Quartz tuning fork vibration amplitude as a limitation of spatial

Optic signal. Impedance magnitude. Multimode fiber. Beam splitter. GND. Lens X20. Impedance phase amplifier synthesizer tuning fork excitation. Computer.
2MB taille 3 téléchargements 371 vues
Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST Finite Element Analysis

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes

Experimental results Data processing Stroboscopic method

´ Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras J.-M Friedt, E. FEMTO-ST

Conclusion

23 mars 2005

1 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes

Why ?

´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST Finite Element Analysis Experimental results Data processing Stroboscopic method Conclusion

• SPM usually use the physical quantity under investigation as

probe-distance indication • this is fine on homogeneous surface (constant physical quantity) • shear-force microscopy uses a resonator for independent probe-distance feedback → usable for a wide range of applications (SNOM, SECM, STM ...)

2 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST Finite Element Analysis

Shear force microscopy Feedback on one property of a quartz resonator (current magnitude or phase) to keep the probe-surface distance constant : the resonator is disturbed by the forces acting on the tip ⇒ modification of the transfer function of the resonator. The feedback signal (probe-distance) is recorded for topography monitoring.

Experimental results Data processing Stroboscopic method Conclusion

Y

Z

X

3 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

But ... Shear force microscopy has not displayed the excellent resolution of other scanning probe microscopies ⇒ requires a good understanding of the behavior of the probe and its interaction with the surface

Finite Element Analysis Experimental results Data processing Stroboscopic method Conclusion

• size of the probe ? • “leakage” of the near field (evanescent) physical property ? • vibration amplitude of the probe ? K. H. Choi, J.-M Friedt, F. Frederix, ... Simultaneous Atomic Force Microscope and Quartz Crystal Microbalance Measurement Applied Physics Letters (Vol 81, No 7, 12 Aug 2002) 4 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

Modulef based dynamic simulation : free tuning fork −4

10.5

Simulated admittance of a tuning fork

x 10

10 Finite Element Analysis

9.5

Experimental results

9

Stroboscopic method Conclusion

real (a.u.)

Data processing

8.5 8 7.5 7 6.5 6 0

50

100 150 frequency (kHz)

200

250

5 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

Modulef based dynamic simulation : loaded free tuning fork −4

10

Simulated admittance of a tuning fork with a silica tip

x 10

0.00024

0.00014

real imaginary

0.00022

0.00012

0.0002

0.0001

0.00018

Finite Element Analysis

8e−05 0.00016 6e−05 0.00014

Experimental results

8

Conclusion

zoom

2e−05

0.0001 8e−05 30

30.5

31 frequency (kHz)

31.5

32

0

real part (a.u.)

Data processing Stroboscopic method

4e−05

0.00012

6

4 0

50

100 150 frequency (kHz)

200

250

6 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes

Interferometric methods

´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

Computer

I

distance

Finite Element Analysis

Stroboscopic method

APD

Lock−in amplifier Ref

Lens X20

Data processing

Impedance magnitude

tuning fork excitation

Ar laser: 488 or 514 nm

Experimental results

Impedance phase

Optic signal

Conclusion

Speckle pattern: vibrating tuning fork

Speckle pattern: static tuning fork

Signal synthesizer

Multimode fiber

Sig

current−voltage converter GND

+

OP 27 −

Focusing lens

Tuning fork

Mirau lens x20 Fiber Beam splitter

7 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes

Raw data

´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

4

x 10 4.8

Finite Element Analysis

1400 mV 1100 mV 800 mV

0.01

|I| (a.u.)

2000 mV 1700 mV

0.012

500 mV 500 mV

Experimental results

φI (a.u.)

0.006

3.274

3.2745

3.275

3.2755

3.276

3.2765

3.277

3.2775

3.278 4

x 10

3.2 3.1 3 2.9

0.004

Conclusion 0.002

0 0

2

4

6

8 10 time (µs)

12

14

16

18

20

vibration amplitude (a.u.)

optic signal(a.u.)

Stroboscopic method

4.4 4.2 3.273 3.2735 4 x 10 3.3

0.008

Data processing

4.6

3.273 3.2735 −3 x 10

3.274

3.2745

3.275

3.2755

3.276

3.2765

3.277

3.2775

3.278 4

x 10

4.2 4 3.8 3.6 3.4 3.2 3.273

3.2735

3.274

3.2745

3.275

3.2755

3.276

frequency (Hz)

3.2765

3.277

3.2775

3.278 4

x 10

8 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes

Linking model and experimental data

´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

1.5

1

Finite Element Analysis

normalized fourier coefficients

0.6

Data processing Stroboscopic method Conclusion

fringe intensity (a.u.)

0.4

Experimental results

fourier coef. 1 (model) fourier coef. 2 (model) fourier coef. 3 (model) fourier coef. 1 (exp.) fourier coef. 2 (exp.) fourier coef. 3 (exp.)

λ/21 λ/5 λ/3 λ/2.1

0.8

0.2 0 −0.2 −0.4

1

0.5

−0.6 −0.8 −1

0

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized voltage (exp.) & amplitude (model)

abscissa is graduated in voltage from 400 to 9000 mV (experimental data), which is also equal to (simulated data) a vibration amplitude of λ/21 = 23 nm to λ/1.7 = 290 nm (λ = 488 nm in this experiment).

9 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes

Loaded tuning fork

´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

Experimental results Data processing Stroboscopic method Conclusion

normalized fourier coefficients

Finite Element Analysis

1

0.8 fourier coef. 1 (model) fourier coef. 2 (model) fourier coef. 3 (model) fourier coef. 1 (exp.) fourier coef. 2 (exp.) fourier coef. 3 (exp.)

0.6

0.4

0.2

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized voltage (exp.) & amplitude (model)

abscissa spans from 100 mV to 7600 mV amplitude (experiment) which is also equal to λ/126=4 nm to λ/5=97 nm (here λ = 488 nm). 10 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST

Stroboscopic method acquire images of the moving surface phase-synchronized with the driving voltage oversample each line and intercorrelate images look for the maximum of intercorrelation and find the best sine-wave fit repeat for each line of the image

1

2 3

Finite Element Analysis Experimental results

4

Data processing Stroboscopic method Conclusion 3.5

10

1.295·10

1.25

1.294·10

3

displacement amplitude (µm)

10

1 0.75

10

1.293·10

0.5

10

1.292·10

0.25 10

1.291·10

0 25

50

75

100 125 150 175 200

-0.25

drive voltage: 5 Vpp

2.5

2

1.5

1

drive voltage: 1.8 Vpp

0.5

0

0.000020.000040.000060.000080.00010.00012

0

0

50

100

pixel number x 100 (after interpolation)

150

Results : 0.5 Vpp –1.8 Vpp –5 Vpp → displacement amplitude 350 nm–850 nm–3000 nm (Q = 4500). 11 / 12

Quartz tuning fork vibration amplitude as a limitation of spatial resolution of shear force microscopes ´ J.-M Friedt, E. Carry, Z. Sadani, B. Serio, M. Wilm, S. Ballandras FEMTO-ST Finite Element Analysis Experimental results Data processing Stroboscopic method Conclusion

Conclusion and perspectives • we have developed the basic Finite Element Model of a tip-loaded

tuning fork • we have experimentally measured the vibration amplitude of a

tuning fork Further developments include : • measuring the vibration amplitude as a function of probe-surface distance • adding an external force acting on the tip of the probe to our model • experimentally observe possible spatial resolution loss at high driving-voltage amplitude • is the tuning for usable as a scanner ? (for an N × N pixel image, we must sample at N × 32768 Hz to get a framerate of 32768/N image/s : N = 128 ⇒ 8.5 Msamples/s and 512 fps !)

12 / 12