ⇔ (t, n) ∈ L

3.5

Adequacy Lemma

The Adequacy Lemma is the essential point of this paper. It states the adequation between our typing system and the realizability interpretation we have defined. For more simplicity, we will note ~x = (x1 , ..., xn), ~y = (y1 , ..., yk) and λ~x~y .t will stand for λx1 ...xn .λy1 ...yk .t. Moreover, ~x : Γ stands for x1 : Γ1 , ..., xn : Γn , and Γ ⇒ ∆ (A for Γ1 ⇒ ... ⇒ Γn ⇒ ∆1 (...∆k (A. Theorem 4 (Adequacy Lemma). If we have ~x : Γ; ~y : ∆ ` t : A, then ∃p : o(Γ ⇒ ∆ (A)

s.t

∀η,

9

λ~x~y .t, p η Γ ⇒ ∆ (A

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

. Proof. By induction. We will simplify the cases to make thins more understandable. In particular, we only consider cases where ~x = (x) and ~y = (y) and if it does not change the proof, we take ∅ for Γ and/or ∆. (ax1) If we have x : A; ` x : A Then, λx.x, (λp.p) + 3 η A ⇒ A. • Obviously, |λx.x| ≤ 3 =↓ [id + 3] Now, if u, q η A, then: • We have obviously {λx.x}u, q η A and q ≤o(A) id(q) + 3 • And finally: T ime({λx.x}u) = 1 ≤ 3 = (↓ [id(q)] + 3)− ↓ [q] (we have to notice that it holds because u is normal)

(ax2) Almost the same as the previous case, except the majorizer is now 3 instead of id + 3.

(Contr) x : A, y : A; ` t : B u : A; ` t[u/x, u/y] : B By induction, we have λxy.t, pt η A ⇒ A ⇒ B. We will prove that λu.t[u/x, u/y], λq.(pt (q, q)+ ↓ [q] + 1) η A ⇒ B • The size condition is verified because λu.t[u/x, u/y]| ≤ |λxy.t| ≤↓ [pt] ≤↓ [pt] + 1 =↓ [λq.(pt (q, q)+ ↓ [q] + 1)] Let u, qu η A and p¯ s.t {λxy.t}uu, p¯ η B verifying all the ⇒-realizability conditions. • The order condition is checked for the same kind of reason • The only tricky point is the time property, that is checked here (using contraction property): T ime({λu.t[u/x, u/y]}u)

= T ime({λxy.t}uu) + |u| + 1 ≤

↓ [pt (pu , pu)]− ↓ [¯ p] + |u| +1 |{z} ↓[pu]

≤

↓ [(λq.(pt (q, q)+ ↓ [q] + 1))(pu)]− ↓ [¯ p]

((e) Here and in the next case, we only consider simplified cases (; ` t : A ⇒ B or ; ` t : L (B), because it does not change considerably the proof.

10

Realizability and implicit PTIME characterization

;` t : L (B

Alo¨ıs Brunel

x : Γ; y : ∆ ` u : L

x : Γ; y : ∆ ` tu : B By induction, we know two things: (R1) ∃pt ,

t, pt η L (B

(R2) ∃pu ,

λxy.u, pu η Γ ⇒ ∆ (L

We will prove that λxy.tu, pt + pu + κ η Γ ⇒ ∆ (B with κ some constant (here, pt + pu stands for the polynomial λq o(Γ) .pt + pu (q) (see section 3.2 for the notation)). All the points • are points of the definition of realizability we have to check. We first notice that •

|λxy.tu| = |t| + |u| + κ1 ≤↓ [pt]+ ↓ [pu] + κ1 =↓ [pt + pu] + κ1

Now let x, qx η Γ and y, ny η ∆. We can deduce that: Because of (R2) we have some mu s.t: {λxy.u}xy, mu η L T ime({λxy.u}xy) ≤ ↓ [pu (qx)] +ny − mu | {z } =pu (qx)

So, by (R2) we have p0t : o(B) s.t: {t}({λxy.u}xy), p0t η B p0t ≤o(B) pt + mu T ime({t}({λxy.u}xy)) ≤↓ [pt] + mu − ↓ [p0t]

Because we know that {t}({λxy.u}xy) = {λxy.tu}xy, we can conclude that •

{λxy.tu}xy, p0t η B

Moreover, p0t ≤o(B) pt + mu ≤o(B) pt + (pu (qx) + ny)

• • Finally, we have:

T ime({λxy.tu}xy) ≤ T ime({λxy.u}xy) + T ime({t}({...}xy)) + κ ≤ (pu (qx) + ny − mu) + (↓ [pt] + mu − ↓ [p0t]) + κ = ↓ [pt + pu (qx)] + κ + ny − ↓ [p0t]

(⇒e) ;` t : A ⇒ B

x : Γ; ` u : A

~x : Γ; ~y : ∆ ` tu : B

11

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

By induction, we know two things: 1. ∃pt : o(A) → o(B), 2. ∃pu : o(Γ) → o(A),

t, pt η A ⇒ B λ~x.u, pu η Γ ⇒ A :o(Γ)→o

z }| { We will prove that λ~x.tu, pt (pu) + (λ~q ↓ [pu (~q)]) +κ η Γ ⇒ B with κ some constant. We first notice that |λ~x.tu| = |t| + |u| + κ1 ≤

↓ [pt]+ ↓ [pu] + κ1

≤

↓ [pt (pu)]+ ↓ [pu] + κ1

= ↓ [pt (pu) + λ~q ↓ [pu]] + κ1 Let ~x such that xi , qi η Γi . There exists some p0u : o(A) s.t:

So we have p0t : o(B) s.t:

 p0u ≤o(A) pu (q1 , ..., qn)

 {t}({λ~x.u}~x), p0t η B

 {λ~x.u}~x, p0u η A

=⇒

 T ime({λ~x.u}~x) ≤↓ [pu (q1 , ..., qn)]− ↓ [p0u]

 p0t ≤o(B) pt (p0u) T ime({t}({λ~x.u}~x)) ≤↓ [pt (p0u)]− ↓ [p0t]

Because we know that {t}({λ~x.u}~x) = {λ~x.tu}~x, we can conclude that •

{λ~x.tu}~x, p0t η B

• Moreover, for every κ ∈ N: (3) p0t ≤o(B) pt (p0u) ≤o(B) pt (pu (q1 , ..., qn)) ≤o(B) pt (pu (q1 , ..., qn))+ ↓ [pu (q1 , ..., qn)]+κ • Finally, we have T ime({λx.tu}~x) ≤ ≤

T ime({λ~x.u}~x) + T ime({t}({λ~x.u}~x)) + κ1 (↓ [pu (q1 , ..., qn)]− ↓ [p0u]) + (↓ [pt (p0u)] − ↓ [p0t]) + κ1 | {z } ≤↓[pt (pu (qi))]

≤

↓ [pu (q1 , ..., qn) + pt (pu (q1 , ..., qn)) + κ1] − (↓ [p0t]+ ↓ [p0u])

By choosing κ = κ1 we have the conclusion we want.

((i) x : Γ; y : ∆, z : L ` t : B x : Γ; y : ∆ ` λz t : L (B By induction, we know that there exists some p : o(Γ) → o(B) such that λxλzλy t, p Γ ⇒ L (∆ (B That means, that λxλyλz t, p Γ ⇒ ∆ (L (B. Indeed, if u, qu Γ, s, ns ∆ and z, n L then we know that {λxyz.t}uzs, p(qu) + n + ns B. This is exactly | {z } ={λxyz.t}usz

what we need.

(⇒i) 12

Realizability and implicit PTIME characterization

x : Γ, z : A; y : ∆ ` t : B Γ; ∆ ` λz t : A ⇒ B

Alo¨ıs Brunel

(⇒R)

By induction, we know that there exists some p : o(Γ) → o(A) → o(B) such that λxλzλy t, p Γ ⇒ A ⇒ ∆ (B That means, that λxλyλz t, p Γ ⇒ ∆ (A ⇒ B. Indeed, if u, qu Γ, s, ns ∆ and z, pA A then we know that {λxyz.t}uzs, (p(qu , pA)) + ns B. This is | {z } ={λxyz.t}usz

exactly what we need.

(∀e) Γ; ∆ ` t : ∀β.C Γ; ∆ ` t : C[L/β] Here, we know by induction that there is p : o(Γ) → o(C) such that λxy.t, p η Γ ⇒ ∆ (∀β.C. Now, if we have x, qx η Γ and y, ny η ∆, then we also have p¯ : o(C) such that {λxy.t}xy, p¯ η ∀β.C In particular, {λxy.t}xy, p¯ η{β←L} C and by the commutation property that means also that: {λxy.t}xy, p¯ η C[L/β] and the others conditions are easy to check.

(µi) x : Γ; y : ∆ ` t : L[µβL/β] x : Γ; y : ∆ ` t : µβL

(µi)

We suppose that we have λxy.t, pt η Γ ⇒ ∆ (L[µβL/β]. Let x, qx η Γ and y, ny η ∆. Then, we have some p¯ s.t {λxy.t}xy, p¯ η L[µβL/β]. But because of the fixpoint property (see section 3.4), we know immediately that {λxy.t}xy, p¯ η µβL. The time, size conditions are here again verified immediately.

(W) Immediate by induction by constructing a term that reject one of the arguments.

(Derel) ;x : L ` t : B x : L; ` t : B

13

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

So we know by induction that for every x ¯, nx η L then (t[¯ x/x])∗ , p¯ η B. We will show that λx.t, λm.(pt + m) + 1 η L ⇒ B • The size condition is checked because |λx.t| ≤ |t| + 1 ≤↓ [pt] + 1 =↓ [λm.(pt + m) + 1]. If we take some x ¯, n η L, then we have some p¯ s.t (t[¯ x/x])∗ , p¯ η B and: • The order condition: p¯ ≤o(B) pt + n = (λm.(pt + m))(n) • And finally, because

→

(λx.t)(¯ x)

→

∗

t[¯ x/x] (t[¯ x/x])∗

we conclude x|)) + T ime((t[¯ x/x])∗) T ime({λx.t}¯ x) ≤ max(1, (|t[¯ x/x]| −|λx.t| − |¯ | {z } =|t|+|¯ x|−1

≤ 1 + T ime((t[¯ x/x])∗) ≤ 1+ ↓ [pt] + n

/ We now exhibit a majorizer fw for each Church word w. ¯ Lemma 5. It exists some κ ∈ N such that, for every L and η, for every w ∈ {0, 1}n : w, ¯ λxy.2n(x + y) + n + κ η W (L)

. Proof. We note pn = λxy.2n(x + y) + n + κ. • We first have |w| ¯ = n + κ1 =↓ [pn] if we take κ = κ1 (κ1 is independent of n). • Let f0 , nf0 η L (L, f1 , nf1 η L (L and a, na η L. Because for i ∈ {0, 1}, fi , nfi η L (L, for every sequence i1 , ..., in we can construct by recurrence, the mj s.t: {fi1 }a, m1 η L {fi2 }({fi1 }a), m2 η L ... {fin }({fin−1 }...{fi1 }(a)...), mn η L with all the properties from the definition.

14

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

• And then we have: T ime({λf0 f1 a.fin (...(fi1 a)...)}f0 f1 a) ≤

(|fin (...(fi1 (a))...)| −|f0 | − |f1 | − |a| − 5) + | {z } ≤n(|f0 |+|f1 |)+|a|

T ime({fin }(fin−1 ...fi1 (a))) ≤ (nf0 + nf1) × n + T ime({fi1 }a) + T ime({fi2 }({fi1 }a)) + ... + T ime({fin }({fin−1 }(...{fi1 }a...))) ≤ (nf0 + nf1) × n + (nfi1 + na − m1) + (nfi2 + m1 − m2) + ... + (nfin + mn−1 − mn) ≤ (nf0 + nf1) × n + n × (nf0 + nf1) + na − mn ≤ 2n × (nf0 + nf1) + (n + κ1) + na − mn = pn (nf0 , nf1) + na − mn Which allows us to conclude. /

Theorem 6 (Weak soundness). If we have ` t : W ⇒ WS then, for every ` w ¯ : W , then it exists a polynomial P such that: T ime({t}w) ¯ ≤ P (|w|)

. Proof. By adequacy, it exists pt : (o → o → o) → o such that t, pt W ⇒ WS . Let w ¯ : W and n = |w|. Moreover, by the lemma above w, ¯ (λxy.2n(x + y) + n + κ) η N . Then, we deduce from the definition of the realizability that: T ime({t}w) ¯ ≤ pt (λxy.2n × (x + y) + n + κ) o→o→o

Moreover, pt = λx .p: we can prove by induction on the term p that the result is a polynomial. Indeed: by induction on the normal form of p (here x is the term λxy.2n × (x + y) + n + κ): • p = k: then p is a constant • p = p1 (x) + p2 (x): by induction we know that p1 (x) is a polynomial of n and p2 (x) also. Then the sum also is a polynomial of n. • p = (p1 (x))(p2 (x)): p1 (x) = x because p is in normal form and x is its only free variable, so p2 (x) : o and we know that it is a polynomial of n. Then 2n(p2 (x)) + n + κ is still a polynomial of n Finally, n 7→ pt (λxy.2n × (x + y) + n + κ) is a polynomial, and so is n 7→ nt + pt (λxy.2n × (x + y) + n + κ), which is what we wanted. /

4

Realizability relation: bounding size

In this section, we state the following result, which will be useful to prove the FP soundness theorem:

15

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Theorem 7 (Size bound). If we have ` t : W ⇒ WS then, for every ` w ¯ : W , then it exists a polynomial P such that: |(tw)∗ | ≤ P (|w|) We will use a realizability argument, simpler than the previous one, so because of the lack of space, we only state the definitions and intermediate results without giving full proofs. We cannot use the same framework we used in the previous section for the following reason: β-reduction obliges us to deal with open terms, something we cannot do. That’s why we first have to extend the syntax of the λ-terms. We could have merged the two different realizability proofs, but it would not have simplified anything, so we prefer to separate them. In this section, and only in this section the λ-terms are defined by: M, N, L ::= x | λx.M | M N | z The z is an inert object, that helps us to deal with open terms. The realizers are closed λ-terms in β-normal form. We then define the realizability: t, p A, where t is a realizer, p : o(A) and: • t, n η α iff (t, n) ∈ η(α) • t, p η L (B if when u, mu η L then (tu)∗ , p + mu η B • t, p η A ⇒ B if when u, qu η A then (tu)∗ , p(qu) η B • t, p η ∀αA iff ∀C ⊂ Λ × N, t, p η{α←C} A • t, p η µβL is defined the same way as in the previous section Moreover, we add the following condition, for every formula F and every closure η, we have z, 1 η F . Lemma 8. If we have x : Γ; y : ∆ ` t : A, then ∃p : o(Γ) → o(A)

s.t

∀η,

λxy.t, p η Γ ⇒ ∆ (A

Lemma 9. For every L and every η, it exists some κ s.t: w, ¯ λxy.2n(x + y) + |w| + κ η W (L)

Theorem 7 (Size bound). If we have ` t : W ⇒ WS then, for every ` w ¯ : W , then it exists a polynomial P such that: |(tw)∗ | ≤ P (|w|)

5

FP Soundness

In this section, we will prove that DIAL∀l µl is correct for polynomial time computation, namely if t : W ⇒ WS represents the function f : {0, 1}∗ → {0, 1}∗ (for every w, tw ¯ →∗β f (w)) then f can be computed in polynomial time. Using Adequacy lemma (lemma 4), we can find a suitable majorizer, that bounds the time complexity needed to compute the weak normal form of the term tw. ¯

16

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Because we use weak call-by-value strategy in the first realizability definition (see section 3), we can’t deduce polytime soundness directly from it. Indeed, if the term t is of the form t = λn.λxy.t0 then, because we cannot reduce under the λ, t n ¯ will not reduce after the first substitution. We then need to explicit a mechanism to obtain the β-normal term from this weak normal form, and a proof that this mechanism works in polynomial time. This is achieved by exhibiting a family of λ-terms (Mn)n∈N where each Mn computes the n-th bit of the result. We show that there is a polynomially bounded number of bits we have to retrieve and that each term Mn computes its result in polynomial time so that the resulting binary word can be retrieved in polynomial time using a Turing machine, which is enough to conclude that our system is included in PTIME.

5.1

The principle

We define a family of λ-terms (bn [u])n∈N (u is a free variable of the bn) such that if t : WS , then bn [t/u] →∗w 0 if the n-th bit of t is 0 and 1 otherwise. 0, 1 and are here respectively the words formed only by the character 0, the character 1 and the empty word.

b0

≡

u(λx.0)(λx.1)(λx.)

b1

≡

((p)u)(λx.0)(λx.1)(λx.)

... bn

≡ ...

(p(...(p(u))...)(λx.0)(λx.1)(λx.) | {z } n times

It is obvious that if t is of the type WS , bn [t/u] will normalize (in the sense of the weak call-by-value reduction strategy) in the n-th bit of t. That allows us to obtain the word that t represents. We only have to examine the two following things: 1. For each i ∈ N, the time needed to execute bi [t/u] (in the sense of the time measure defined earlier). 2. The size of this family of terms, that is, the number of bits of t which is simply the size of its β-normal form. Given these two informations and using the theorem 3, we can bound the time needed to retrieve the β-normal of t using a Turing Machine.

The definition Let’s take t : WS and mt ∈ N given by the adequacy lemma: t, mt WS . We will now find majorizers that bound each bn that only depend of mt . We define the family of the cn : ≡

t

c1

≡

{c0 }(id)(id)

cn+1

... ≡

{cn }(id)(id)

c0

so that each of the cn are in normal form for the weak call-by-value reduction. By immediate induction and by the adequacy lemma, we obtain the mn ∈ N such that:

17

Realizability and implicit PTIME characterization

m0

=

mt

m1

≤

mt + 2κid + κ

Alo¨ıs Brunel

... mn

≤

mt + 2nκid + nκ

and cn , mn WS . Then, to obtain the n-th bit of t, we have to normalize cn (λx.¯0)(λx.¯1). By realizability argument, we know that {cn }(λx.¯0)(λx.¯1), kn WS and: T ime({cn }(λx.¯0)(λx.¯1)) ≤ mn + κ − kn where κ is some constant.

Soundness proof We are now ready to prove the FP-soundness theorem. Theorem 1 (FP-soundness). If a λ-term t is typable in DIAL by W ⇒ WS , then the function ft : {0, 1}∗ → {0, 1}∗ defined by ft (w) = w0 such that ΦS (w0) = ((t)w) ¯ ∗ (the β-normal form of tw) ¯ is computable in time Q(|w|) for some polynomial Q by a Turing machine.

. Proof. Let f : W ⇒ WS and w ¯ : W . We have by adequacy lemma some pf ∈ N such that f, pf W ⇒ WS and some m such that {f }w, ¯ m WS and m ≤ pf (mw¯). We now by Theorem 3 that computing the weak-CBV normal form of f (w) ¯ takes P (|w|) where P is some polynomial. To obtain the binary word, we have to run the family of terms dn = cn (λx.¯0)(λx.¯1) for n ≤ |(f w) ¯ ∗ | where t is replaced by {f }w ¯ Running each dn takes T ime(dn) ≤ mn + κ ≤ m + 2 × n × κi d + n × κ + κ ≤ m + n × κ0 (where κ0 = 2κi d + κ + κ). Or we know that m ≤ pf (mw¯) where mw¯ is linear in |w|. ¯ So, running each dn and by the way obtaining all the bits of the resulting binary word takes only a time polynomial in |w|. ¯ Let’s say the maximum time for one dn is Q(|w|) for some Q polynomial. We have to run all the dn until n = |(f w) ¯ ∗ |. Because of the theorem 7, we know that ∗ |(f w) ¯ | ≤ R(|w|) for some polynomial Q. That means that the total time needed to retrieve the result is: P (|w|) + Q(|w|)R(|w|) which obviously is a polynomial in |w|. /

6

The polytime functions are representable

We will now show how to encode polytime Turing machine into a term t such that `DIAL∀l µl . We will use for this purpose a more convenient but still equivalent variant of the Turing machine already used in [17].

18

Realizability and implicit PTIME characterization

6.1

Alo¨ıs Brunel

Notations

If t1 , ..., tk are terms of types A1 , ..., Ak , then we note ht1 , ..., tk i or t1 ⊗ ... ⊗ tk the term: ht1 , ..., tk i ≡ λx.xt1 ...tk and we note A1 ⊗ ... ⊗ Ak the type of this term, defined by: A1 ⊗ ... ⊗ Ak ≡ ∀α.(A1 (A2 (... (Ak (α) (α We denote by let x be (t1 , ..., tk) in M the term: x(λt1 ...tk .M)

6.2

Polynomial

We first need to encode the polynomial iterators. Let fix some formula A. We can define multC and monC [n] which represent the multiplication and the monomial x 7→ xn , moreover we can type them with the following types in DIAL∀l µl : multC monC

≡ ≡

λnλm λf a (n (m f)a) λx (n (multC x) 1)

: :

N (A) (N (A) ⇒ N (A) N (A) ⇒ N (A)

Conclusion: we can represent any polynomial x 7→ Q(x) in the system, typed by : ∀A (N (A) ⇒ N (A)).

6.3

Various terms

We know define some more terms that will be useful to encode Turing Machine. We don’t give any typing proof, because of the lack of space. Scott words primitives p

≡ λl.l(λx.x)(λx.x)S

p

:

WS (WS

case ≡ λxz0 z1 z2 z3 z4 z5 .x(λab.b(λab.b(λab.b(λab.b(λab.b(S)z5)z4)z3)z2)z1)z0 case hu1 , ..., un i πin π04 πi4

:

WS (α (α (α (α (α (α (α

≡ λx.xu1 ...un ≡ λx.x(λz1 ...zn .zi) :

∀α.(WS (α (α (α) (α) (WS

:

∀α.(WS (α (α (α) (α) (α

d

≡ λx.x(λz1 z2 z3 z4 .z1 (λz.z2)(λz.z3)z4)

d

:

∀α.((WS (α (α (α (α) (α

Church word primitives lengthC ≡ λwf a.wf f a : W (N We also have a translation between the Church and Scott words: T ≡ λw.w(λsf x.f 1s)(λsf x.f 0s)(λf x.x) T has the type W (WS . 19

Realizability and implicit PTIME characterization

6.4

Alo¨ıs Brunel

Turing machine

We now describe how to encode Turing Machines. We use the same variant of the Turing machine described in [17]. This machine has only one finite tape. We can see the current configuration of the machine as a triplet (q, wl , wr) ∈ Q × {0, 1}∗ × {0, 1}∗ where q is the current state, wl is the word at the left of the reading/writing head, wr is the word beginning exactly where the head lies. In this variant of the machine, there are 6 kinds of transition. We suppose having k states (qi)i≤k . We can suppose that for each q, there is exactly one transition with q as source. We note σ(q) the encoding of the destination state of this transition. If the transition is a branching one, the destinations are respectively σ0 , σ1 and σ . Here is a description of the functioning of the different kinds of transition of the machine. Branching

Insertion 0 Insertion 1 Deletion Right Left

From (q, wl , wr), if wr = 0.w0 the new configuration is (σ0 (q), wl , wr). If wr = 1.w0 then we go to (σ1 (q), wl , wr) and if wr = , we go to (σ (q), wl ,) From (q, wl , wr), the new configuration is (σ(q), wl , 0.wr) From (q, wl , wr), the new configuration is (σ(q), wl , 1.wr) From (q, wl , c.wr), the new configuration is (σ(q), wl , wr) From (q, wl , c.wr), the new configuration is (σ(q), wl .c, wr) From (q, wl .c, wr), the new configuration is (σ(q), wl , c.wr)

We will encode the one-step transition of a given Turing machine M . We encode the states by the terms: qi ≡ λx1 ...xk .xi : ∀α α ... (α} | ({z k+1 times

D ≡ λx.let x be (q, wl , wr) in (qM1 ...Mk)(wl , wr) where Mi = let x be (wl , wr) in Mi0 Given the type of the state qi , we can define the term Mi0 like this: Type of qi

Mi0 ≡

Branching Inserting 0 Inserting 1 Deletion Right Left

dhwr , σ0 (qi), σ1 (qi), σ (qi)i ⊗ wl ⊗ wr σ(qi) ⊗ wl ⊗ 0.wr σ(qi) ⊗ wl ⊗ 1.wr σ(qi) ⊗ wl ⊗ (p)wr σ(qi) ⊗ dhwr , wl , 0.(wl), 1.(wl)i ⊗ p(wr) σ(qi) ⊗ p(wl) ⊗ dhwl , wr , 0.(wr), 1.(wl)i

We have to remark that because qi is fixed, σ(qi), σ0 (qi) and σ1 (qi) are fixed as well. That means that this is ”hard-coded” and that we use q only once in the term D is sufficient to see that our term D is linear: D : (WS ⊗ WS ⊗ WS) ((WS ⊗ WS ⊗ WS) Let M be a Turing machine computing f : W → W with a runtime bounded by Q(|w|) where w is the entry and Q some polynomial. Let Q : N (WS ⊗ WS ⊗ WS) ⇒ N (WS ⊗ WS ⊗ WS) the term representing Q. We have the initial state: J[w] ≡ h#s0 , S , Twi We have the machine state after Q(|w|) iterations: E[w] ≡ (Q(lengthC w))DJ : (WS ⊗ WS ⊗ WS)

20

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

lengthC w can be typed by N (WS ⊗ WS ⊗ WS) and then Q(lengthC w) can be typed by N (WS ⊗ WS ⊗ WS). If w : WC , then we have E[w] −→ DQ(|w|) J and π33 (E[w]) gives us the result. So our final term is: T ur[W] ≡ λw.π33 ((Q(lengthC w))DJ[w]) : W ⇒ WS which corresponds to the machine M of the beginning. Theorem 2 (FP-completeness). If a function f : {0, 1}∗ → {0, 1}∗ is computable by a Turing Machine in time O(P (n)) where P is some polynomial, then there exists a λ-term t such that `DIAL t : W ⇒ WS and such that if w ∈ {0, 1}∗ then: (t)w →∗ ΦS (f (w))

21

Realizability and implicit PTIME characterization

7

Alo¨ıs Brunel

Concluding remarks

We have introduced a new system that captures precisely the class of functions computable in polynomial time. Although it is based on the same principle as the tiered recursion characterization of FP introduced by Leivant and Marion in [17], our characterization has the asset of being totally logical. Moreover, we have introduced a simple variant of the Dal Lago and Hofmann realizability that could be used to prove others characterizations of complexity classes like PSPACE or LOGSPACE. Here is a non-exhaustive list of the remaining open questions related to this work: • Can we, instead of using a dual type system, deal directly with the !-connective? For the time being, it seems that is would considerably complicate the definition of the realizability relation. • Is it possible to relate our definition of realizability and the Dal Lago & Hofmann realizability introduced in [14]? Even if it appears not to be interesting to try to find a commutative monoid structure for our majorizers because of the higher order polynomials are typed, it may be possible to find a simple and more general framework, that still enjoys interesting properties and generalizes our two definitions. • The way we use the majorizers in our definition of realizability seems redundant. Indeed, the structure of a λ-term t and the structure of the majorizer pt we obtain by the adequacy lemma from this term seem really close to each other. It could be a clue that we can refine our framework and maybe simplify the proof of the adequacy lemma. • We have adapted the tiered recursion characterization of the PTIME functions. Can we find a suitable logical system as well corresponding to the tiered recursion characterizations of PSPACE and ALOGTIME in [19], [18] and [16]? Concerning PSPACE, it seems it could be possible by adding to the two arrows (linear and non-linear) a third one, which would correspond to a non-space increasing arrow, but this work has yet to be done. • Concerning the proof technique, is it possible to deal easily with space complexity, using our realizability definition or the Dal Lago and Hofmann’s framework? For example, can we use a space-optimized Krivine Machine (see [13] for the original description of the Krivine Machine) instead of the weak call-by-value strategy to express realizability conditions on some interesting space measure? In order to do this, we would need quantitative properties on Krivine Machine that have not been deeply studied yet.

22

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

Acknowledgments I would like to specially thank Kazushige Terui, my advisor, for having welcomed me in Kyoto and in the RIMS. I have really enjoyed to work with him during these almost 3 months, and thanks to his constant help and countless suggestions and remarks I have learned much more than I ever hoped for. Thanks also to Ichiro Hasuo and Kazuyuki Hasada, and all the others computer science team members of the RIMS for their hospitality and the daily coffee breaks. Some peoples have made this internship possible and I really want to thank them: Patrick Baillot who suggested me this internship, Yevedo Goukindji in Lyon and Masaiko Kaiden who helped me a lot with the administrative stuff.

23

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

References [1] S. Arora and B. Barak. Computational Complexity: A modern approach. to appear: http://www. cs. princeton. edu/theory/complexity, 2007. [2] P. Baillot. Logique Lin´eaire, Types et Complexit´e Implicite. [3] P. Baillot and K. Terui. Light types for polynomial time computation in lambda calculus. Information and Computation, 207(1):41–62, 2009. [4] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. Computational complexity, 2(2):97–110, 1992. [5] Guillaume Bonfante, Jean-Yves Marion, and Romain P´echoux. A characterization of alternating log time by first order functional programs. In Springer, editor, LPAR, volume 4246 of Lecture Notes in Computer Science, pages 90–104, 2006. [6] U. Dal Lago and M. Hofmann. A Semantic Proof of Polytime Soundness of Light Affine Logic. [7] U. Dal Lago and S. Martini. The weak lambda calculus as a reasonable machine. Theoretical Computer Science, 398(1-3):32–50, 2008. [8] M. Gaboardi, J.Y. Marion, and S.R. Della Rocca. A logical account of pspace. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 121–131. ACM New York, NY, USA, 2008. [9] J.Y. Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998. [10] J.Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. Theoretical computer science, 97(1):1–66, 1992. [11] M. Hofmann. An application of category-theoretic semantics to the characterisation of complexity classes using higher-order function algebras. Bulletin of Symbolic Logic, pages 469–486, 1997. [12] M. Hofmann. Type systems for polynomial-time computation. 1999. [13] J.L. Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation, 20(3):199–207, 2007. [14] U. Dal Lago and M. Hofmann. Quantitative models and implicit complexity. In Proceedings of 24th International Conference on Foundations of Software Technology and Theoretical Computer Science, pages 189–200. Springer, 2005. [15] D. Leivant. Stratified functional programs and computational complexity. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 325–333. ACM New York, NY, USA, 1993. [16] D. Leivant and J.-Y. Marion. A characterization of alternating log time by ramified recurrence. Theoretical Computer Science, 236(1-2):192–208, Apr 2000. [17] D. Leivant and J.Y. Marion. Lambda calculus characterizations of poly-time. In Typed Lambda Calculi and Applications: International Conference on Typed Lam [b] da Calculi and Applications, TLCA’93, March 16-18, 1993, Utrecht, the Netherlands: Proceedings, page 274. Springer, 1993. [18] D. Leivant and J.Y. Marion. Ramified recurrence and computational complexity II: substitution and poly-space. Lecture Notes in Computer Science, 933:486–500, 1995. [19] D. Leivant and J.Y. Marion. Ramified recurrence and computational complexity IV: Predicative functionals and poly-space. Manuscript, 1997. [20] M. n Abadi, L. Cardelli, G. Plotkin, S. Rx, and S. Ra. Types for the Scott numerals. 24

Realizability and implicit PTIME characterization

Alo¨ıs Brunel

[21] K. Terui. Linear logical characterization of polyspace functions. In Second Workshop on Implicit Computational Complexity (ICC’00). Citeseer, 2000. [22] P. van Emde Boas. Machine models and simulations. 1991.

25

des documents recommandant

[image: alt]

Parkinson's Disease, Movement Vigor, and Implicit Motivation

Jul 4, 2007 - Page 1 each movement, we calculated extent error as the difference between movement and target extent, log-rank statistic (2. 7.00; p.

[image: alt]

Implicit Mathematics - Yves Chevallard

notion, that of the mode of presence of mathematics: mathematics may be present intrinsic progress, can paradoxically be seen in the never-ending, two-fold ...

[image: alt]

Cultural policy explicit and implicit: a distinction and some uses

*Email: . Downloaded ... Mitterrand in the ElysÃ©e palace between 1981 and 1988, he draws up a list of measures that the stuff with which he is dealing throughout the book, and he addresses within a geopolit-.

[image: alt]

Direct exoplanet detection and characterization using the

F. Cantalloube1,2,3, D. Mouillet1,3, L. M. Mugnier2, J. Milli1,3,4, O. Absil5,â‹†â‹†, C. A. Lagrange-Henri, A. M., Vidal-Madjar, A., & Ferlet, R. 1988, A&A, 190, 275.

[image: alt]

Identification and Characterization of cvHsp .fr

that associate with malfolded proteins, prevent their aggrega- ... and influence the final intracellular location of mature pro- were used for the initial PCR and the second nested PCR, respectively, Statistical analysis was made by using a

[image: alt]

Variational Implicit Surfaces

curve on the left is defined by four zero-valued and one positive constraint. This curve is a unique surface out of an infinite number of surfaces that match a set of given height The main difference between our sculpting system and Witkin

[image: alt]

Dissociation of Explicit and Implicit Timing in Repetitive ... - CiteSeerX

To test this hypothesis, we developed a hybrid circle drawing task: intermittent circle On the 1st training trial, all of the movements were performed with the ...

[image: alt]

Linear and Nonlinear Loudspeaker Characterization - CiteSeerX

Jun 25, 2006 - M-Audio quadratic and linear loudspeaker response, MMSE method. may be improved by using the following equation to calculate H(f): (3).

[image: alt]

Supporting Information Structural characterization and biological fluid

Î²-Ca2.841(9)Mg0.159(9)(PO4)2 from the 50Mg1100 sample. Table SI4. Comparison of the interatomic distances and the calculated bond valence sum.

[image: alt]

Isolation and Characterization of Human Recombinant ... - CiteSeerX

Jun 1, 2002 - Colonies were collected from the plates in 2YT/A/G and diluted 1:100 in 50 ml of medium. dendritic-tumor cell hybrid vaccinations (6â€“8).

[image: alt]

Chemical synthesis and characterization of fluorinatedfr

Introduction. Nowadays ... Impedance spectroscopy was performed using a Schlum- IR spectra main attribution of the fluorinated polyphenylthiophenes.

[image: alt]

Linear and Nonlinear Loudspeaker Characterization - CiteSeerX

Jun 25, 2006 - in partial fulfillment of the requirements for the. Degree of the human ear, inter-modulation distortion is the most offensive loudspeaker.

[image: alt]

Elaboration and characterization of Mullite-Zirconia ... - Biblioscience

lity [1-2]. However, as structural materials, mullite ce- ramics show poor mechanical properties. Dispersed zirconia ... 1) gibbsite Al(OH)3 and boehmite AlOOH (supplied by Diprochim, Algeria) were Marcel. Dekker, New York and Basel 1982.

[image: alt]

Experimental characterization of buoyancy- and ... - Hugues Bodiguel

Apr 11, 2008 - the vertical temperature gradient results from the evapora- is obtained by derivation of weight measurements. The dish diameter is between 7 Ð’ 10Ð�2 m and 0.12 m, with most of the experiments being performed in a 0.11 m diameter

[image: alt]

Structural Characterization and Biological Fluid Interaction ... - CiteSeerX

Jan 22, 2009 - of nominal composition Ca5(PO4)3 Â· OH and 5 at. % Mg-doped form the low-density column located on the 3-fold axis, REFERENCES AND NOTES. (1) Dahl, S. G. (31) LeGeros, R. Z. Calcium phosphates in oral biology and medici

[image: alt]

Molecular characterization of Babesia and Cytauxzoon species

Nov 6, 2014 - A fatal cytauxzoonosis-like disease in cats. Journal of the. American Veterinary Medical Association 168, 585â€“588. Yabsley, M.J. and Shock, ...

[image: alt]

Interactions between human explicit and implicit ... - Julien Lagarde PhD

ent times: prior to, or in the middle of, the physical practice. A group without any ... approximate the task goal, which is later refined with prac- tice [9]. Therefore ...

[image: alt]

Characterization and Identification of Tunisian Olive ... - Re.C.O.Med

fruits (0.8 to 1.3 g), their use for oil pro- duction, and markers are extremely useful tools for addressing 1992, Book 3. 1:407â€“420. ... 80:105â€“110. Muzzalupo ...

[image: alt]

Manipulation and electrical characterization of ... - Tranvouez Edern

atomic force microscopy (AFM) and b) performing electrical characterization of ... microscopy (STM) the smoothing of the surface and the growth of twinning ...

[image: alt]

The Accordion Phenomenon: Analysis, Characterization, and Impact

Delay/Disruption Tolerant Networks ... In devices, in networking technologies, in environments. Regular end-to-end ... (to optimize content distribution, routingâ€¦) ...

[image: alt]

Characterization and Compensation of XY Micropositioning Robots

control instead of manual operation [5], [6]. Micromanipu- ... specifications such as positioning repeatability and sensor resolution. Because ... of interest has to remain inside the field-of-view. ... show on a case study that these features make p

[image: alt]

Characterization and modeling of oxides ... - Michel Perez

In this context, modeling tools are excellent means to understand the precipitation phases. Fig. 8(b) illustrates a fcc Y2O3 precipitate observed in (110)Fe two.

[image: alt]

Synthesis and characterization of nanocomposite ... - Sylvain Miachon

doping with Zr [5], and vapor treatment with SnCl4 before cal- cination [6]. ... permeation performance and with high structural stability. In this concept, the active ...

[image: alt]

Implicit and explicit aspects of sequence learning in pre ... - Research

fifth decade of subjects with 40 or more CAG repeats on chro- mosome 4 and leads ... ance and the time course of the different symptoms are very variable [5] and ... learning tasks, the order of the elements is mostly learned ex- plicitly and can be

×
Report Realizability and implicit PTIME characterization

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

