Radial piston hydraulic motor with a fixed displacement ... - Olagorta

No part of this document may be reproduced or stored, processed, duplicated or circulated ... MR (standard 250 bar continuous) ... Splined shaft to DIN ISO 14 ...... 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 10. 30.
2MB taille 13 téléchargements 388 vues
RE 15 228/10.02 Replaces: 06.96

Radial piston hydraulic motor with a fixed displacement Types MR, MRE

H/A 2065

Nominal sizes 33 to 8200 Maximum operating pressure up to 300 bar Swept volume up to 8226 cm3 Torques up to 32.000 Nm

Types MR, MRE

Overview of contents Contents Ordering details Section, function, symbols Features, general technical data Technical data Housing flushing Pressure fluid technical data Characteristic curves: Torque, power, efficiency Off-load pressure Boost pressure Unit dimensions: MR and MRE Shaft end Bearing life Shaft loading Holding brake: technical data, ordering details, Holding brake: unit dimensions Shaft for speed sensing Incremental transducer Coupling, adaptor, connection flanges Assembly and commissioning guidelines

Features Page 2 3 4 5, 6 7 8 9 to 19 20, 21 21, 22 23, 24 25, 26 27 28 29 30 31 32, 33 34, 35 36

– – – – – – – –

Closely spaced swept volumes Very high starting torque High efficiency, high continuous power Smooth rotation even at lowest speeds High temperature shock resistance Reversable Highly suitable for closed loop control applications Suitable for use with fire-resistant and bio-degradable fluids – Roller bearings for an extremely long service life – Very low operating noise – Versions with: • Sensor shaft • Incremental transducer • Brake

© 2002 by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation. This document was prepared with the greatest of care, and all statements have been examined for correctness. This document is subject to alterations for reason of the continuing further developments of products. No liability can be accepted for any incorrect or incomplete statements.

MR, MRE

1/36

RE 15 228/10.02

Ordering details – Motor type MR (standard 250 bar continuous) = MR MRE (expanded 210 bar continuous) = MRE Swept volume – NS – BS Motor type MR 32.1 cm3 – NS 33 – A = 33A 56.4 cm3 – NS 57 – A = 57A 72.6 cm3 – NS 73 – B = 73B 92.6 cm3 – NS 93 – B = 93B 109.0 cm3 – NS 110 – B = 110B 124.7 cm3 – NS 125 – C = 125C 159.7 cm3 – NS 160 – C = 160C 191.6 cm3 – NS 190 – C = 190C 250.9 cm3 – NS 250 – D = 250D 304.1 cm3 – NS 300 – D = 300D 349.5 cm3 – NS 350 – D = 350D 451.6 cm3 – NS 450 – E = 450E 607.9 cm3 – NS 600 – F = 600F 706.9 cm3 – NS 700 – F = 700F 1125.8 cm3 – NS 1100 – G = 1100G 1598.4 cm3 – NS 1600 – H = 1600H 1809.6 cm3 – NS 1800 – H = 1800H 2393.0 cm3 – NS 2400 – I = 2400I 2792.0 cm3 – NS 2800 – I = 2800I 3636.8 cm3 – NS 3600 – L = 3600L 4502.7 cm3 – NS 4500 – L = 4500L 6460.5 cm3 – NS 6500 – M = 6500M 6967.2 cm3 – NS 7000 – M = 7000M Motor type MRE 332.4 cm3 – NS 330 – D = 330D 497.9 cm3 – NS 500 – E = 500E 804.2 cm3 – NS 800 – F = 800F 1369.5 cm3 – NS 1400 – G = 1400G 2091.2 cm3 – NS 2100 – H = 2100H 3103.7 cm3 – NS 3100 – I = 3100I 5401.2 cm3 – NS 5400 – L = 5400L 8226.4 cm3 – NS 8200 – M = 8200M Shaft end Splined shaft to DIN ISO 14 = N1 Splined shaft to DIN 5480 = D1 Cylindrical shaft with key = P1 Hollow shaft, internal spline to DIN 5480 = F1

*

N1 C1 S1 T1 N1 = V1 = F1 = U1 =

N1 Q1 M1 B1

= = = =

Further details in clear text Control N= Standard clockwise rotation, inlet in A anti-clockwise rotation, inlet in B S= Control rotated clockwise rotation, inlet in B anti-clockwise rotation, inlet in A Connection flange = Without connection flange = Pipe thread = SAE standard pressure range metric = SAE standard pressure range UNC Seals NBR seals suitable for HLP mineral oil to DIN 51 524 part 2 FKM seals Shaft seal ring for max. 15 bar housing pressure, NBR seals Without shaft seal ring for mounting the brake, NBR seals Speed sensor (2nd shaft end) see page 31 Without speed sensor Cylindrical shaft Ø 8 mm Mono directional incremental transducer Bi-directional incremental transducer

Ordering example: MR 300D-D1N1N1C1N

For brake ordering details see page 29

RE 15 228/10.02

2/36

MR, MRE

Section, function

2

E

3

D

9

1

4

7

6

F (1)

A B

5

C

8.1

8.2

8.3

The MR and MRE hydraulic motors are externally pressurised radial piston motors with a fixed swept volume. Design The main components are housing (1), eccentric shaft (2), cover (3), control housing (4), roller bearing (5), cylinder (6), piston (7) and control (8.1; 8.2; 8.3). Inlet and return of operating fluid The operating fluid is fed to and returned from the motor via ports A or B. The cylinder chambers (E) are filled or drained via the control and the channels (D) in the housing (1). Rotary group, torque generation The cylinders and the pistons support themselves on the spherical areas of the eccentric shaft and the cover. It is thereby possible for the piston and cylinder to align themselves, free from side forces, as the shaft rotates, together with hydrostatic unloading of the pistons and cylinders results in friction being minimised and very high efficiencies are achieved.

The pressure in the cylinder chambers (E) acts directly on the excentric shaft. Of the 5 cylinders 2 or 3 are respectively connected with the supply or return sides. Control The control consists of the control plate (8.1) and the distributor valve (8.2). Whilst the control plate is fixed to the housing with pins, the distributor valve rotates at the same speed as the eccentric shaft. Drillings in the distributor valve form the connection to the control plate and to the piston chambers. The reaction ring (8.3) acts together with the compression spring and the system pressure and effectively compensates for play. This results in a very high temperature shock resistance and constant performance values during the entire service life. Leakages The low leakage within the housing F (1) which occurs at the piston and the control must be returned via the leakage port (C).

Symbols With holding brake

MR, MRE

B

B

A

A

3/36

Z

RE 15 228/10.02

MR and MRE supplementary features

Features: • Line connections via adaptor plates, SAE flanges or pipe thread • Splined shaft or parallel shaft with key • Hollow shaft • Shaft for speed sensing • Version with built-on holding brake • Accessories for speed and positioning closed loop control circuits

Nominal sizes Motor type MR: Motor type MRE:

A B

33, 57, 73, 93, 110, 125, 160, 190, 250, 300, 350, 450, 600, 700, 1100, 1600, 1800, 2400, 2800, 3600, 4500, 6500, 7000 330, 500, 800, 1400, 2100, 3100, 5400, 8200

General performance data Motor type Constant pressure in bar MR 250 MRE 210

Intermittent pressure in bar 300 250

Peak pressure in bar 420 350

Drive speed range in min-1 0.5 to 800 0.5 to 600

General – MR; MRE Model

Radial piston motor, externally pressurised, constant

Type

MR; MRE

Mounting style

Flange mounting

Connection type

Connection flange

Installation

Optional (take the installation guidelines on page 36 into account)

Bearing service life, shaft loadability

See pages 27 and 28

Direction of rotation

Clockwise/anti-clockwise - reversible

Pressure fluid

HLP mineral oil to DIN 51 524 part 2; HFB and HFC as well as bio-degradable fluids on request; with phosphate ester (HFD), FKM seals are necessary

Pressure fluid temperature range Viscosity range Cleanliness class to ISO codes

RE 15 228/10.02

°C mm2/s

– 30 to + 80 18 to 1000, recommended operating range 30 to 50 in motor housing, must be adhered to with high constant powers Maximum permissible pressure fluid degree of contamination is to ISO 4406 class19/16/13

4/36

MR, MRE

Technical data (for applications outside these parameters, please consult us!) All technical data at ν = 36 mm2/s; ϑ = 45° C; p outlet = zero pressure

MR Nominal size Swept volume Moment of inertia Specific torque Min. starting torque/theo. torque Max. input pressure Continuous Intermittent Peak value Max. summated pressure in ports A + B Max. leakage pressure Speed range Max. continuous power Without flushing With flushing Weight

V J % p p p p p n P P m

NS cm3 kg cm2 Nm/bar bar bar bar bar bar min-1 kW kW kg

33 32.1 4.32 0.50 90

57 56.4 4.76 0.9 90

73 72.6 14.03 1.2 90

93 92.6 15.11 1.5 90

110 109.0 16.19 1.7 90 250 300 420 400 5 (15 bar with version ...F...), also see page 8 1-1400 1-1300 1-1200 1-1150 1-1100 6.6 11 15 17 18 10 17 20 25 28 30 30 38 38 38

125 124.7 56.88 2.0 90

160 159.7 57.5 2.54 90

190 191.6 58.2 3.05 90

1-900 17 25 46

1-900 20 30 46

1-850 24 36 46

700 706.9 358.4 11.26 90

1100 1125.8 451.5 17.93 91

1600 1598.4 666.43 25.40 90

1-500 65 97 97

0,5-330 0,5-260 77 96 119 144 140 209

MR Nominal size Swept volume Moment of inertia Specific torque Min. starting torque/theo. torque Max. input pressure Continuous Intermittent Peak value Max. summated pressure in ports A + B Max. leakage pressure Speed range Max. continuous power Without flushing With flushing Weight

NS 250 300 350 450 600 3 V cm 250.9 304.1 349.5 451.6 607.9 2 J kg cm 60.8 65.43 225.9 229.3 265.07 Nm/bar 4.00 4.80 5.57 7.20 9.70 % 90 90 90 90 90 p bar 250 p bar 300 p bar 420 p bar 400 p bar 5 (15 bar with version ...F...), also see page 8 n min-1 1-800 1-750 1-640 1-600 1-520 P kW 32 35 41 46 56 P kW 48 53 62 75 84 m kg 50 50 77 77 97

MR Nominal size Swept volume Moment of inertia Specific torque Min. starting torque/theo. torque Max. input pressure Continuous Intermittent Peak value Max. summated pressure in ports A + B Max. leakage pressure Speed range Without flushing With flushing Max. continuous power Without flushing With flushing Weight MR, MRE

V J % p p p p p n n P P m

NS cm3 kg cm2 Nm/bar bar bar bar bar bar min-1 min-1 kW kW kg

1800 1809.6 854.1 28.82 90

2400 2393.1 2835.4 38.11 90

3600 4500 6500 7000 3636.8 4502.7 6460.5 6967.2 4851.4 5015.1 11376.6 11376.6 57.91 57.90 103.57 111.39 90 91 91 91 250 300 420 400 5 (15 bar with version ...F...), also see page 8 0.5-250 0.5-220 0.5-215 0.5-150 0.5-130 0.5-110 0.5-100 0.5-250 0.5-220 0.5-215 0.5-180 0.5-170 0.5-130 0.5-130 103 120 127 123 140 165 170 153 183 194 185 210 240 250 209 325 325 508 508 800 800 5/36

2800 2792.0 2975.7 44.50 90

RE 15 228/10.02

Technical data (for applications outside these parameters, please consult us!) All technical data at ν = 36 mm2/s; ϑ = 45° C; p output = zero pressure

MRE Nominal size Swept volume Moment of inertia Specific torque Min. starting torque/theo. torque Max. input pressure Continuous Intermittent Peak value Max. summated pressure in ports A + B Max. leakage pressure Speed range Without flushing With flushing Max. continuous power Without flushing With flushing Weight

RE 15 228/10.02

NS 330 500 800 1400 2100 3100 5400 cm3 332.4 497.9 804.2 1369.5 2091.2 3103.7 5401.2 kg cm2 65.50 229.8 358.4 451.5 854.1 2975.7 5015.1 Nm/bar 5.30 7.93 12.81 21.81 33.30 49.4 86.01 % 90 90 90 92 91 91 92 p bar 210 p bar 250 p bar 350 p bar 400 p bar 5 (15 bar with version ...F...), also see page 8 -1 n min 1-750 1-600 1-450 0.5-280 0.5-250 0.5-200 0.5-120 n min-1 1-750 1-600 1-450 0.5-280 0.5-250 0.5-200 0.5-160 P kW 32 46 65 77 100 125 140 P kW 49 70 93 102 148 190 210 m kg 50 77 97 145 221 329 512

V J

6/36

8200 8226.4 11376.6 130.90 92

0.5-90 0.5-130 170 250 810

MR, MRE

Flushing of housing In order to achieve the maximum constant performance values housing flushing is necessary (see diagrams on pages 9 to 19). Under special conditions as well as for the adherence to the recommended operating viscosity of 30 to 50 mm2/s in the housing

flushing of the motor housing outside of the forseen range may be necessary (see page 8). A simple method to check this is by measuring the surface temperature ϑA (as shown). The temperature insdie the housing is approx. ϑA + 3°C.

Circuit example for one direction of rotation

Circuit example with alternating direction of rotation

T P

P in A

T

P in A

A B

A B

T

T

Surface temperature ϑA

P in B

Orifice

Orifice qV = 6 to 20 L/min (depending on the motor size)

Surface temperature ϑA

Depending on the temperature and fluid viscosity

1)

T

T

A

B

P

R

qV = 6 to 20 L/min (depending on the motor size)

Please consult Technical Sales!

Flushing fluid volume MR 33, 57, 73, 93, 110 MR 125, 130, 160, 190, 250, 300 MR/MRE 350, 450, 500 MR/MRE 600, 700, 800, 1100, 1400 MR/MRE 1600, 1800, 2100 MR/MRE 2400, 2800, 3100, 3600, 4500, 5400, 6500, 7000, 8200

qV qV qV qV qV qV

= 5 L/min = 6 L/min = 8 L/min = 10 L/min = 15 L/min = 20 L/min

With high continuous powers flushing of the housing is also recommended outside the foreseen range. The maximum permissible housing pressure is 5 bar (also see page 8). To select the appropriate orifice diameter please consult the Technical Sales Dept.

MR, MRE

7/36

RE 15 228/10.02

Pressure fluid technical data Pressure fluid See catalogue sheet RE 07 075 for detailed information regarding the selection of pressure fluids before carrying out any engineering/ design work. Further notes on installation and commissioning can be found on page 36 of this catalogue sheet. When operating with HF pressure fluids or bio-degradable pressure fluids possible limitations to the technical data must be taken into consideration, please consult ourselves.

Example: With an ambient temperature of X °C the operating temperature settles to a temperature of 50 °C (closed circuit: circulation temperature, open circuit: tank temperature). For an optimum viscosity range this (νopt; raster field ) relates to a viscosity class of VG 46 or VG 68; select: VG 68. The drain oil temperature which is influenced by the pressure and speed lies above the circulation or tank temperature. At no point in the system must this exceed 80 °C. If the above stated conditions cannot be maintained due to extreme operating conditions or high ambient temperatures we recommend that, also outside the foreseen range, housing flushing is used (see diagram on pages 9 to 19), or consult ourselves.

Operating viscosity range We recommend that the operating viscosity is so selected (at operating temperature) that it lies in the optimum range of νopt = optimum operating viscosity 30...50 mm2/s

Filtering of pressure fluid The finer the filtration and the better the cleanliness class that can be achieved the longer the service life of the radial piston motors. To guarantee the functional safety of the radial piston motors a cleanliness class of at least 6 to SAE, ASTM, AIA 19/16/13 to ISO 4406 is necessary.

for efficiency and service life, referring to the circulation temperature in closed circuit and the tank temperature in open circuit as well as the motor housing temperature (drain fluid temperature). Limiting viscosity range For the limiting conditions the following values are valid: νmin = 10 mm2/s in emergency, briefly νmin = 18 mm2/s with reduced performance data νmax = 1000 mm2/s briefly with cold start

Leakage fluid pressure The lower the speed and the leakage fluid pressure, the longer the life of the shaft seal ring. The maximum permissible housing pressure is pmax = 5 bar which is independent of the motor speed. For higher housing pressures a shaft seal which is suitable up to a pmax = 15 bar can be fitted (ordering code F). Further information regarding housing flushing can be found on page 7.

1000

1000

VG 6

8-

500 400 300

VI

500 400 300

20

0

Viscosity ν (mm2/s) →

200

200 100 80 60 50 40

30

30

VG

100 80 60 50 40 10 0 00

32 -V

-V

I1

22

00

-V

I1

10

00 I1 00 I1 -V 00

46

-V

I1

68

-V

VG VG

VG

VG 00 I1

10 -30

VG

20 18 16 14 12

20 18 16 14 12

Shaft seal ring FKM Some fluids require the use of FKM seals and shaft seal rings (type: HFD ...). We recommend the use of FKM shaft seal rings with high operating temperatures in order to extend the service life.

νopt.

Selection diagram Choosing the type of pressure fluid a prerequisite for the selection of a pressure fluid is that the operating temperature in relation to the ambient temperature is known. In closed circuits the circulation temperature, in open circuits the tank temperature. To achieve the maximum continuous power values the oil viscosity must be within the optimum operating viscosity range, referring to the inlet temperature as well as the drain oil temperature.

Viscosity range to ISO 3448

10 -20

-10

0

10

20

30

40

50

60

70

80

Temperature ϑ (°C) Pressure fluid temperature range → RE 15 228/10.02

8/36

MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

2 Permissible for intermittent operation

Kw

w

300 bar

2

250 bar

94%

200 bar

96%

3

75

45

150 bar

97%

4

80%

60

η t=83%

Torque T in Nm →

10

9K

w

1

105 90

8K

w 7K w K 6.6

120

= zero pressure

3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation with flushing operation ηv Volumetric efficiency 5 Input pressure w 5K

4Kw

3Kw

MR 33

output

100 bar

ηv=98%

5 77%

30 75%

15 1 l/min

4 l/min

9 l/min

13 l/min

140

280

420

18 l/min

22 l/min

27 l/min

31 l/min

36 l/min

40 l/min

560

700

840

980

1120

1260

45 l/min

1400

Speed n in min–1 → Kw

Kw

Kw

1

300 bar

180 96%

Torque T in Nm →

17

15

13

Kw 11

w 9K

w 7K

210

5 Kw

3 Kw

MR 57

2

250 bar

150

3

200 bar

97%

120 η v=98%

90

4

150 bar

η t=83%

5

100 bar

76

81%

%

79 %

60 73%

30 8 l/min

16 l/min

24 l/min

200

32 l/min

400

39 l/min

47 l/min

600

55 l/min

800

70%

63 l/min

1000

71 l/min

1200 1300

Speed n in min–1 → Kw

Kw 20 Kw 18 w K 17 Kw 15

13

Kw 10

8 Kw

6 Kw

400

MR 73

Torque T in Nm →

320

1 2

300 bar

250 bar

240 96%

160 97%

80

3

150 bar

4

100 bar

η t=83%

98% η v=

200 bar

5

18 l/min

200

27 l/min

400

79 %

81% 3 l/min 9 l/min

37 l/min

46 l/min

77%

55 l/min

600

75% 64 l/min

800

73 l/min

1000

82 l/min

1150

Speed n in min–1 → MR, MRE

9/36

RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

= zero pressure

3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation with flushing ηv Volumetric efficiency 5 Input pressure

2 Permissible for intermittent operation

25

1

Kw

Kw

Kw

Kw 22 Kw 20 Kw 19

17

15

Kw 12

w 9K

6 Kw

450

MR 93

output

400

Torque T in Nm →

300 bar

2

250 bar

300 96%

200 bar

200

3

150 bar

4

97 % ηt=83%

100

100 bar

5 77%

75%

79

%

81

%

8% η v=9

4 l/min

11 l/min

22 l/min

33 l/min

200

44 l/min

56 l/min

400

67 l/min

600

78 l/min

800

89 l/min

100 l/min

1000

1100

Speed n in min–1 → 28

26

24

21

19

15

1

Kw

Kw

Kw

Kw

Kw

Kw

Kw

11

8 Kw

500

MR 110

300 bar

2

400

300

200 bar

3

97%

200

150 bar

η v=

98%

4 ηt=83%

100 bar

t=8

1%

Torque T in Nm →

250 bar

96%

% 79 4 l/min

13 l/min

26 l/min

39 l/min

200

52 l/min

65 l/min

400

5

77%

η

100

78 l/min

600

75% 92 l/min

105 l/min

800

1050

Speed n in min–1 → 25

23 Kw

Kw

Kw

Kw

w

1

Kw

20

17

14

11 K

7 Kw

4 Kw

9 Kw

600

MR 125

300 bar

500

2

400 200 bar

95%

3 150 bar

4

100

% =98 ηv

100 bar

η t=89

12 l/min

100

%

88% 30 l/min

200

85%

87%

50 l/min

300

400

68 l/min

500

83 %

200

%

96%

300

97

Torque T in Nm →

93%

250 bar

85 l/min

600

700

5

81% 105 l/min

800

900

Speed n in min–1 → RE 15 228/10.02

10/36

MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

30

27

23

1

Kw

Kw

Kw

Kw

Kw 20

17

w 13 K

9 Kw

Torque T in Nm →

= zero pressure

3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation with flushing ηv Volumetric efficiency 5 Input pressure

2 Permissible for intermittent operation 4 Kw

800

MR 160

output

700

300 bar

600

250 bar

2 3

500 200 bar

400

4

150 bar

300

5

100 bar

200 100

50 bar 5 l/min

15 l/min

30 l/min

100

45 l/min

200

60 l/min

300

75 l/min

400

90 l/min

500

105 l/min

600

120 l/min

700

800

900

Speed n in min–1 → 36

32

28

24

20

1

Kw

Kw

Kw

Kw

w

Kw

15 K

10 Kw

900

5 Kw

MR 190

300 bar

800

2 250 bar

TorqueT in Nm →

700

3

600 200 bar

500

4

150 bar

400 300

5

100 bar

200 50 bar

100 5 l/min 15 l/min

30 l/min

100

45 l/min

60 l/min

200

75 l/min

300

90 l/min

400

105 l/min

500

120 l/min

135 l/min 150 l/min

600

700

800 850

Speed n in min–1 → 48

1

Kw

w

Kw

Kw

Kw

Kw

K 43

37

32

27

23

w 18 K

w 14 K

9 Kw

1200

5 Kw

MR 250

300 bar

2

1000

Torque T in Nm →

250 bar

3

800 200 bar

4

600 150 bar

400

5

100 bar

200

50 bar 5 l/min 20 l/min

100

40 l/min

60 l/min

200

80 l/min

300

100 l/min

400

Speed n in MR, MRE

120 l/min

min–1

11/36

500

140 l/min

160 l/min

600

180 l/min

700

800

→ RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

53

47 Kw

1

Kw

Kw 41

w

Kw

w

Kw

K 35

30

25

20 K

w 15 K

10 Kw

1400

= zero pressure

3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation with flushing ηv Volumetric efficiency 5 Input pressure

2 Permissible for intermittent operation 5 Kw

MR 300

output

300 bar

1200

2

250 bar

Torque T in Nm →

1000

3

200 bar

800

4

150 bar

600

5

100 bar

400 200

50 bar 20 l/min

40 l/min

60 l/min

100

80 l/min

200

100 l/min 120 l/min 140 l/min 160 l/min 180 l/min 200 l/min 220 l/min

300

400

500

600

700

750

Speed n in min–1 → 54

48

42

36

1

Kw

Kw

Kw

Kw

Kw

Kw 31

26

w 21 K

15 Kw

10 Kw

1800

5 Kw

MR 350

1600

300 bar

2

1400 250 bar

Torque T in Nm →

1200

3

1000

200 bar

800

4

150 bar

600

5

100 bar

400 50 bar

200 10 l/min

25 l/min

50 l/min

100

75 l/min

100 l/min

200

125 l/min

300

150 l/min

400

175 l/min

200 l/min

500

600 640

Speed n in min–1 → 75

65

56

46

1

Kw

Kw

Kw

Kw

Kw

w

Kw 39

33

26 K

20 Kw

2200

13 Kw

MR 450

2000

300 bar

2

1800 250 bar

Torque T in Nm →

1600

3

1400

200 bar

1200 1000

4

150 bar

800

5

100 bar

600 400

50 bar

200 10 l/min 30 l/min

100

60 l/min

90 l/min

200

120 l/min

150 l/min

300

180 l/min

400

210 l/min

240 l/min

500

600

Speed n in min–1 → RE 15 228/10.02

12/36

MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

84

75

1

Kw

Kw

w

Kw

Kw

K 65

56

48

Kw 40

w

w 32 K

24 K

3000

= zero pressure

3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation with flushing ηv Volumetric efficiency 5 Input pressure

2 Permissible for intermittent operation 16 Kw

MR 600

output

2700

300 bar

2

Torque T in Nm →

2400 250 bar

2100

3

1800

200 bar

1500

4 150 bar

1200 900

5

100 bar

600 50 bar

300 10 l/min

40 l/min

70 l/min

50

100

100 l/min

150

130 l/min

200

160 l/min

250

190 l/min

220 l/min

250 l/min

280 l/min

300

350

400

450

520

Speed n in min–1 → 97

86

76

65

56

46

1

Kw

Kw

Kw

Kw

Kw

Kw

w

w 37 K

28 K

18 Kw

3300

9 Kw

MR 700

300 bar

3000

2

2700

Torque T in Nm →

250 bar

2400

3

2100

200 bar

1800 1500

4

150 bar

1200

5

100 bar

900 600

50 bar

300 15 l/min 40 l/min

50

80 l/min

100

120 l/min

150

160 l/min

200

200 l/min

250

240 l/min

300

280 l/min

350

400

320 l/min

450

500

Speed n in min–1 → 11

Kw

Kw

Kw

5 10

91

77

Kw 66

Kw

Kw 55

44

5000

w 33 K

22 Kw

MR 1100 5500

9

1

Kw

300 bar

4500

2

Torque T in Nm →

4000

250 bar

3

3500 200 bar

3000 2500

4

150 bar

2000 1500

5

100 bar

1000 50 bar

500 15 l/min

50 l/min

50

100 l/min

100

150 l/min

200 l/min

150

250 l/min

200

300 l/min

250

350 l/min

300

330

Speed n in min–1 → MR, MRE

13/36

RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

14 4

Kw

Kw

Kw 8 10 Kw

6 12

98

Kw 88

74

w

w

K 59

44 K

2 9 Kw

8000

1

Kw

2

300 bar

7000 6000

250 bar

η t=93%

9

% 7.5

3

92.5% 200 bar

98.5%

4

%

4000

92

Torque T in Nm →

= zero pressure

2 Permissible for intermittent 3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation operation with flushing ηv Volumetric efficiency 5 Input pressure

MR 1600

5000

output

1%

9

2000

150 bar

90%

3000

89%

88%

86%

5

84% 100 bar

η v=99%

78%

1000 120 l/min

30 l/min 60 l/min

25

50

180 l/min

75

100

240 l/min

125

300 l/min

150

175

360 l/min

200

225

250

Speed n in min–1 → 13

3

9

Kw

Kw

Kw

Kw

Kw

1

12

10

88

74

59

w 44 K

29 Kw

9000

MR 1800

Kw

15

7

Kw

1

8000

300 bar

2

7000

Torque T in Nm →

250 bar

6000

3 200 bar

5000 4000

4

150 bar

3000

5

100 bar

2000 1000

50 bar 20 l/min

120 l/min

60 l/min

25

50

180 l/min

75

240 l/min

100

125

300 l/min

150

360 l/min

175

200

420 l/min

225

250

Speed n in min–1 → 16

0

1

14

12

0K 10

Kw

Kw

w

Kw

w

Kw 80

60

40 K

11000

20 Kw

MR 2400

2

Kw

18

3

1

Kw 300 bar

10000

2

9000

Torque T in Nm →

250 bar

8000

3

7000

200 bar

6000

4

150 bar

5000 4000

5

100 bar

3000 2000

50 bar

1000 25 l/min

75 l/min

20

140 l/min

40

60

210 l/min

80

280 l/min

100

120

350 l/min

140

160

420 l/min

180

490 l/min

200

220

Speed n in min–1 → RE 15 228/10.02

14/36

MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

17

9 14

7 12

2

Kw

Kw

Kw

w 0K 10

80

w 60 K

40 Kw

13000

= zero pressure

2 Permissible for intermittent 3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation operation with flushing ηv Volumetric efficiency 5 Input pressure 20 Kw

MR 2800

output

Kw

19

4

1

Kw 300 bar

12000

2

11000

Torque T in Nm →

10000

250 bar

9000

3

8000

200 bar

7000 6000

4

150 bar

5000 4000

5

100 bar

3000 2000 1000

50 bar 25 l/min

80 l/min

160 l/min

20

40

240 l/min

60

320 l/min

80

100

480 l/min 530 l/min

400 l/min

120

140

160

180

200

215

Speed n in min–1 → 18

5 17

5

Kw

w

Kw

0K

3 15

13

w 4K 10

Kw 78

w

52 K

18000

26 Kw

MR 3600

1

Kw

16000

300 bar

2

14000

250 bar

Torque T in Nm →

12000

3 200 bar

10000 8000

4

150 bar

6000

5

100 bar

4000 50 bar

2000 35 l/min

100 l/min

15

200 l/min

30

45

300 l/min

60

75

400 l/min

90

105

500 l/min

120

135

600 l/min

150

165

180

Speed n in min–1 → Kw

Kw

Kw

w

1

0

7

3

21

18

16

0K 14

Kw

w

w 0K 12

100

20000

80 K

w 60 K

22000

40 Kw

MR 4500

300 bar

2

18000 250 bar

Torque T in Nm →

16000

3

14000 200 bar

12000 10000

4

150 bar

8000

5

100 bar

6000 4000

50 bar

2000 35 l/min 100 l/min

10

30

200 l/min

50

300 l/min

400 l/min

70

90

500 l/min

110

600 l/min

130

700 l/min

150

170

Speed n in min–1 → MR, MRE

15/36

RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

24

22

3 19

2

Kw

Kw

Kw

w

1

0

5K 16

w 1K 14

Kw 118

w 71 K

30000

w 94 K

33000

= zero pressure

4 Permissible for continuous ηt Total efficiency operation ηv Volumetric efficiency 5 Input pressure

2 Permissible for intermittent 3 Permissible for continuous operation operation with flushing 47 Kw

MR 6500

output

300 bar

27000

2

24000

250 bar

Torque T in Nm →

21000

3 200 bar

18000 15000

4

150 bar

12000 9000

5

100 bar

6000 50 bar

3000 35 l/min 100 l/min

200 l/min

10

30

20

300 l/min

40

500 l/min

400 l/min

50

60

70

600 l/min

80

90

700 l/min

100

110

780 l/min

120

130

Speed n in min–1 → 25 Kw

Kw

Kw

w

1

0

0

0

23

20

0K

w

w

Kw

6K

17

14

121

97 K

w

33000

73 K

49 Kw

MR 7000

300 bar

30000

2

27000 250 bar

Torque T in Nm →

24000

3

21000 200 bar

18000 15000

150 bar

4

100 bar

5

12000 9000 6000 50 bar

3000 35 l/min 100 l/min

10

200 l/min

20

400 l/min

300 l/min

30

40

50

600 l/min

500 l/min

60

70

80

90

700 l/min

100

800 l/min

110

120

130

Speed n in min–1 → 49

42

36

250 bar

1200

Torque T in Nm →

1000

2 210 bar

5% 97.

η t=9

2%.

5

800 600

98.5

200

3

150 bar

92% 91%

%

4

100 bar

89%

400

86% η v=99

5

78%

%

50 bar

30 l/min

100

60 l/min

200

100 l/min

130 l/min

300

160 l/min

400

Speed n in RE 15 228/10.02

1

Kw

Kw

Kw

Kw

Kw 31

24

w

18 K

12 Kw

1400

MRE 330

16/36

min–1

500

190 l/min

600

220 l/min

700

→ MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p

2 Permissible for intermittent 3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation operation with flushing ηv Volumetric efficiency 5 Input pressure

1 Output power

70

62

1

Kw

Kw

w

Kw

K 54

Kw 46

39

Kw 33

w 26 K

20 Kw

13 Kw

2000

7 Kw

MRE 500

= zero pressure

output

250 bar

1800

2

1600

Torque T in Nm →

210 bar

1400

3

1200 150 bar

1000

4

800 100 bar

600

5

400 50 bar

200 10 l/min 30 l/min

60 l/min

90 l/min

100

120 l/min

150 l/min

200

180 l/min

210 l/min

300

240 l/min

400

270 l/min

500

600

Speed n in min–1 → 93

84

74

65

54

Kw

Kw

Kw

Kw

Kw 43

Kw 33

w 22 K

3000

11 Kw

3300

MRE 800

Kw

1

250 bar

2700

2

Torque T in Nm →

2400

210 bar

3

2100 1800 150 bar

4

1500 1200 100 bar

5

900 600 50 bar

300 20 l/min

60 l/min

50

100 l/min

100

180 l/min

140 l/min

150

200

260 l/min

200 l/min

250

300

300 l/min

350

340 l/min

400

450

Speed n in min–1 → 10

2

94

85

77

Kw

Kw

Kw

Kw

Kw

w

Kw 66

55

44

5500

33 K

22Kw

MRE 1400

5000

1

Kw 250 bar

2

4500

Torque T in Nm →

4000

210 bar

3

3500 3000

150 bar

4

2500 2000

100 bar

5

1500 1000 50 bar

500

15 l/min

50 l/min

40

100 l/min

80

150 l/min

200 l/min

120

Speed n in MR, MRE

17/36

160

min–1

300 l/min

250 l/min

200

350 l/min

240

280

→ RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

output

= zero pressure

2 Permissible for intermittent 3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation operation with flushing ηv Volumetric efficiency 5 Input pressure 14

13

8

2

0

6 11

10

Kw

Kw

1

Kw

Kw

Kw 80

Kw 60

w

8000

40 K

20 Kw

MRE 2100

250 bar

7000

2 210 bar

Torque T in Nm →

6000

3 5000 150 bar

4

4000 3000

100 bar

5

2000 50 bar

1000 20 l/min 60 l/min

120 l/min

25

180 l/min

50

75

240 l/min

100

300 l/min

125

360 l/min

150

480 l/min

420 l/min

175

200

225

250

Speed n in min–1 → 16

5

5 Kw

w

Kw

0K

5

14

12

10

Kw

Kw 80

60

w

12000

40 K

20 Kw

MRE 3100 13000

19

0

Kw

1

Kw

11000

250 bar

2

10000

Torque T in Nm →

9000

210 bar

3

8000 7000 150 bar

4

6000 5000 100 bar

4000

5

3000 2000 1000

50 bar 25 l/min

80 l/min

20

160 l/min

40

240 l/min

60

320 l/min

80

400 l/min

100

120

480 l/min

140

160

550 l/min

180

200

215

Speed n in min–1 → Kw

Kw

Kw

w

w

1

0

3

7

21

18

16

0K 14

0K

12

Kw

w

w

20000

100

80 K

60 K

40 Kw

MRE 5400 22000

250 bar

2

18000

Torque T in Nm →

16000

210 bar

3

14000 12000 150 bar

4

10000 8000 100 bar

5

6000 4000 50 bar

2000 35 l/min 100 l/min

20

200 l/min

300 l/min

40

60

80

Speed n in RE 15 228/10.02

500 l/min

400 l/min

18/36

min–1

100

700 l/min

600 l/min

120

800 l/min

140

160

→ MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p 1 Output power

output

= zero pressure

2 Permissible for intermittent 3 Permissible for continuous 4 Permissible for continuous ηt Total efficiency operation operation operation with flushing ηv Volumetric efficiency 5 Input pressure 0 23

25 0

Kw

Kw

w

0K

w

w

Kw

6K

0 20

17

14

121

K 97

w

33000

73 K

49 Kw

MRE 8200

1

Kw

30000

250 bar

2

27000 24000

Torque T in Nm →

210 bar

3

21000 18000

150 bar

4

100 bar

5

15000 12000 9000 6000 3000

50 bar 35 l/min 100 l/min 200 l/min

10

20

300 l/min

30

40

400 l/min

50

500 l/min

60

600 l/min

70

700 l/min

80

800 l/min

90

900 l/min

100

110

120

Speed n in min–1 →

MR, MRE

19/36

RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p

= zero pressure

output

93

11 M R

M

R

28

73

M

Off-load pressure in bar →

32

R

MR 33 - 110

0

Min. required pressure differential ∆p when off-loaded (shaft unloaded)

24

57 MR MR

20

33

16 12 8 4 200

400

600

800

1000

1200

1400

Speed n in min-1 → 33 0

36

M R

24

25 0

M

R

30

28

0

M RE

32

Off-load pressure in bar →

MR / MRE 125 - 330

0 19 MR 160 MR R125 M

20 16 12 8 4 100

200

300

400

500

600

700

800

900

Speed n in min-1 → 80

0

36

0 50 M

R

60 R

M

24

E

0

M R

28

70 0

M

R

E

32

Off-load pressure in bar →

MR / MRE 350 - 800

0

MR

20

45

MR

16

35

0

12 8 4 50

100 150 200 250 300 350 400 450 500 550 600 640

20

0

16 12 8 4 30

60

90

120

150

Speed n in

RE 15 228/10.02

11 0

24

R

Off-load pressure in bar →

28

M

MR / MRE 1100 - 2100

M M RE R 21 M 18 R 00 00 M 160 RE 0 14 00

Speed n in min-1 →

20/36

180

min-1

210

240

270

300

330

→ MR, MRE

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p

output

= zero pressure

Min. required pressure differential ∆p when off-loaded (shaft unloaded)

54 R

E MR

00

24

M

28

R

45

20

00 31 0 280

MR 600 0 3 MR MR 240

M

Off-load pressure in bar →

32

00

MR E M M 82 R R 00 6 5 70 0 00 0

36

MR / MRE 2400 - 8200

16 12 8 4 20

40

60

80

100

120

Speed n in

140

min-1

160

180

200

220



M

M R

32

R

MR

M

Boost pressure in bar →

93

R

36

73

MR 33 - 110

11 0

Min. required boost pressure during braking operation (pump operation)

28

57 MR

24

33

20 16 12 8 4 200

400

600

800

1400



RE

33

36 M

32 28

M R

25

0

M R

Boost pressurek in bar →

1200

30 0

MR / MRE 125 - 330

1000

0

Speed n in

min-1

24 20 16

0 19 MR 160 MR 125 MR

12 8 4 100

200

300

400

500

600

700

800

900 950

Speed n in min-1 →

MR, MRE

21/36

RE 15 228/10.02

Characteristic curves (average values) measured at ν = 36 mm2/s; ϑ = 45° C; p

= zero pressure

output

50 0 R E

0 45

R

28

M

24

0

M

Boost pressure in bar →

32

M

36

R

MR / MRE 350 - 800

M R M E 8 R 60 70 00 0 0

Min. required boost pressure during pump operation

MR

20

35

16 12 8 4 50

100 150 200 250 300 350 400 450 500 550 600 640

Speed n in min-1 →

M RE M R M 18 210 R 0 0 16 0 00 MR E 14 00 M R 11 00

32

MR / MRE 1100 - 2100 Boost pressure in bar →

28 24 20 16 12 8 4

36 32 28 24

240

270

300

330



M

Boost pressure in bar →

210

MR E8 20 M M R 0 R 7 0 65 0 00 0

40

MR / MRE 2400 - 8200

min-1

00

Speed n in

180

45

150

54 00

120

0 360 MR

R

90

R E

60

M

30

20

0 10 E3 0 R M 280 MR 400 2 MR

16 12 8 4 20

40

60

80

100

120

140

160

180

200

220

Speed n in min-1 →

RE 15 228/10.02

22/36

MR, MRE

23/36

B3

D7/T1

Ø D6

D11

B1

A

Only MR 33, MR 57 (SAE standard)

Ø D11

L2

L3 L1

L4

1 Spined shaft with flank centering (for dimensions see page 25) Ordering code „N1” (for further shaft ends see page 26) 2 Leakage port Pipe thread „G” to ISO 228/1 3 G1/4 test point to ISO 228/1

D7/T1

B

L9

L9

A

L8

B3 B2

MR, MRE L5

L6

1

Ø D2 Ø D10

Ø D3

D8

Directionn of rotation (view onto shaft end) Clockwise Anti-clockwise Clockwise Anti-clockwise

2

Inlet in port A B B A

Ø D1

L13

D9

„S”

„N”

Ordering code

L12

β°

B4

α

D8

L13

°

L11 L10

3

L8

L7

Unit dimensions: MR and MRE (dimensions in mm)

B

RE 15 228/10.02

Ø D4h8

Ø D5

B2

D6

RE 15 228/10.02

24/36

566

495

384

230 37

796

153 24

MR 6500 MR 7000 MRE 8200

285

132 21

117 20

101 15

15

699,5 489.5 418.5 307.5 210 34

392

236

203

187

97

MR 3600 MR 4500 MRE 5400

466

326

293

255

167

15

619

374

341

299

235

81

MR 2400 MR 2800 MRE 3100

506

458

MR 1100 MRE 1400

MR 1600 MR 1800 MRE 2100

400

MR 600 MR 700 MRE 800

279

145

14

376

204

67

MR 350 MR 450 MRE 500

242

145

323

204

MR 250 MR 300 MRE 330

242

309

L6

MR 125 MR 160 MR 190

L5

107 57.2 14

L4

297 228.5 190.5 131.5 68.5 17

148

L3

MR 73 MR 93 MR 110

L2

253.2 196

L1

MR 33 MR 57

Motor type series no.

54

54

54

70

L8

30

28

26

24

22

98

98

98

82

82

20 70.4

18 70.4

16

16

20

19

L7

84

84

72

72

72

68 407.3 247 140

68 359.5 247 140

62 303 221 123

50 264 197 105

50 223 165 105

40 192 143

40 174.5 130

34 153.5 119

34 147.5 103

34 119.8 94 120

21

19

15

11

9

8

B3 B4

Ø D1 Ø D2

86

73

73

60

60

50

50

50 90

180 190 642 440 494

136 168 558 380 423

136 148 470 330 367

120 133 405 290 320

120 119 368 266 296

100 100 328 232 256

230 116 200 264 864 600 658.6

129

129

120



215

140 215

148 172

120 172

102 156

96 156

90 129







450 190 215 *D4h7

400 *D4h7

335

290

250

220

190

175

160

250 204 224.4 145

100 100 313,2 225 249

100

125

Ø Ø Ø Ø D3 D4h8* D5 D6

65 26.2 69.4 235.4 160 180

B2

230 116 200 240 766 540 597

208

162

162

142

9.5 142

7.5 120

6,5 120



52.4 110.2 78.5 70 19.7 124

L9 L10 L11 L12 L13 B1 T1

M16 32

M16 32

M14 28

M12 21

M12 21

M10 18

M10 18

M8 15

M8 15

M8 15

M10 25

D7 9

G 1/2 25

G 1/2 23

G 1/2 19

G 1/2 17

G 1/2 15

G 3/8 13

G 3/8 13

G 3/8 11

G 3/8 11

450

380

314

266

228

207

194

162

160



97

β

38 108° 36°

38 108° 36°

37 90° 36°

31 90° 36°

31 104° 36°

25 90° 36°

25 90° 36°

20 90° 36°

20 90° 36°

20 90° 36°

25 108° 36°

Ø Ø D9 D10 D11 α

G 3/8 11

G 1/4

D8

Unit dimensions: MR and MRE (dimensions in mm)

MR, MRE

MR, MRE

MR 33 MR 57 MR 73 MR 93 MR 110 MR 125 MR 160 MR 190 MR 250 MR 300 MRE 330 MR 350 MR 450 MRE 500 MR 600 MR 700 MRE 800 MR 1100 MRE 1400 MR 1600 MR 1800 MRE 2100 MR 2400 MR 2800 MRE 3100 MR 3600 MR 4500 MRE 5400 MR 6500 MR 7000 MRE 8200

Motor type

1st shaft end

Version N1 DIN ISO 14 Standard

25/36

120

153

188

100

132

230

88

117

173

78

101

210

74

97

50

67

60

51.5

68.5

81

40

L21

57

L5

L22 L21 L5

150

144

99

79

69

62

56.5

46

35.5

31.5

28

L22

Ø D13

M12

M12

M12

M12

M12

M12

M12

M12

M12

M12



D12

N

D12/T10

25

25

25

25

25

25

25

25

20





T10

B10x112x125

B10x102x112

B10x82x92

B10x72x82

B8x62x72

B8x52x60

B8x46x54

B8x42x48

B8x32x38

B6x28x34

B6x26x32

ØD13 DIN ISO 14

Version D1 DIN 5480 Standard

230

210

153

132

117

101

97

81

67

68,5

57

L5

188

173

120

100

88

78

74

60

50

51,5

40

L21

153

144

100

80

72

62

60

46

35,5

31,5

28

L22

L22 L21 L5

M12

M12

M12

M12

M12

M12

M12

M12

M12

M12



D12

D

Ø D13

25

25

25

25

25

25

25

25

20





T10

D12/T10

W120x4x28-8e

W110x4x26-8e

W90x4x21-8e

W80x3x25-8e

W70x3x22-8e

W60x3x18-8e

W55x3x17-8e

W48x2x22-8e

W38x2x18-8e

W35x2x16-8e

W32x1,5x20-8e

ØD13 DIN 5480

Unit dimensions: shaft variations MR and MRE (dimensions in mm)

RE 15 228/10.02

RE 15 228/10.02

MR 33 MR 57 MR 73 MR 93 MR 110 MR 125 MR 160 MR 190 MR 250 MR 300 MRE 330 MR 350 MR 450 MRE 500 MR 600 MR 700 MRE 800 MR 1100 MRE 1400 MR 1600 MR 1800 MRE 2100 MR 2400 MR 2800 MRE 3100 MR 3600 MR 4500 MRE 5400 MR 6500 MR 7000 MRE 8200

Motor type series no.

1st shaft end

26/36

8

8

8

14

38

47

48

50

14

5

28

50

5

28

5

14

5

5

17

27

5

L21

17

L5

version F1 DIN 5480

F

76

68

62

57

50

44

38

36

28

26

21

L22

L21

ØD13 DIN 5480

Ø D13

N110x3x35-9H

N100x3x32-9H

N85x3x27-9H

N75x3x24-9H

N65x3x20-9H

N55x3x17-9H

N47x2x22-9H

N40x2x18-9H

N35x2x16-9H

N32x2x14-9H

N28x1,25x21-9H

L5 L22

230

210

153

132

117

101

97

81

67

_



L5

188

173

120

100

88

78

74

60

50

_



L21

138**

116

95

85

76,5

64

59

53,8

43

_



L26

Version P1

M12

M12

M12

M12

M12

M12

M12

M12

M12

_



D12

25

25

25

25

25

25

25

25

20

_



T10

124 b8

110 k6

90 k6

80 k6

70 k6

60 k6

55 k6

50 k6

40 k6





ØD14

P

L21 L5

L

L26

Ø D14

B

2x180x32

160x28

110x25

90x22

80x20

70x18

70x16

56x14

45x12





Key LxB

D12/T10

28270

10757

6207

4020

2690

2030

1413

897

496





Transmitted torque

** These dimensions includes two keys Note: If higher torques are to be transmitted please contact the Technical Sales.

Unit dimensions: shaft variations MR and MRE (dimensions in mm)

MR, MRE

Bearing service life A computer programme is available for detailed service life calculation. Please consult our Sales Dept. with the application data: Pressure, speed, viscosity, external load at the shaft end.

50 000

10 000

25 000

5 000 4 000 3 000 2 000 1 500

5 000

1 000

2 500

500

500

100

15 20 30 40 50 60 80 10 0 15 0 20 0 30 0 40 0 50 600 800 10 0 00 12

50 000 40 000 30 000 20 000 15 000

14

250 000

9

100 000

10

500 000

10

LH10

3 5

LH50

2

Motor speed in min–1 →

8 ,5 7 7 6,5 6 5,5 5 4,5

K Cp= – P

4 3,5 3 ,8 2 2,4

2,2 2

1,8

1,6

1,4

1,2

1 5 0,9 0,9

Loading time co-efficient Cp

C p = Load co-efficient K = Service life co-efficient p = Operating pressure (motor) in bar

NS MR MR MR MR MR MR MR MR MR MR

33 57 73 93 110 125 160 190 250 300

MR, MRE

K 2150 2150 1320 1320 1320 950 950 950 950 950

LH10 is the norminal service life which 90 % of all bearings exceed. (Values at 36 mm2/s and 45° C). The average service life of all bearings LH50 is 5 x LH10.

NS MRE MR MR MRE MR MR MRE MR MRE MR

330 350 450 500 600 700 800 1100 1400 1600

K 850 1126 1126 1021 920 920 808 844 693 835

27/36

NS MR MRE MR MR MRE MR MR MRE MR MR MRE

1800 2100 2400 2800 3100 3600 4500 5400 6500 7000 8200

K 835 722 924 924 828 709 709 591 565 565 500

RE 15 228/10.02

Shaft loading =

=

F

1) Depending

on the loading conditions higher values are permitted. For detailed data a computer programme is also available. Please consult out Technical Sales.

Motor type

Short term perm. radial forcemax with dyn. loads F in kN 1)

Max. permissible radial force in shaft centre based on LH10 5000 hours Inlet pressure Inlet pressure Inlet pressure 200 bar 150 bar 100 bar F in kN F in kN F in kN

At speed n in min–1

MR

33

19.0

9.5

10.2

10.6

400

MR

57

19.0

9.5

10.2

10.6

400

MR

73

22.5

9.0

11.6

13.5

350

MR

93

22.5

9.0

11.6

13.5

350

MR

110

22.5

9.0

11.6

13.5

350

MR

125

22.5

5.0

9.9

12.9

275

MR

160

22.5

5.0

9.9

12.9

275

MR

190

22.5

5.0

9.9

12.9

275

MR

250

28.0

5.6

9.9

12.6

250

MR

300

28.0

5.6

9.9

12.6

250

MR

350

35.0

14.5

18.4

21.2

225

MR

450

35.0

14.5

18.4

21.2

225

MR

600

43.0

15.0

22.5

27.3

200

MR

700

43.0

15.0

22.5

27.3

200

MR

1100

54.0

18.5

28.5

35.2

150

MR

1600

68.0

26.2

40.6

50.0

125

MR

1800

68.0

26.2

40.6

50.0

125

MR

2400

85.0

50.1

66.0

76.8

110

MR

2800

85.0

54.0

69.0

79.4

100

MR

3600

108.0

55.0

90.0

103.0

100

MR

4500

108.0

78.0

97.0

109.0

85

MR

6500

134.0

74.0

123.0

141.0

50

MR

7000

134.0

74.0

123.0

141.0

50

MRE 330

28.0

4.5

8.5

11.9

250

MRE 500

35.0

12.4

17.3

20.8

225

MRE 800

43.0

8.5

19.8

26.3

200

MRE 1400

54.0

8.6

24.0

33.6

140

MRE 2100

68.0

12.5

35.6

48.3

120

MRE 3100

85.0

45.0

64.5

77.6

100

MRE 5400

108.0

63.0

90.2

107.3

80

MRE 8200

134.0

68.0

110.0

128.0

50

RE 15 228/10.02

28/36

MR, MRE

Holding brake: technical data, ordering details

Technical data (for applications outside these parameters, please consult us!) Brake type Old

B190 B 125 N

B300 B 180 N

B450 B 265 N

B700 B 400 N

B1100 B1800 B2800 B 620 N B 1140 N B 1710 N

T

in Nm

1250

1800

2650

4000

6200

11400

17100

T

in Nm

650

1200

1450

2200

4200

6250

12000

Release pressure

p

in bar

28

28

27

27

27

30

30

Max. operating pressure

p

in bar

420

420

420

420

420

420

420

Moment of inertia

J

in kg x m2

0.0047

0.0062

0.029

0.043

0.061

0.20

0.27

125 160 190

250 300 330

350 450 500

600 700 800

1100 1400

1600 1800 2100

2400 2800 3100

Static brake torque Dynamic brake torque

1)

Cross reference motor type MR/MRE

1)

The brake may only be dynamically loaded for a short period of time (e.g. emergency stop).

Ordering details

LAMELLENBREMSE –

Multiple disc brake Brake size (see table above) Shaft type, dimensions as for the motor Splined shaft to DIN ISO 14 Splined shaft to DIN 5480



*

N1 =

= B190

V1 =

Further details in clear text Seals NBR seals, suitable for HLP mineral oil to DIN 51 524 part 2 FKM seals

= N1 = D1

Ordering example: LAMELLENBREMSE -B190-N1 V1

MR, MRE

29/36

RE 15 228/10.02

30/36



20





136

147

172

B 300

B 450

B 700

B 1100 188

B 1800 216

B 2800 263







121

B190

L2

L1

Holding brake

30

28

26

28

27

25

22

L3

24

21

24

15

15

15

14

L4

D1

RE 15 228/10.02

153

132

117

101

97

81

67

L5

42

41

L6

L11

D6

87

63,5

71

55

49,5

L10

L6 D7

67

58,5

53,5

46

36

39,5

29,3

L7

L1

L7

42,5

34

48

25

24

21

20

L10

L2 L3 L4

165

135

120

105

100

86

72

L11

L5

120

100

88

78

74

60

50

L21

T10

L22

L21

Drain port

Ø D9

Release pressure port

D12 Ø D13 Ø D5 Ø D4h8 Ø D3

D1

35,5

N38x2x18-9H DIN 5480 N48x2x22-9H 46 DIN 5480 N55x3x17-9H 56,5 DIN 5480 N60x3x18-9H 62 DIN 5480 N70x3x22-9H 72 DIN 5480 N80x3x25-9H 79 DIN 5480 N90x4x21-9H 99 DIN 5480

L22

Shaft version N1 D1, available dimensions as motor (see pages 25, 26)

Ø D2

494 440 335

423 380 290

360 330 250

320 290 220

296 266 190

256 232 175

D6

D7

Ø D9

D12

Ø D13 B8x32x38 – G 1/4 G 3/8 10,5 M12 ex DIN 5463 B8x42x48 – G 1/4 G 3/8 10,5 M12 ex DIN 5463 B8x46x54 – G 1/4 G 3/8 13,5 M12 ex DIN 5463 B8x52x60 – G 1/4 G 3/8 13,5 M12 ex DIN 5463 M16 B8x62x72 120 G 1/4 15 M12 x1.5 ex DIN 5463 B10x72x82 – G 1/4 G 1/2 17,5 M12 ex DIN 5463 B10x82x92 – G 1/4 G 1/2 19 M12 ex DIN 5463

Ø Ø Ø D3 D4h8 D5

250 225 160

Ø D2

Release pressure port Drain port

α2

α1

α1

α2





28 22°30‘ 22°30‘

28 22°30‘ 22°30‘

28

28 22°30‘ 22°30‘

28 22°30‘ 22°30‘

28 22°30‘ 22°30‘

28 22°30‘ 22°30‘

T10

Release pressure port Drain port

Holding brake: unit dimensions (dimensions in mm)

MR, MRE

Sensor shaft (2nd shaft end) for speed sensing – connections (dimensions in mm) 5

2x M8x30 (2x M8x35)*

M4

Ø 48 Ø 22H7 Ø 8h8

Ø 64f7

Connection “Q1” (cylinderical shaft)

9

15

(27)** 25,5 (28,5)*

( ) * Motor MR 73 - 93 - 110 - 125 - 160 - 190 - 250 - 300, MRE 330 ( ) ** Motor MR 33 - 57

MR, MRE

31/36

RE 15 228/10.02

Incremental transducer - introduction Hydraulic motors that are fitted with an incremental transducer are suitable for use in all application areas where exact sensing of the motor shaft speed is required. All of the type MR Rexroth motors can be fitted with incremental transduers. The solution is a package which includes the motor, incremental transducer control and incremental transducer, all of wihich has protection to IP 67 (including the connection socket).

Unit dimensions (dimensions in mm) Incremental transducer Incremental transducer mounting surface

Ø 93

Protective cover

α

61

L1

5

m

The connection socket is included within the scope of supply.

α = 126° for motor types MR 33-57 α = 54° for motor types MR 73-93-110-125-160-190-250-300, MRE 330 α = 45° for all other types

RE 15 228/10.02

32/36

MR, MRE

Incremental transducer - connection circuit Version „M1“ Mono directional

Version „B1“ Bi-directional 4

3

3

4

Socket

Plug 1

1 1

1

4

4

3

1 2 3 4

Brown White Blue Black

4

3

3

4

1

2

2

1

Plug

Socket

3

1

1

4

4

2

2

3

3

Cable colour and function Supply voltage 8 to 24 Vdc Signal output B Max. 10 mA - 24 Vcc Supply voltage 0 Vdc Signal output A Max. 10 mA - 24 Vcc

Technical data Type

ELCIS mod. 478

Supply voltage

Vcc

8 to 24

Current consumption

mA

Max. 120

Current output

mA

Max. 10

Signal output

Phase A mono directional Phases A and B bi-directional

Frequency range

kHz

No. of inpulses

Max. 100 500 (others on request - max. 2540) / revolution

Working temperatures

°C

0 to 70

Storage temperature

°C

– 30 to + 85

min-1

Bearing service life Weight

gr

Protection Electrical connections

1.5 x 109 100 IP 67 (with fitted protective cover and plug)

Mono directional

RSF 3/0.5 M (Lumberg) plug RKT 3-06/5 m (Lumberg) socket

Bi-directional

RSF4/0.5M (Lumberg) plug RKT 4-07/5 m (Lumberg) socket

Note: 5 m long connection cable

MR, MRE

33/36

RE 15 228/10.02

Accessories (dimensions in mm) Coupling – splined shaft/hollow shaft

ØB

ØD

Ø CH11

1 1 Gear hub for splined shaft "N1" F

G

E A

MR

MRE

Material No.

A

ØB

Ø CH11

ØD

E

F

G

125/160/190



00024276

114

56

39

47

54

15.5

34.5

250/300

330

00024277

135

71

49

60

64

15

45

350/450

500

00024278

155

80

55

68

68

18.5

55.5

600/700

800

00024279

171

90

61

75

80

19

59

1100

1400

00024280

186

106

73

88.5

85.5

20

65.5

1600/1800

2100

00024281

224

118

83

98

107

22

78

2400/2800

3100

00024282

265

132

93

112

127

23

97

3600/4500

5400

00024283

355

150

113

126

165

30

140

6500/7000

8200

00024284

390

195

126

140

185

38

147

1

Adaptor – splined shaft/key

2

1 Gear hub for splined shaft "N1" 2 Key DIN 6885

t

R

Ød

b

I

Dk6 L

MR

MRE

Material No.

R

Ød

I

ØDk6

L

b

t

Key DIN 6885

125/160/190



00017858

A8x32x38

38.3

15.5

58

50

10

61

10 x 8 x 45

250/300

330

00017859

A8x42x48

48.3

15

70

60

14

73.5

14 x 9 x 56

350/450

500

00017860

A8x46x54

54.3

18.5

80

75

16

84

16 x 10 x 70

600/700

800

00017861

A8x52x60

60.3

19

90

80

18

94

18 x 11 x 70

1100

1400

00017862

A8x62x72

72.3

20

105

98

20

109.5

20 x 12 x 90

1600/1800

2100

00017863

A10x72x82

82.3

22

118

118

22

123

22 x 14 x 110

2400/2800

3100

00024285

A10x82x92

92.3

23

130

148

25

135

25 x 14 x 140

3600/4500

5400

00024286

A10x102x125 116.6

30

160

188

28

166

28 x 16 x 180

6500/7000

8200

00023776

A10x112x125 126.6

38

185

188

45

195

45 x 25 x 180

RE 15 228/10.02

34/36

MR, MRE

Accessories (dimensions in mm) Connection flanges with pipe thread „C1“

The flange is supplied complete with screws and seals: MRE

160/190



250/300

330

350/450

500

600/700

800

1100 1600 1800

1400

2400



2800

3100

3600/4500

5400

6500/7000

8200

D

MR

H

Permissible up to 420 bar (6000 PSI)

D

H

Material No.

G 3/4

36

00017864

G 1 1/4

40

00017865

G 1 1/2

45

00017866

G 1 1/2

60

00024266

G2

60

00023777

2100

Pipe thread “G” to ISO 228/1 Connection flange type SAE Options S1, T1, G1, L1

I

X

D

Z/T

Y

H

The flange is supplied complete with screws and seals!

Metric Material No.

UNC Material No.

MR

MRE

SAE PSI

ØD Inch mm

H

I

X

Y

Z/T

125/160/190 250/300 350/450 600/700

– 330 500 800

5000

3/4"

19

36

55

22.2

47.6

M10/25

00024267

3/8"-16

1)

5000

1"

25

40

60

26.2

52.4

M10/25

00024268

3/8"-16

1)

1400

4000 1 1/4"

31

45

75

30.2

58.7

M10/25

00024269

7/16"-14

1)

– 3100 5400 8200

3000 1 1/2"

37

60

86

35.7

69.8

M12/30

00024270

1/2"-13

1)

3000

50

60

112

42.9

77.8

M12/30

00024271

1/2"-13

1)

1100 1600 1800 2400 2800 3600/4500 6500/7000

2"

Z/T

1) On

request The SAE 6000 PSI flanges are available on request.

MR, MRE

35/36

RE 15 228/10.02

Assembly and commissioning guidelines Mounting, connecting Installation position, optional – Take drain return into acccount (see below) Correctly align the motor – Mounting surface even, resistant to bending Min. tensile strength of fixing screws 10.9 – Take the stated tightening torque into account Note:

Pipe lines, line connections Use suitable fittings! – According to motor type, thread or flange connections Select pipe and hose lines according to the application conditions! – Take the manufacturers data into account! Before commissioning fill motor and brake with oil – Use prescribed filter!

With frequent stop/start operation or high reversal frequencies, 2 fixing screws must be tight-fit screws Curved tooth coupling hub

Coupling Mounting with screws Use thread in output shaft Take apart with an extractor

Screw to fit the coupling

T

Leakage and flushing line installation examples Note: Install leakage line in such a way that motor cannot run empty. T = Plug Y = Motor housing filling point ← Bleeding Installation guidelines for motor series “MR; MRE”

Installation guidelines for motor series “MR/MRE with brakes“

Leakage line: Drain return to tank at zero pressure

Leakage line: Drain return to tank at zero pressure (loosen for bleeding)

T

T

T T

T

T

T

T

Overhead tank min 50

Bleed point T Bleed point

T

*)

T T

T

2 off bleed screws (on request)

T T

Cooling circuits for heavy duty continuous operation min 50

Bleed screw (on request)

T

Cooling circuits for heavy duty continuous operation

*) T

T

T

Flushing pmax = 5 bar

Flushing pmax = 5 bar

T

Motors without shaft seal ring with built-on brake

* Special design for applications which require complete filling with oil. (e.g. in salty atmosphere) Bosch Rexroth AG Industrial Hydraulics

Bosch Rexroth Limited

D-97813 Lohr am Main Zum Eisengießer 1 • D-97816 Lohr am Main Telefon 0 93 52 / 18-0 Telefax 0 93 52 / 18-23 58 • Telex 6 89 418-0 eMail [email protected] Internet www.boschrexroth.de

Cromwell Road, St Neots, Cambs, PE19 2ES Tel: 0 14 80/22 32 56 Fax: 0 14 80/21 90 52 E-mail: [email protected]

RE 15 228/10.02

T

36/36

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. It must be remembered that our products are subject to a natural process of wear and ageing.

MR, MRE