

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm

Query: Find a shortest path from s to t. Interested in exact algorithms that search a subgraph. Related work: reach-based routing [Gutman 04], hierarchi-.

 Télécharger le PDF

 1MB taille
 3 téléchargements
 307 vues

 commentaire

 Report

Reach for A∗: an Efficient Point-to-Point Shortest Path Algorithm Andrew V. Goldberg Microsoft Research www.research.microsoft.com/∼goldberg/ Joint with Chris Harrelson, Haim Kaplan, Renato Werneck

Shortest Path Problem

Variants • Nonnegative and arbitrary arc lengths. • Point to point, single source, all pairs. • Directed and undirected. Here we study • Point to point, nonnegative length, directed problem. • Allow preprocessing with limited (linear) space. Many applications, both directly and as a subroutine.

Reach for A∗

1

Shortest Path Problem

Input: Directed graph G = (V, A), nonnegative length function ℓ : A → R+, source s ∈ V , terminal t ∈ V . Preprocessing: Limited space to store results. Query: Find a shortest path from s to t. Interested in exact algorithms that search a subgraph. Related work: reach-based routing [Gutman 04], hierarchical decomposition [Schultz, Wagner & Weihe 02], [Sanders & Schultes 05], geometric pruning [Wagner & Willhalm 03, Lauther 04].

Reach for A∗

2

Outline

• Scanning method and Dijkstra’s algorithm. • Bidirectional Dijkstra’s algorithm. • A∗ search. • ALT Algorithm • Definition of reach • Reach-based algorithm • Reach for A∗

Reach for A∗

3

Scanning Method

• For each vertex v maintain its distance label ds(v) and status S(v) ∈ {unreached, labeled, scanned}. • Unreached vertices have ds(v) = ∞. • If ds(v) decreases, v becones labeled. • To scan a labeled vertex v, for each arc (v, w), if ds(w) > ds(v) + ℓ(v, w) set ds(w) = ds(v) + ℓ(v, w). • Initially for all vertices are unreached. • Start by decreasing ds(s) to 0. • While there are labeled vertices, pick one and scan it. • Different selection rules lead to different algorithms.

Reach for A∗

4

Dijkstra’s Algorithm [Dijkstra 1959], [Dantzig 1963]. • At each step scan a labeled vertex with the minimum label. • Stop when t is selected for scanning. Work almost linear in the visited subgraph size. Reverse Algorithm: Run algorithm from t in the graph with all arcs reversed, stop when t is selected for scanning. Bidirectional Algorithm • Run forward Dijkstra from s and backward from t. • Maintain µ, the length of the shortest path seen: when scanning an arc (v, w) such that w has been scanned in the other direction, check if the corresponding s-t path improves µ. • Stop when about to scan a vertex x scanned in the other direction. • Output µ and the corresponding path. Reach for A∗

5

Example Graph

1.6M vertices, 3.8M arcs, travel time metric. Reach for A∗

6

Dijkstra’s Algorithm

Searched area Reach for A∗

7

Bidirectional Algorithm

forward search/ reverse search Reach for A∗

8

A∗ Search

[Doran 67], [Hart, Nilsson & Raphael 68] Similar to Dijkstra’s algorithm but: • Domain-specific estimates πt(v) on dist(v, t) (potentials). • At each step pick a labeled vertex with the minimum k(v) = ds(v) + πt(v). Best estimate of path length throgh v. • In general, optimality is not guaranteed.

Reach for A∗

9

Feasibility and Optimality Potential transformation: Replace ℓ(v, w) by ℓπt (v, w) = ℓ(v, w) − πt(v) + πt(w) (reduced costs). Fact: Problems defined by ℓ and ℓπt are equivalent. Definition: πt is feasible if ∀(v, w) ∈ A, the reduced costs are nonnegative. (Estimates are “locally consistent”.) Optimality: If πt is feasible, the A∗ search is equivalent to Dijkstra’s algorithm on transformed network, which has nonnegative arc lengths. A∗ search finds an optimal path. Different order of vertex scans, different subgraph searched. Fact: If πt is feasible and πt(t) = 0, then πt gives lower bounds on distances to t. Reach for A∗

10

Computing Lower Bounds Euclidean bounds: [folklore], [Pohl 71], [Sedgewick & Vitter 86]. For graph embedded in a metric space, use Euclidean distance. Limited applicability, not very good for driving directions. We use triangle inequality

a b 0000 1111 00000000000000 11111111111111 11111111111111 00000000000000 0000 1111

0 1 0 1 11111111111111 0000 1111 00000000000000 11111111111111 00000000000000 0000 1111 0 1 0 1 0000 1111 00000000000000 11111111111111 11111111111111 00000000000000 0000 1111 0000 1111 00000000000000 11111111111111 11111111111111 00000000000000 0000 1111 0000 1111 00000000000000 11111111111111 11111111111111 00000000000000 0000 1111 11111111111 00000000000 0000 1111 00000000000000 11111111111111 11111111111111 00000000000000 01 1111 000 0 1 0 0 1 0 1

v

w

dist(v, w) ≥ dist(v, b)−dist(w, b); dist(v, w) ≥ dist(a, w)−dist(a, v). Reach for A∗

11

Lower Bounds (cont.) Maximum (minimum, average) of feasible potentials is feasible. • Select landmarks (a small number). • For all vertices, precompute distances to and from each landmark. • For each s, t, use max of the corresponding lower bounds for πt(v). Why this works well (when it does)

a s

x

y

t ℓπt (x, y) = 0

Reach for A∗

12

Bidirectional Lowerbounding

Forward reduced costs: ℓπt (v, w) = ℓ(v, w) − πt(v) + πt(w). Reverse reduced costs: ℓπt (v, w) = ℓ(v, w) + πs(v) − πs(w). Fact: πt and πs give the same reduced costs iff πs + πt = const. t (v) and p (v) = −p (v). [Ikeda et at. 94]: use ps(v) = πs(v)−π s t 2

Other solutions possible. Easy to lose correctness. ALT algorithms use A∗ search and landmark-based lower bounds.

Reach for A∗

13

Landmark Selection Preprocessing • Random selection is fast. • Many heuristics find better landmarks. • Local search can find a good subset of candidate landmarks. • We use a heuristic with local search. Preprocessing/query trade-off. Query • For a specific s, t pair, only some landmarks are useful. • Use only active landmarks that give best bounds on dist(s, t). • If needed, dynamically add active landmarks (good for the search frontier). Allows using many landmarks with small time overhead. Reach for A∗

14

Bidirectional ALT Example

Reach for A∗

15

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks. method Bidirectional Dijkstra ALT

Reach for A∗

preprocessing minutes MB

avgscan

query maxscan

ms

—

28

518 723

1 197 607

340.74

4

132

16 276

150 389

12.05

16

Reaches [Gutman 04] • Consider a vertex v that splits a path P into P1 and P2. rP (v) = min(ℓ(P1), ℓ(P2)). • r(v) = maxP (rP (v)) over all shortest paths P through v. Using reaches to prune Dijkstra:

d(s,v)

v

w

LB(w,t)

s

t

If r(w) < min(d(v) + ℓ(v, w), LB(w, t)) then prune w.

Reach for A∗

17

Obtaining Lower Bounds

Can use Euclidean and landmark lower bounds if available. Bidirectional search gives implicit bounds (Rt below).

d(s,v)

s

v

w

LB(w,t)

Rt

t

Reach-based query algorithm is Dijkstra’s algorithm with pruning based on reaches. Given a lower-bound subroutine, a small change to Dijkstra’s algorithm.

Reach for A∗

18

Computing Reaches

• Best known exact computation uses all-pairs shortest paths. • Overnight for 0.3M vertex graph, years for 30M vertex graph. • Can use reach upper bounds for query search pruning. Iterative Approximation Algorithm: [Gutman 04] • Use partial shortest path trees of depth O(ǫ) to bound reaches of vertices v with r(v) < ǫ. • Delete vertices with bounded reaches, add penalties. • Increase ǫ and repeat. Query time does not increase much; preprocessing faster but not fast enough.

Reach for A∗

19

Reach Algorithm

Reach for A∗

20

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks. method Bidirectional Dijkstra ALT Reach

Reach for A∗

preprocessing minutes MB

avgscan

query maxscan

ms

—

28

518 723

1 197 607

340.74

4

132

16 276

150 389

12.05

1 100

34

53 888

106 288

30.61

21

Shortcuts • Consider the graph below. • Many vertices have large reach.

1000 s Reach for A∗

1000 10 10 10 10 10 10 10 10 1000 1010 1020 1030 1040 1030 1020 1010 1000

t 22

Shortcuts • Consider the graph below. • Many vertices have large reach. • Add a shortcut arc, break ties by the number of hops.

80 1000

1000 10

s Reach for A∗

10

10

10

10

10

10

10 t 23

Shortcuts • Consider the graph below. • Many vertices have large reach. • Add a shortcut arc, break ties by the number of hops. • Reaches decrease.

s Reach for A∗

1000

60

50

40

30

40

50

60

1000

t 24

Shortcuts • Consider the graph below. • Many vertices have large reach. • Add a shortcut arc, break ties by the number of hops. • Reaches decrease. • Repeat.

s Reach for A∗

1000

20

10

20

30

20

10

20

1000

t 25

Shortcuts • Consider the graph below. • Many vertices have large reach. • Add a shortcut arc, break ties by the number of hops. • Reaches decrease. • Repeat. • A small number of shortcuts can greatly decrease many reaches.

s Reach for A∗

1000

0

10

0

30

0

10

0

1000

t 26

Shortcuts

• During preprocessing we add shortcuts to degree-two subgraphs every time ǫ is updated. • Shortcuts greatly speed up preprocessing. • Shortcuts speed up queries. • Shortcuts require more space (extra arcs, auxiliary info.) [Sanders & Schultes 05]: similar idea in hierarchy-based algorithm; similar performance.

Reach for A∗

27

Reach with Shortcuts

Reach for A∗

28

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks. method Bidirectional Dijkstra ALT Reach Reach+Short

Reach for A∗

preprocessing minutes MB

avgscan

query maxscan

ms

—

28

518 723

1 197 607

340.74

4

132

16 276

150 389

12.05

1 100

34

53 888

106 288

30.61

17

100

2 804

5 877

2.39

29

Reaches and ALT

• ALT computes transformed and original distances. • ALT can be combined with reach pruning. • Careful: Implicit lower bounds do not work, but landmark lower bounds do. • Shortcuts do not affect landmark distances and bounds.

Reach for A∗

30

Reach with Shortcuts and ALT

Reach for A∗

31

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks. method Bidirectional Dijkstra

preprocessing minutes MB

avgscan

query maxscan

ms

—

28

518 723

1 197 607

340.74

4

132

16 276

150 389

12.05

1 100

34

53 888

106 288

30.61

Reach+Short

17

100

2 804

5 877

2.39

Reach+Short+ALT

21

204

367

1 513

0.73

ALT Reach

Reach for A∗

32

The North America Graph

North America (30M vertices), random queries, 16 landmarks. method

preprocessing hours GB

avgscan

query maxscan

ms

Bidirectional Dijkstra

—

0.5

10 255 356

27 166 866

7 633.9

ALT

1.6

2.3

250 381

3 584 377

393.4

Reach

impractical

Reach+Short

11.3

1.8

14 684

24 618

17.4

Reach+Short+ALT

12.9

3.6

1 595

7 450

3.7

Reach for A∗

33

Grid Graphs

Grid with uniform random lengths (0.5M vertices), 16 landmarks. No highway structure. method

preprocessing min MB

avgscan

query maxscan

ms

Bidirectional Dijkstra

—

13.9

171 341

401 623

91.87

ALT

1.9

50.2

4 416

40 568

5.25

Reach+Short

232.1

41.4

23 201

39 433

17.47

Reach+Short+ALT

234.1

77.7

1 172

7 702

1.61

Reach preprocessing expensive, but (surprise!) helps queries.

Reach for A∗

34

Approximate vs. Exact Reaches

Bay Area (0.3M vertices), random queries. shortcuts

reaches

no

approximate

no

exact

yes

approximate

yes

exact

preprocessing min

query avgscan maxscan

ms

52.8

13 369

28 420

6.44

966.1

11 194

24 358

6.05

3.2

1 590

3 438

1.17

980.7

1 383

3 056

0.97

Approximation helps preprocessing, does not hurt queries much.

Reach for A∗

35

Demo

Reach for A∗

36

Concluding Remarks

• Our heuristics work well on road networks. • Have improvements for query time and space requirements. • How to select good shortcuts? (Road networks/grids.) • For which classes of graphs do these techniques work? • Need theoretical analysis for interesting graph classes. • Interesting problems related to reach, e.g. ◦ Is exact reach as hard as all-pairs shortest paths? ˜ ◦ Constant-ratio upper bounds on reaches in O(m) time.

Reach for A∗

37

des documents recommandant

A Bug's Shortest Path on a Cube

The number of shortest partial paths from A to Kis. - - 1. (excluding A +F+K) and the number of shortest partial paths from K' to H is. Therefore,. +i)-1 clt: m, n) ...

An Efficient Algorithm for Video Superresolution Based on a

gradient of the displacement field dt by a quadratic penalization [54], Equations (4.11), (4.12), and (4.13) correspond, respectively, to expressions (B.2), (B.3), ...

A Survey for Open Shortest Path First Weight Setting (OSPFWS)

each node computes a graph of shortest paths with it is ... up to 1. After that congestion can be occurs if utilization >1. Then optimal The running times of.

Finding the Shortest Path in Dynamic Network using Labeling Algorithm

The shortest path problem has many useful applications. Dreyfus, An appraisal of some shortest path algorithms, Operations Research 17 (1969) 395â€“412.

An efficient algorithm for dexterous manipulation planning - Institut des

contacts between elements of the grasped object and the hand, such as vertices or edges. ... the use of motion planning methods for smooth kinematic nonholonomic into a finite sequence of transfer/re-grasping paths. Finally, the solution is ...

An efficient fault-tolerant scheduling algorithm for precedence

To provide a fault-tolerant capability, we employ primary and backup copies. In this scheme, backup copies can overlap other backup copies, and backup copies.

APIC: An Efficient Algorithm for Computing Iceberg Datacubes

iceberg queries) has been recently introduced by the algo- rithm BUC. Iceberg datacubes group aggregates satisfying a selection condition (i.e. SQL having ...

Shortest path for aerial vehicles in heterogeneous ... - Bruno HÃ©rissÃ©

vehicle is a complex path planning problem since the vehicle flies in a heterogeneous Randomized kinodynamic planning. The International Journal of ...

An Efficient Service Oriented Architecture for

and video streams toward a control room. Categories and ... and controlling. Most of the sensors Service Platform -. Technical Whitepaper Revision 4.0.

IP2 (1c) IP Routing Open Shortest Path First (OSPF)

Listed by â€œ show ip ospf database nssa-external â€�. Metric 10. Forwarding address. 172.320.157.254. Mask 255.255.255.0. 10.83.10.0. Type 7. ASBR. Router ID.

Engineering and Algorithm Design for an Image Processing API: A ...

7 School of Computing, Univ. of Utah, Salt Lake City, UT 84112. Abstract. We present the detailed The advent of Mac OSX makes support for Apple systems ...

An algorithm for unimodular completion over Laurent

May 1, 2008 - We present a new and simple algorithm for completion of ... over Laurent polynomial rings is Park's Causal Conversion Algorithm ([11] page ...

Viterbi Algorithm Generalized for n-Tape Best-Path Search - CiteSeerX

Mar 9, 2006 - We present a generalization of the Viterbi algorithm for identifying ... a source vertex of a real- or integer-weighted graph to all its other vertices. Transition labels l(e(n)) are required to match with a factor of s(n) at posi

Viterbi Algorithm Generalized for n-Tape Best-Path Search - CiteSeerX

Mar 9, 2006 - ã€ˆFrench word, English wordã€‰. Unlike a classical Multitiered nonlinear morphology using multitape finite automata: a case study on Syriac ...

An Object Assignment Algorithm for Tracking

The above matching definition is called complete match- ing, as a reference to ters minimizing the cost (with a small margin), and to se- lect among them the shop on Performance Evaluation of Tracking and Surveil- lance (PETS), June ...

AN ALGORITHM FOR THE REST OF US

(1) Don't make illegal moves (always put a small disk on top of a ... Class TowerByRules represents the whole game and The second mention of width is.

AN ALGORITHM FOR THE REST OF US

Looking Glass, Chapter 9. Lewis Carroll's joke would not be funny to a computer. A com- puter would simply add up the "ones" and get the right answer, while.

A Performance Characterization Algorithm for

for Symbol Localization. Mathieu Delalandre1,2, Jean-Yves Ramel1, Ernest Valveny2, and ... and â€œopenâ€� solution to characterize the performance. To achieve that, it ... Table 1. Matching cases between groundtruth and localization results. The key

Efficient Density Estimation Algorithm for Ultra Dense ... - Eugen Dedu

range limited to tens of centimeters, thousands of neighbors ... micrometers can be built. But such ... systems, in the order of centimetres or tens of centimetres [2].

IP2 (2) IP Routing Open Shortest Path First (OSPF)

group of several point-to-point links. â€¢ Routers on these ... Serial9/0.100 is up, line protocol is up LSA Group pacing : compromise to reduce amount of flooding.

Efficient Density Estimation Algorithm for Ultra ... - Eugen Dedu

1 / 10. Efficient Density Estimation Algorithm for Ultra Dense Wireless Networks. Thierry Arrabal ... hello method: I say "ping!", and each of you replies "pong!" â—‹.

Efficient implementations of the sum-product algorithm for ... - CiteSeerX

from a performance, latency, and computational complexity perspective. ... It is shown that such an implementation offers smaller latency compared to the This means that the correction factor is zero when the values. â•�X 1Ed and â•�X 1Ee ...

BGP Best Path Selection Algorithm - Cisco

IOS Software Release 12.2(8)T and later. q. Paths for which the NEXT_HOP is inaccessible.Be sure that there is an Interior Gateway. Protocol (IGP) route to the ...

An Improved Demosaicing Algorithm

In this paper, we present a new algorithm for the demosaicing of digital images, i.e. for the interpolation of bayer patterns. A re- view of existing demosaicing ...

×
Report Reach for A : an Efficient Point-to-Point Shortest Path Algorithm

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

