Programme blanc 2007

Study of the seasonal gravity signal in superconducting gravimeter ...... gravity measurements along the profiles with FG5 ballistic absolute ..... Local scale observations are dedicated to elementary processes studies. ..... Van Camp, M., M. Vanclooster, O. Crommen, T. Petermans, K. Verbeeck, B. Meurers, T. van Dam.
1MB taille 60 téléchargements 328 vues
Programme blanc 2007 APPEL À PROJETS DE RECHERCHE En cas de recouvrement thématique avec d’autres appels à projets (AAP) lancés par l’ANR, les coordinateurs de projet devront veiller à choisir l’AAP le mieux adapté à leur projet. Les personnes impliquées dans plusieurs AAP soumis à l’ANR devront le mentionner dans le tableau « demandes de contrats en cours d’évaluation » (Section D du document).

II - PRÉSENTATION DÉTAILLÉE DU PROJET DURÉE DU PROJET : □

24 mois

□X

36 mois



48 mois

A - Identification du coordinateur et des autres partenaires du projet Acronyme ou titre court du projet : GHYRAF A-1 – Partenaire 1 = Coordinateur du Projet Un coordinateur, responsable scientifique du projet, doit être désigné par les partenaires.

* champ obligatoire Civilité * Nom *

Mr.

Prénom *

Hinderer DR 1ère classe

Jacques

Grade * Employeur * CNRS Mail * [email protected] Fax 03 90 24 02 91 Tél * 03 90 24 01 17

Laboratoire (nom complet) *

Institut de Physique du Globe de Strasbourg

N° Unité (s’il existe)

UMR 7516 Adresse complète du laboratoire *

5 rue Descartes

Code postal * 67084 Ville * Strasbourg Etablissements de tutelle (indiquer le ou les établissements et organismes de rattachement, souligner l’établissement susceptible d’assurer la gestion du projet) : CNRS Délégation Alsace/ Université Louis Pasteur de Strasbourg

1

Principales publications : Liste des principales publications ou brevets (max. 5) de l’équipe partenaire 1 (définie tableau ci-dessous) au cours des cinq dernières années, relevant du domaine de recherche couvert par la présente demande dans l’ordre suivant : Auteurs (en soulignant les auteurs faisant effectivement partie de la demande), Année, Titre, Revue, N°Vol, Pages. N’indiquez pas les publications soumises.

Hinderer, J., Andersen, O., Lemoine, F., Crossley, D., & Boy, J.-P., 2006. Seasonal changes of the Earth’s gravity field from GRACE: a comparison with ground measurements from superconducting gravimeters and with hydrology model predictions, J. Geodynamics, 41, 59-68. Boy, J.-P., & Hinderer, J., 2006. Study of the seasonal gravity signal in superconducting gravimeter data, J. Geodynamics, 41, 253-258. Andersen, O., & Hinderer, J., 2005. Global inter-annual gravity changes from GRACE: early results,Geophys. Res. Lett., 32, L01402, doi:10.1029/2004GL020948. Crossley, D., Hinderer, J., & Boy, J.-P., 2005. Time variation of the European gravity field from superconducting gravimeters, Geophys. J. Int., 161, 257-264. Amalvict, M., Hinderer, J., Makinen, J., Rosat, S., & Rogister, Y., 2004. Long-term and seasonal gravity changes and their relation to crustal deformation and hydrology, J. Geodynamics, 38, 343-353. Ce projet fait-il partie des projets labellisés 1 (ou en cours de labellisation) par un pôle de compétitivité (ou par plusieurs, en cas de projet interpôle) ? NON Si oui, nom du pôle ou des pôles :

Publication par l'ANR d'informations relatives au projet Si le projet est retenu pour financement, l'ANR se réserve la possibilité de rendre publiques les informations suivantes : le nom du coordinateur du projet et son adresse électronique, les noms des responsables scientifiques et techniques des partenaires du projet, les dénominations des partenaires qu'ils soient des entreprises ou qu'ils appartiennent à un organisme de recherche. Toutefois, pour un projet de recherche partenariale organisme de recherche / entreprise retenu pour financement, l'ANR ne rendra pas publiques ces informations pour les personnes ou les partenaires qui lui en font la demande ci-après. En cas de refus de publication tout ou partie de ces éléments, remplacer la mention "OUI" par "NON" dans les cases suivantes: OUI Nom du responsable scientifique : Adresse électronique du responsable OUI scientifique : Dénomination du partenaire (si NON, celle-ci pourra être remplacée par la mention OUI générique Entreprise ou Organisme de recherche) : En cas de refus de publication, le nom et/ou l'adresse électronique ne seront pas publiés et/ou la dénomination du partenaire pourra être remplacée par la mention générique correspondante: "entreprise","organisme de recherche",…

Les informations personnelles transmises dans ces formulaires sont obligatoires et seront conservées en fichiers par l’ANR et la structure support mandatée par elle pour assurer la conduite opérationnelle de l’évaluation et l’administration des dossiers. Conformément à la loi n° 78-17 du 6 janvier 1978 modifiée, relative à l'Informatique, aux Fichiers et aux Libertés, les personnes concernées disposent d'un droit d'accès et de rectification des données personnelles les concernant. Les personnes concernées peuvent exercer ce droit en s’adressant à la structure support (voir coordonnées dans le texte de l’appel à projets) ou l’ANR (212 rue de Bercy, 75012 Paris). 1

Le partenaire coordinateur ou le(s) partenaire(s) concerné(s) devront transmettre à l’ANR, pour chaque pôle de compétitivité concerné, un formulaire d’attestation de labellisation dûment rempli et signé par un représentant de la structure de gouvernance du pôle, dans un délai de deux mois maximum après la date limite d’envoi des projets sous forme électronique. La procédure à suivre est décrite dans le texte de l’Appel à projets Blanc. Il est rappelé qu’il n’est pas nécessaire que tous les partenaires d’un projet soient membres du pôle ou localisés dans sa région pour que ce projet puisse bénéficier du label « projet de pôle ». 2

Partenaire 1 = Coordinateur du Projet Nom

Prénom

Emploi actuel

Discipline (à renseigner uniquement pour SHS)

% de temps de recherche consacré au projet

Coordinateur HINDERER

Jacques

DR CNRS

30

Membres de l’équipe

BOY

Jean-Paul

PhysicienAdjoint

20

MASSON

Fréderic

20

FERHAT

Gilbert

GEGOUT

Pascal

Professeur Université Strasbourg 1 MCF INSA Strasbourg CR CNRS

DE LINAGE

Caroline

50

AMALVICT

Martine

LUCK

Bernard

FOTZE

Marcellin

Doctorante MEN MCF Université Strasbourg 1 IE Université Strasbourg 1 IE Université Strasbourg 1

LITTEL

Fréderic

AI CNRS

50

20 20

20 30 20

Rôle/Responsabilité dans le projet 4 lignes max

Porteur du projet-Coordination Gravimétrie absolue et cryogénique Modélisation des surcharges hydrologiques, atmosphériques et océaniques-Gravimétrie cryogénique Installation, Méthodologie et Traitement GPS Contenu en eau de l’atmosphère Installation, Méthodologie et Traitement GPS Méthodologie et Traitement GPS Analyse du champ de gravité variable Hydrologie vue par GRACE et validation sol Gravimétrie absolue (Mesures et Traitement des données du FG5#206 de Strasbourg) Responsable technique du gravimètre absolu FG5-206 Gravimétrie absolue /Installation GPS/Acquisition du gravimètre supraconducteur Gravimétrie absolue/Installation du gravimètre supraconducteur

Pour chacun des membres de l’équipe dont l’implication dans le projet est supérieure à 25%, fournir une biographie d’une page maximum qui comportera : A/ Nom, prénom, âge, cursus, situation actuelle B/ Autres expériences professionnelles C/ Liste des 5 publications (ou brevets) les plus significatives des cinq dernières années D/ Prix, distinctions

3

Hinderer Jacques, DR1 CNRS, 51 ans Doctorat de 3ème cycle en géophysique en 1980 Doctorat d’Etat de Physique en 1987 1986-1996 1996-

Chargé de recherche CNRS à l’Institut de Physique du Globe de Strasbourg Directeur de recherche CNRS à l’Institut de Physique du Globe de Strasbourg

1991-1993

Mis à disposition auprès de l'Université McGill, Montréal, Canada International Research Fellowship NSERC (Natural Sciences and Engineering Research Council of Canada) Mis à disposition auprès du NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA International Research Fellow of GEST (Goddard Earth and Technology Center), University of Maryland, Baltimore County

2003-2004

Position actuelle 2005-

Directeur de recherche de 1ère classe CNRS Institut de Physique du Globe de Strasbourg (UMR 7516) 5, rue René Descartes 67084 Strasbourg Cedex

Autres responsabilités professionnelles 200519942001199819991997200020021999-2003

Directeur de l’UMR 7516 (62 permanents) Responsable de l’Observatoire Gravimétrique de Strasbourg (gravimètre cryogénique français GWR C026 et gravimètre absolu national FG5#206) Responsable de l’Equipe de Dynamique Globale (UMR 7516)(7 permanents) Responsable du Groupe ad Hoc 'Equipements Géophysiques' de l'INSU Responsable du Comité de Suivi et de Planification du gravimètre absolu Secrétaire du projet GGP (Global Geodynamics Project) d'un réseau mondial de gravimètres à supraconductivité Membre du CS de l’ECGS (European Center for Geodynamics and Seismology), Luxembourg Membre du Science Team de GRACE (Gravity Recovery and Climate Experiment) Vice-Président ETC (Earth Tide Commission, IAG)

Publications 151 publications (108 A et 43 B) dont 46 en 1er auteur Liste des 5 publications les plus significatives des 5 dernières années Hinderer, J., Andersen, O., Lemoine, F., Crossley, D., & Boy, J.-P., 2006. Seasonal changes of the Earth’s gravity field from GRACE: a comparison with ground measurements from superconducting gravimeters and with hydrology model predictions, J. Geodynamics, 41, 59-68. Andersen, O., & Hinderer, J., 2005. Global inter-annual gravity changes from GRACE: early results, Geophys. Res. Lett., 32, L01402, doi:10.1029/2004GL020948. Crossley, D., Hinderer, J., & Boy, J.-P., 2005. Time variation of the European gravity field from superconducting gravimeters, Geophys. J. Int., 161, 257-264. Hinderer, J., & Crossley, D., 2004. Scientific achievements from the first phase (1997-2003) of the Global Geodynamics Project using a worldwide network of superconducting gravimeters, J. Geodynamics, 38, 237-262. Hinderer, J., and Crossley, D., 2000. Time variations in gravity and inferences on the Earth’s structure and dynamics, Surveys in Geophysics, 21, 1-45. Prix, distinctions 1981 1990 1998

Prix de thèse de l'ADRERUS (Association pour le Développement des Relations entre l'Economie et la Recherche auprès des Universités de Strasbourg et de Haute-Alsace) Young Scientist Award EGS (European Geophysical Society) Prix Antoine d’Abadie (Académie des Sciences, Institut de France) 4

Acronyme ou titre court du projet GHYRAF A-2 : Autres partenaires du projet (remplir une fiche par partenaire) Un responsable scientifique de l’équipe partenaire doit être désigné

Partenaire 2 Civilité *

Mr.

* champ obligatoire Prénom *

Nom *

Bayer

Roger

Grade* Employeur * Université de Montpellier Professeur [email protected] Mail * Tél * 00 (33) 4 67 14 42 91 Fax 00 (33) 4 67 14 42 36 Laboratoire * (nom complet)

Laboratoire « Géosciences Montpellier » UMR CNRS/UM II 5243 N° Unité (s’il existe)

UMR 5243 Adresse complète du laboratoire *

Université Montpellier II case courrier 060 4 place E. Bataillon

Code postal * 34095 Ville * Montpellier Etablissements de tutelle (indiquer le ou les établissements et organismes de rattachement, souligner l’établissement susceptible d’assurer la gestion du projet) :

CNRS (Délégation Régionale Languedoc Roussillon, DR13) Université Montpellier II Sciences et Techniques du Languedoc Principales publications : Liste des principales publications ou brevets (max. 5) de l’équipe partenaire 2 (définie tableau cidessous) au cours des cinq dernières années, relevant du domaine de recherche couvert par la présente demande dans l’ordre suivant : Auteurs (en soulignant les auteurs faisant effectivement partie de la demande), Année, Titre, Revue, N°Vol, Pages. N’indiquez pas les publications soumises.

R. Bayer, R., J. Chery, M. Tatar, Ph. Vernant, M. Abbassi, F. Masson, F. Nilforoushan, E. Doerflinger,V. Regard and O. Bellier, 2006. Active deformation in Zagros-Makran transition zone inferred from GPS measurements, Geophys. J. Int., 165, 373-381 Verdun,, J., Bayer, R., Klingelé, E., Cocard, M., Geiger, A., and Hallyday, M. E., 2002, Airborne gravity measurements over montainous areas by using a Lacoste and Romberg air-sea gravity meter: Geophysics, v. 67 (3), p. 807-816. Bock, O., Tarniewicz, J., Thom, C., and Pelon, J., "Effect of small-scale atmospheric inhomogeneity on positioning accuracy with GPS," Geophys. Res. Lett., 28 , No. 11 , p. 2289, 2001. O. Bock, E. Doerflinger, F. Masson, A. Walpersdorf, J. Van-Baelen, J. Tarniewicz, M. Troller, A. Somieski, A. Geiger, B. Bürki, " GPS Water Vapor Project associated to the ESCOMPTE Programme: Description and first results of the field experiment," Phys. Chem. Earth, 29, 149-157, 2004. Bastin, S.; Champollion, C.; Bock, O.; Drobinski, P.; Masson, F., 2005, On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France, Geophys. Res. Lett., Vol. 32, No. 5, L05808.

5

Partenaire 2 Nom

Prénom

Emploi actuel

Responsable Bayer

Roger

Professeur 2ème classe

Membres de l’équipe

Nicolas

IE CNRS

Discipline (à renseigner uniquement pour SHS)

% de temps de recherche consacré au projet

25 Le Moigne

25 X Bock

Olivier

Bouin

Marie-Noëlle

Collard

Philippe

Doerflinger Jacob

Erik Thomas

Maître de Conf. * DR2 IGN LAREG Ingénieur IGN LAREG Technicien Univ. Mtp II IR CNRS Doctorant

20 20

* poste de MC ouvert en 2007

6

Rôle/Responsabilité dans le projet 4 lignes max

Réalisation des mesures absolues de la pesanteur à l’aide du gravimètre national FG5-228 basé au laboratoire DL/ISTEEM (Montpellier). Traitement des observations. Responsable technique du gravimètre absolu FG5-228. Reconnaissance et équipement des sites de mesures de pesanteur Mesures de gravimétrie absolue. Traitement des observations Coordination GPS avec le projet AMMA Validation et exploitation des solutions ZTD GPS.

15

Traitement de l’ensemble des données GPS. Etudes méthodologiques.

10

Mesures GPS sur les sites permanents AMMA . Maintenance du réseau.

10 30

Mesures GPS sur les sites permanents AMMA. Maintenance du réseau Relations multi-échelles gravité/hydrologie

BAYER Roger Age : 59 ans Thèse de doctorat 3ème cycle, spécialité Physique, mention Géophysique, Université Paris VI, 1974 Doctorat d'Etat, mention Sciences, Montpellier II, 1984 1968-1971 1971 1972 1973 1973 1974 1984 1986 1987

Elève de l' IPES, Paris VI Boursier CNEXO, COB (Brest) et IPGP (laboratoire de Géomagnétisme) Assistant délégué, Laboratoire de Géophysique, Montpellier Assistant stagiaire, Laboratoire de Géophysique, Montpellier Assistant titulaire, Laboratoire de Géophysique, Montpellier Maître de Conférences stagiaire, Laboratoire de Géophysique, Montpellier Maître de Conférences titulaire, 2ème classe, Montpellier Maître de Conférences titulaire, 1 ère classe, Montpellier Inscrit sur la liste de qualification aux fonctions de Professeur

Situation actuelle: Professeur de Géophysique Laboratoire de « Géosciences Montpellier » UMR CNRS/Université Montpellier II 5243 Université Montpellier II, 4 place Bataillon, 34095 Montpellier Cedex 05 Publications:

R. Bayer, R., J. Chery, M. Tatar, Ph. Vernant, M. Abbassi, F. Masson, F. Nilforoushan, E. Doerflinger,V. Regard and O. Bellier, 2006. Active deformation in Zagros-Makran transition zone inferred from GPS measurements, Geophys. J. Int., 165, 373-381 Vernant, P., Nilforoushan, F., Chery, J., Bayer, R., Djamour, Y., Masson, F.,Nankali, H., Ritz, J. F., Sedighi, M., and Tavakoli, F., 2004, Deciphering oblique shortening of central Alborz in Iran using geodetic data: Earth Planet. Sci. Lett., v. 223, p. 177-185. Vernant, P., F. Nilforoushan, D. Hatzfeld, M. Abbassi, C. Vigny, F. Masson, H. Nankali, J. Martinod, A. Ashtiani, R. Bayer, F. Tavakoli, and J. Chéry, 2004. Contemporary Crustal Deformation and Plate Kinematics in Middle East Constrained by GPS measurements in Iran and Northern Oman, Geophys. J. Int., 157,381-398 Verdun, J., Bayer, R., Klingelé, E., Cocard, M., Geiger, A., and Hallyday, M. E., 2002, Airborne gravity measurements over montainous areas by using a Lacoste and Romberg air-sea gravity meter: Geophysics, v. 67 (3), p. 807-816. Vernant, P., Masson, F., Bayer, R. and Paul, A., 2002. Sequential inversion of local earthquake travel times and gravity anomaly – The example of the Western Alps, Geophys. J. Int., 150, 79-90

Prix et distinctions: Prix "Innovation-Recherches-Entreprises" décerné en 1996 par l'ADER (Associations pour le développement de l'Enseignement et de la Recherche) Languedoc-Roussillon Expériences administratives en Recherche depuis 1996 Membre de la commission "Equipement mi-lourd en Géophysique" de l'INSU depuis 1996 Membre élu du comité national du CNRS Section 13 de 1995 à 2000 Membre du comité de réflexion INSU/CNFGG sur la gravimétrie en France Membre du Comité de Suivi et de planification des Gravimètres Absolus (instruments nationaux)

7

Acronyme ou titre court du projet GHYRAF A-2 : Autres partenaires du projet (remplir une fiche par partenaire) Un responsable scientifique de l’équipe partenaire doit être désigné

Partenaire 3 Civilité *

Mr.

* champ obligatoire Prénom *

Nom *

Diament

Michel

Grade* Employeur * IPG Paris Physicien 1ère classe [email protected] Mail * Tél * 33(0)144277341 Fax 33 (0)144277340 Laboratoire * (nom complet)

Equipe « Etudes spatiales et planétologie » Institut de Physique du Globe de Paris N° Unité (s’il existe)

UMR 7154 Adresse complète du laboratoire *

Institut de Physique du Globe de Paris Case 89 4 place Jussieu

Code postal * 75252 Ville * Paris Etablissements de tutelle (indiquer le ou les établissements et organismes de rattachement, souligner l’établissement susceptible d’assurer la gestion du projet) :

IPGP Université Paris VII CNRS (Paris B) Principales publications : Liste des principales publications ou brevets (max. 5) de l’équipe partenaire 2 (définie tableau cidessous) au cours des cinq dernières années, relevant du domaine de recherche couvert par la présente demande dans l’ordre suivant : Auteurs (en soulignant les auteurs faisant effectivement partie de la demande), Année, Titre, Revue, N°Vol, Pages. N’indiquez pas les publications soumises. Ballu, V., M. Diament, P. Briole, and J.C. Ruegg, 2003, 1985-1999 gravity field temporal variations across the Asal Rift : insights on vertical movements and mass transfer, Earth Planet. Sci. Lett., 208, 41-49. Mikhailov, V., S. Tikhotsky, M. Diament, I. Panet, and V. Ballu, 2004, Can tectonic processes be recovered from new gravity satellite data ?, Earth Planet. Sci. Lett., 228, 281-297. de Viron O., Boy J.-P., Goosse H., 2004, Geodetics effects of the Ocean response to atmospheric forcing in an Ocean General Circulation Model, J. Geophys. Res., 10.1029/2003JB002837. Métivier, L., M. Greff-Lefftz, and M. Diament, 2005, A new approach to computing accurate gravity time variations for a realistic Earth model with lateral heterogeneities, Geophys. J. Int. (doi: 10.1111/j.1365246X.2005.02692.x), 2005. Panet, I., A. Chambodut, M. Diament, M. Holschneider, and O. Jamet, 2006 New insights on intraplate volcanism in French Polynesia from wavelet analysis of Grace, Champ and sea-surface data., J. Geophys. Res., 111 (B09403), doi:10.1029/2005JB004141.

8

Partenaire 3 Nom

Prénom

Emploi actuel

Discipline (à renseigner uniquement pour SHS)

Rôle/Responsabilité dans le projet 4 lignes max

% de temps de recherche consacré au projet

Responsable DIAMENT

Michel

Phy 1

25%

Gravimétrie absolue et relative.

Membres de l’équipe

De VIRON

Olivier

MCF P7

20 %

Modélisations.

AMMANN DEROUSSI

Jérôme Sébastien

IE2 CNRS IE2 CNRS

15% 20 %

Gravimétrie absolue et relative. Gravimétrie absolue et relative.

9

Michel DIAMENT, Né le 17/11/1954 Doctorat de troisième cycle en 1981 à Université Paris-Sud. Doctorat d'Etat en 1987 à l’Université Paris-Sud 1982-1990 1990-

Assistant en Géophysique à l’université Paris-Sud. Physicien à l’IPGP.

Situation actuelle : Physicien 1ère classe à l’Institut de Physique du Globe de Paris (UMR 7154) Responsabilités professionnelles : Membre de 86 jurys de thèses depuis 1986 en France, G.B. et Irlande. Directeur ou co-directeur de 22 thèses (d’étudiants de France, Indonésie, Brésil, Cameroun, Tunisie, Chili) depuis 1986. Encadrement de 6 Post-docs (de Russie, Inde, Indonésie, Tunisie et France). 1998-2003 Responsable du DESS “Géophysique de surface et de subsurface” de l’IPGP. 1997-2002 Responsable du programme de coopération franco-indonésien sur les risques géologiques entre la DGGMR (Indonésie) et le Ministère de l’Environnement (France). 1998-2003 Président de la commission scientifique CS1 puis de la CSS1 de l’ORSTOM/IRD. 2003Président du comité TOSCA du CNES. 2007Président du Conseil d’Administration de l’Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) 2001-2005 Directeur adjoint de l’UMR 7096 « Géophysique spatiale et planétaire ». 1998-2002 Président du conseil scientifique du GDR AGRET 2000-2004 Élu au Conseil d’Administration de l’IPGP 1995-2004 Membre de la commission des personnels puis de la CPE de l’IPGP 2001Membre du comité de coordination du Bureau Gravimétrique International. 2000Membre du groupe « Géodésie » du Comité Scientifique et Technique de l’IGN. 2002Membre du comité éditorial de Tectonophysics. « Reviewer » pour: J. Geophys. Res., Earth Planet. Sci. lett., Geophys. J. Int., Geophys. Res. Lett., Phys. Earth Plan. Int., C. R. Acad. Sci., Tectonophysics ; pour les programmes nationaux, pour la National Science Foundation et la NASA. Participation à neuf campagnes océanographiques depuis 1981 (membre de l’équipe ou chef de mission) à bord de navires français, U.S., Indonésien et du submersible Nautile. Campagnes gravimétriques et microgravimétriques sur les volcans Krakatau, Merapi, Fournaise et la Soufrière de Guadeloupe et ailleurs (France, Népal, …). Campagnes sismologiques en Indonésie (Sunda Strait, Sumatra), Pérou, Tunisie et Arménie. Publications 77 articles publiés ou sous presse dans des revues internationales à comité de lecture depuis 1984. Un livre de cours publié en 1997 (première édition) et réédité en 2001 puis en 2005.

Liste des 5 publications les plus significatives des cinq dernières années Ballu, V., M. Diament, P. Briole, and J.C. Ruegg, 1985-1999 gravity field temporal variations across the Asal Rift : insights on vertical movements and mass transfer, Earth Planet. Sci. Lett., 208, 4149, 2003. Tiberi, C., M. Diament, J. Déverchère, C. Petit-Mariani, V. Mikhailov, S. Tikhotsky, and U. Achauer, Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology, J. Geophys. Res., 108 (B2), 2109,doi:10.1029/2002JB001880, 2003. Mikhailov, V., S. Tikhotsky, M. Diament, I. Panet, and V. Ballu, Can tectonic processes be recovered from new gravity satellite data ?, Earth Planet. Sci. Lett., 228, 281-297, 2004.

10

Métivier, L., M. Greff-Lefftz, and M. Diament, A new approach to computing accurate gravity time variations for a realistic Earth model with lateral heterogeneities, Geophys. J. Int. (doi: 10.1111/j.1365-246X.2005.02692.x), 2005. Panet, I., A. Chambodut, M. Diament, M. Holschneider, and O. Jamet, New insights on intraplate volcanism in French Polynesia from wavelet analysis of Grace, Champ and sea-surface data., J. Geophys. Res., 111 (B09403), doi:10.1029/2005JB004141, 2006. Prix, distinctions 2002 Médaille “100 years of international geophysics” de l’International Geophysical Committee de l’Académie des Sciences Russe.

11

Acronyme ou titre court du projet: GHYRAF A-2 : Autres partenaires du projet (remplir une fiche par partenaire) Un responsable scientifique de l’équipe partenaire doit être désigné

Partenaire 4 Civilité *

Mr.

* champ obligatoire Prénom *

Nom *

Balmino

Georges

Grade* DR Emérite [email protected] Mail * (33)[0]5 61 33 28 89 Tél *

Employeur * CNRS Fax (33)[0]5 61 25 30 98 Laboratoire * (nom complet)

Dynamique Terrestre et Planétaire (DTP)

N° Unité (s’il existe)

UMR 5562 Adresse complète du laboratoire *

Observatoire Midi-Pyrénées 14 av. Edouard Belin

Code postal * 31400 Ville * Toulouse Etablissements de tutelle (indiquer le ou les établissements et organismes de rattachement, souligner l’établissement susceptible d’assurer la gestion du projet) : CNRS (Délégation régionale Midi-Pyrénées) UPS (Université Paul Sabatier, Toulouse) CNES

Principales publications : Liste des principales publications ou brevets (max. 5) de l’équipe partenaire 2 (définie tableau cidessous) au cours des cinq dernières années, relevant du domaine de recherche couvert par la présente demande dans l’ordre suivant : Auteurs (en soulignant les auteurs faisant effectivement partie de la demande), Année, Titre, Revue, N°Vol, Pages. N’indiquez pas les publications soumises. (1) R. Rummel, G. Balmino, J. Johannessen, P. Visser, P. Woodworth, Dedicated gravity field missions – principles and aims, Journal of Geodynamics, 33, 3-20, 2002. (2) P. Visser, R. Rummel, G. Balmino, H. Sünkel, J. Johannessen, M. Aguirre, P.L. Woodworth, C. Le Provost, C.C. Tscherning and R. Sabadini, The European Earth Explorer Mission GOCE : Impact for the Geosciences, AGU Geodynamics Series 29, pp. 95-107, 2002. (3) Balmino, G., Gravity field recovery from GRACE: unique aspects of the high precision inter-satellite data and analysis method. Space Science Reviews, Kluwer Ac. Pub., 108, pp. 47-54, 2003. (4) J.A. Johannessen, G. Balmino, C. Le Provost, R. Rummel, R. Sabadini, H. Sunkel, C.C. Tscherning, P. Visser, P. Woodworth, C.W. hughes, P. Legrand, N. Sneeuw, F. Perosanz, M. Aguirre-Martinez, H. Rebhan and M.R. Drinkwater, The European gravity field and steady-state ocean circulation explorer satellite mission : its impact on geophysics, Surveys in Geophysics, Kluwer Ac. Pub., 24, pp. 339-386, 2003. (5) Bruinsma, S., J.C. Marty, G. Balmino, Numerical simulation of the gravity field recovery from GOCE mission data, Proceedings, Second International GOCE User Workshop "GOCE the Geoid and Oceanography", ESAESRIN, Frascati, Italy, 8-10 Mars 2004.

12

Partenaire 4 Nom

Prénom

Responsable BALMINO

Georges

Membres de l’équipe

BIANCALE

Richard

LEMOINE

Jean-Michel

SARRAILH

Emploi actuel

Discipline (à renseigner uniquement pour SHS)

% de temps de recherche consacré au projet

Rôle/Responsabilité dans le projet 4 lignes max

Chercheur à DTP Chercheur à DTP IR à DTP

25%

Coordination, interprétation des comparaisons

20%

Michel

IR à DTP et BGI

20%

BONVALOT

Sylvain

20 %

GABALDA

Germinal

CR1 IRD au LMTG et BGI IE1 IRD au LMTG

Mise en place des bancs de comparaison champ de gravité "spatial"gravité sol. Calcul de grilles de valeurs du champ dérivé des missions spatiales, et des grilles de variances-covariances Collecte de données/grilles de perturbations de gravité dues à l'atmosphère, aux marées terrestres et océaniques (+ effets de charge), aux effets hydrologiques. Interfaces, produits graphiques, statistiques. Mesures et traitement des données de gravimétrie absolue (FG5 + A10)

20%

20 %

DTP : Dynamique Terrestre et Planétaire, OMP Toulouse BGI : Bureau Gravimétrique International, OMP Toulouse LMTG : Laboratoire des Mécanismes de Transferts en Géologie, OMP Toulouse

13

Mesures et traitement des données de gravimétrie absolue (FG5 + A10)

BALMINO Georges, 62 ans, normalien (ENS St-Cloud) doctorat de 3ème cycle Math. (1969), doctorat d'Etat Physique (1973). Avant 1979 1979-1999 1982-1994 1991-1999 1995-2004 1997-2004

: :

2004-2006 Since 2006

: :

: : : :

a occupé divers postes au CNRS, au CNES, à l'ENSAE et à l'UPS Directeur, Bureau Gravimétrique International, Chef du Département de Géodésie Terrestre et Planétaire du CNES. Secrétaire Général de l'UGGI Chef de la Division de géodésie spatiale, CNES. Directeur Exécutif du Groupe de Recherche de Géodésie Spatiale (fédération d'unités) Chef de l'Equipe de géodésie spatiale, CNES. Emeritus scientist at CNES, and CNRS (D.R., UMR 5562)

Autres expériences professionnelles : June-Aug. 1974 June-Sept. 1978 1978-1982 July-Aug. 1982 1982-1987 April 1983

: : : : : :

May-June 1984

:

1983-1987 1986-1994 1986-2004 1987-1994

: : : :

1989-1995 1995-1999

: :

Since 1981 Since 1986

: :

Since 1996 Since 1997 Since 1997 Since 1999 Since 2000 Since 2000

: : : : : :

Since 2001 Since 2003 2004- …

: : :

Visiting professor, University of Sao Paulo, Brazil. Visiting scientist, J.P.L., Pasadena, Calif., USA. Member of ESA Solar System Working Group. Visiting professor, USSR Ac. of Sc., Moscow, Tachkent. Member of ESA Earth Observation Working Group. Visiting professor, Nat. Bureau of Surveying and Mapping, Beijing, China Visiting professor, Univ. of Shangai, Astronomical Observatory of Nanjing, Univ. of Xian ; China. Scientific consultant, I.I. & CISI, Toulouse. Scientific Adviser, GETECH, Leeds University Member of GRGS Executive Bureau CIGAR (Consortium for Investigation of Gravity Anomalies Recovery) : founder, member and consortium leader. Member of IERS Central Bureau Advisory Committee Member of FAGS Council (Federation of Astronomical and Geophysical Data Analysis Services). Member of GRGS Scientific Committee Member of Mars Observer and then of Mars Global Surveyor Radio Science Team (Stanford Univ. & JPL) Member of ESA- GOCE Mission Advisory Group Member of CERFACS Scientific Council Corresponding member of Bureau des Longitudes Academia Europaea member Member of BGI Coordination and Advisory Committee EGGC (European GOCE Gravity Consortium) : co-founder, leader of consortium CNES team. Member of TOSCA Advisory Committee of CNES Member of National Academy of Air and Space Project scientist "GOCE-Gravity" , GRGS and CNES

Publications : 122 (87 rang A, 35 rang B), dont 71 en premier auteur. Nombreuses autres dans diverses revues et livres. Sélection de cinq publications dans le domaine ces 5 dernières années : (1) Balmino, G., New space missions for mapping the Earth’s gravity field, C.R. Acad. Sci. Paris, t. 2, Série IV, pp. 1353-1359, 2001. (2) Moreaux, G., G. Balmino, Impact of some land hydrological phenomena on GOCE mission, Geophys. Res. Letters, Vol. 29, N° 8, 10,1029/2001gl013568, 2002. (3) Balmino, G., Gravity field recovery from GRACE: unique aspects of the high precision inter-satellite data and analysis method. Space Science Reviews, Kluwer Ac. Pub., 108, pp. 47-54, 2003 (4) J.A. Johannessen, G. Balmino, C. Le Provost, R. Rummel, R. Sabadini, H. Sunkel, C.C. Tscherning, P. Visser, P. Woodworth, C.W. hughes, P. Legrand, N. Sneeuw, F. Perosanz, M. Aguirre-Martinez, H. Rebhan and

14

M.R. Drinkwater, The European gravity field and steady-state ocean circulation explorer satellite mission : its impact on geophysics, Surveys in Geophysics, Kluwer Ac. Pub., 24, pp. 339-386, 2003. (5) Bruinsma, S., J.C. Marty, G. Balmino, Numerical simulation of the gravity field recovery from GOCE mission data, Proceedings, Second International GOCE User Workshop "GOCE the Geoid and Oceanography", ESAESRIN, Frascati, Italy, 8-10 Mars 2004.

Prix, distinctions : NASA Geos 3 Special Achievement Award, 1976. CNES : Médaille de bronze, 1977. Prix Gustave Roux de l' Académie des Sciences, 1983. Fellow of the International Association of Geodesy, 1991. NASA-JPL Magellan Achievement Award, 1994. Docteur Honoris causa, Technical University of Graz, Austria, 1996. CNRS : Médaille d'argent, 1996. NASA-JPL Mars Global Surveyor Group Achievement Award, 1997. Ordre National du Mérite (chevalier), 1998. Vening-Meinesz Medal, EGS, 2002. Fellow of the American Geophysical Union, 2005.

15

Acronyme ou titre court du projet GHYRAF A-2 - Autres partenaires du projet (remplir une fiche par partenaire) Un responsable scientifique de l’équipe partenaire doit être désigné

Partenaire 5 Civilité *

Mr.

* champ obligatoire Prénom *

Nom *

Genthon

Pierre

Grade Employeur * IRD DR 2 Mail * [email protected] Tél * 04 67 14 90 14 Fax 04 67 14 74 47 Laboratoire * (nom complet)

Hydrosciences Montpellier

N° Unité (s’il existe)

UMR 5569 Adresse complète du laboratoire *

Maison des Sciences de l'Eau, case MSE, Université Montpellier II, Place Eugène Bataillon 34095 Montpellier cedex 5

Code postal * 34095 cedex 5 Ville * Montpellier Etablissements de tutelle (indiquer le ou les établissements et organismes de rattachement, souligner l’établissement susceptible d’assurer la gestion du projet) : Université Montpellier II, CNRS, IRD

Principales publications : Liste des principales publications ou brevets (max. 5) de l’équipe partenaire 2 (définie tableau ci-dessous) au cours des cinq dernières années, relevant du domaine de recherche couvert par la présente demande dans l’ordre suivant : Auteurs (en soulignant les auteurs faisant effectivement partie de la demande), Année, Titre, Revue, N°Vol, Pages. N’indiquez pas les publications soumises. Favreau G., Leduc C., Marlin C., Dray M., Taupin J.-D., Massault M., Le Gal La Salle C., & Babic M., 2002. Estimate of recharge of a rising water-table in semi-arid Niger from 3H and 14C modeling. Ground Water, 40, 2, 144-151. Genthon P., Bataille A., Fromant A., D'Hulst D. & Bourges, F., 2005. Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at La Peyrére cave (Ariège, France).Journal of Hydrology, 311, 157-171. Leblanc, M., Favreau, G., Tweed, S., Leduc, C. Razack, M. & Mofor, L., 2007. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad basin, Africa Hydrogeology Journal, 15, 97-100 Massuel, S., Favreau, G. , Descloitres, M., Le Troquer, Y. , Albouy, Y. & Cappelaere, B., 2006. Deep infiltration through a sandy alluvial fan in semiarid Niger inferred from electrical conductivity survey, vadose zone chemistry and hydrological modelling Catena, 67, 105-118 Kamagaté, B. , Séguis, L. , Favreau, G. , Seidel, J.-L. , Descloitres, M. & Affaton, P., 2007. Hydrological processes and water balance of a tropical crystalline bedrock catchment in Benin (Donga, upper Ouémé River), accepté à C. R. Geosciences.

16

Partenaire 5 Nom

Responsable GENTHON Autres membres de l’équipe

Prénom

Emploi actuel

Discipline (à renseigner uniquement pour SHS)

Rôle/Responsabilité dans le projet % de temps 4 lignes max de recherche consacré au projet 35% Modélisation / acquisition de données hydrogéologiques.(site Diffa, Niger, coordination)

Pierre

DR 2 IRD

FAVREAU

Guillaume

CR IRD

25%

Interprétation / modélisation des données hydrogéologiques (SO AMMACATCH, Niger, site Diffa, Niger)

SÉGUIS

Luc

CR IRD

20%

PEUGEOT

Christophe

CR IRD

10%

CAPPELAERE

Bernard

IR IRD

10%

Données hydrologiques de validation (observations et modélisations) (SOAMMA-CATCH Bénin, échelle locale) piézométrie, modélisation hydrologique Étude du cycle de l'eau à méso-échelle, Données hydrologiques de validation (observations et modélisations) (SO-AMMA-CATCH Bénin, mésoéchelle) Interprétation et modélisation des données de flux hydriques de surface (SO-AMMA-CATCH, Niger)

GALLE

Sylvie

CR IRD au LTHE

10%

DESCROIX

Luc

10%

DELCLAUX OI

Francois Monique

CR IRD au LTHE IR IRD

ZAIRI

Rim

X LEGCHENKO

Anatoly

DESCLOITRES

Marc

20% 25%

Données hydrologiques de validation (observations et modélisations) (SOAMMA-CATCH Bénin, échelle locale) stock d’eau dans la zone non saturée, modélisation hydrologique Hydrologie, échelle locale et régionale (SO-AMMA-CATCH, Niger)

Doctorant HSM Post -doc

30 %

Modélisation hydrologique de surface et sub-surface autour du site Diffa Collecte et traitement des données hydrologique (ORE AMMA, CATCH, Niger, site Diffa) Modélisation / acquisition hydrochimique (site Diffa)

15%

Modélisation des eaux de surface et sub-surface (site Diffa)

DR IRD LTHE IR IRD au LTHE

10%

Mesure et modélisations électromagnétiques

20%

Méthodes d'exploration du sous sol

T IRD

Les personnels listés font partie de l’UMR HydroSciences Montpellier sauf ceux qui sont rattachés au LTHE: Laboratoire d'Etude des Transferts en Hydrologie et Environnement, Grenoble

17

GENTHON Pierre, DR2 IRD, 50 ans Agrégation de Physique en 1981 Doctorat de 3eme cycle en 1985 Habilitation à Diriger les Recherches en 2003 1988 - 2002 Maitre de Conférences, Université Paul Sabatier, Toulouse. 2002 - 2006 Détaché à l'IRD équipe Paléotropique, Nouméa Position actuelle depuis 10/2006 Directeur de Recherches 2eme classe IRD Hydrosciences Montpellier, Maison des Sciences de l'Eau Université Montpellier II, 34095 Montpellier cedex 05 Responsabilités administratives Membre élu du conseil scientifique de l'Observatoire Midi-Pyrénées 1992 -> 1998 Membre élu de la CSE 35eme section de l'UPS 1992 -> 2002 Membre de la CSE 34eme section de l'UPS : Un mandat Membre de la CSE 35-36eme section de Montpellier : Un mandat Membre de la CSE 35-36eme section de Pau : Un mandat Participation aux programmes nationaux ATP GEOTECHNOLOGIE DES MILIEUX POREUX ET FISSURES (PORTEUR DU PROJET) ATP Télédétection (2 contrats en tant que porteur du projet) Programme ECODEV 1997-2004 (en tant que co-investigateur: géothermie site de Soultz sous Forêt) Recherche et Transfert de Technologie, pôle Environnement de la Région Midi-Pyrénées 1999 (porteur du projet) Programme de Recherches en Hydrologie (depuis sa création en 1994, responsable de thème au sein d’un groupe intitulé Milieux Poreux, puis Transfert Complexes en Milieux Poreux et Ressources en Eau. ce thème regroupe actuellement 14 personnes dans 4 équipes)

Publications Sisavath S., Mourzenko V,. Genthon P., Thovert J.F. & Adler P.M., 2004. Geometry, percolation and transport properties of fracture networks derived from line data. Geophysical Journal International, 157 : 917-934. Genthon, P., Ormond, A., 2004. Infiltrative Instability Near a Topographic Jump. Implication for the Underground Drainage of Soluble Rocks, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract H11E-0334. Genthon, P.,Bataille A., Fromant A., D'Hulst D. and F. Bourges, 2005. Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at La Peyrére cave (Ariège, , France).Journal of Hydrology, 311, 157-171. Bourges, F., Genthon P., Mangin A., and D. D’Hulst, 2006. The karstic climate patterns and stability from l’Aven d’Orgnac and other French caves, Int. J. Climatology, doi: 10.1002/joc.1327. Bataille, A., Genthon, P., Rabinowicz, M., Fritz, B., 2006. Modeling the coupling between free and forced convection in a vertical slot: implications for the heat production of an Enhanced Geothermal System, Geothermics, 35, 654-682.

18

Guillaume FAVREAU A/ Nom, prénom, âge, cursus, situation actuelle FAVREAU Guillaume, 34 ans (05/05/1973) Doctorat Université Paris-Sud (2000) séjour post-doctoral (2001-2002) en Australie au CSIRO Land and Water, Adelaide. CR IRD UMR Hydrosciences depuis 2002 ; en affectation jusqu’à 08/2007 IRD Tunisie. Chercheur CR1, équipe Processus Hydrologiques sous influence climatique et Anthropique, UMR HYDROSCIENCES Thématiques de recherche : Dynamique de la recharge des aquifères en zone semi-aride sous contrainte climatique et/ou anthropique. B/ Autres expériences professionnelles - Membre de l’Association Internationale des Hydrogéologues (AIH), de la Société Géologique de France (SGF), du Comité National Français des Sciences Hydrologiques (CNFSH) - Hydrogéologue au centre ORSTOM / IRD de Niamey (Niger, 1996-97) - Coordinateur du projet ECCO / PNRH - Impacts climatiques et anthropiques sur le fonctionnement hydrologique dans le bassin du lac Tchad. (2003 – 2005) - Coordinateur du partenariat « Hydrologie » dans le projet ANR Vulnérabilité « Sahelp » (2007-2009) C/ Liste des 5 publications (ou brevets) les plus significatives des cinq dernières années LEBLANC M., FAVREAU G., TWEED S., LEDUC C., RAZACK M., MOFOR L., 2007. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeology Journal, 15, 97-100. MASSUEL S., FAVREAU G., DESCLOITRES M., LE TROQUER Y., ALBOUY Y., CAPPELAERE B., 2006. Deep infiltration through a sandy alluvial fan in semiarid Niger inferred from electrical conductivity survey, vadose zone chemistry and hydrological modelling. Catena, 67, 105-118. FAVREAU G., GUERO A., SEIDEL J.L., 2004. Comment on “Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios,” by F. Peeters et al. (2003) Geochim. Cosmochim. Acta, 67, 587-600, Geochimica et Cosmochimica Acta, 68, 6, 14331435. COOK P.G., FAVREAU G., DIGHTON J.C., TICKELL S., 2003. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers, Journal of Hydrology, 277, 1/2, 74-88. FAVREAU G., LEDUC C., MARLIN C., DRAY M., TAUPIN J.D., MASSAULT M., LE GAL LA SALLE C., BABIC M., 2002. Estimate of recharge of a rising water table in semiarid Niger from 3H and 14 C modelling. Ground Water 40, 2, 144-151. D/ Prix, distinctions - Prix d’Hydrogéologie 2001 « Jean Archambault » du comité national français de l’Association Internationale des Hydrogéologues

19

Programme blanc 2007 B - Description du projet La partie (B) sera rédigée de préférence en anglais à l’exception des projets de recherche pour lesquels le français s’impose. Cette possibilité concerne en particulier les projets en SHS pour lesquels le français peut être utilisé dans le cadre d’une évaluation internationale. Acronyme ou titre court du projet : GHYRAF B-1 – Objectifs et contexte (2 pages maximum en Arial 11, simple interligne) On précisera les objectifs et les enjeux en les situant dans le contexte international (état de l’art)

In the last decade the international geophysical community has made strong efforts to analyse the climate system and the various interactions taking place between its components. Within the frame of the global change, it is a priority to monitor precisely the behaviour of the Earth-atmospherehydrosphere coupled system. The scientific and political efforts in that direction have led to the launch of several dedicated space missions observing the atmosphere, oceans, continental water, snow coverage and ice. Geodesy and gravimetry have a key role to play in the interpretation of the resulting data, and the IAG (International Association of Geodesy) has consequently chosen GGOS (Global Geodetic Observing System) as a leading project for the next years. An accurate description of the mass distribution inside the Earth, as well as its space-time fluctuations, can be deduced from ground-based measurements of gravity. Besides, satellitederived gravity data provide a global view of the system, and consequently provides information complementary to ground data. Nowadays, the global circulation of the atmosphere and, with a lesser precision, of the ocean, is fairly well simulated by general circulation models. On the other hand the lack of well sampled (both spatially and temporally) hydrology data makes the global hydrosphere modelling a much more challenging task. The recent space gravity missions, by monitoring precisely the mass distribution everywhere at the Earth surface, should help by bringing a large amount of new data to the data assimilating model of the Earth hydrology (Schmidt et al. 2006). In the framework of this project, we will perform a detailed comparison between models and multidisciplinary observations (ground and satellite gravity, geodesy, hydrology, meteorology) of the variations of water storage in Africa from the Sahara arid part to the monsoon equatorial part. This comparison will lead to test the hydrology model by comparison with in situ and space data, as well as in an important increase of our knowledge of the seasonal water cycle in Africa, which will be, in turn, used for the next generation models. A useful by-product will be the ground validation of the time-variable gravity fields derived from satellite missions such as CHAMP (http://www.gfzpotsdam.de/pb1/op/champ/index_CHAMP.html) launched in 2000, GRACE (Gravity Recovery and Climate Experiment) (http://www.csr.utexas.edu/grace/) launched in 2002 and GOCE (Gravity Steady-State and Ocean Circulation Explorer) (http://www.esa.int/esaLP/goce.html) to be launched in 2007. A huge effort within the frame of numerous international collaborations has been made to launch in the present decade these three satellites dedicated to the determination, with unprecedented accuracy, of the space-time changes of the Earth’s gravity field. However the validation or calibration of these satellite measurements of unprecedented accuracy is a difficult task (Hinderer et al. 2006a). Our project is meant to bring a solution to this fundamental problem, which arose quite early (e.g. Watkins 2001). As for any new type of measurement, it is necessary to test the quality of the data with respect to independent data. Presently the satellite data are often compared to predictions of global models for the atmosphere, oceans and hydrology, whereas they are supposed to be used as constraints to improve these models. Therefore we propose to collect a set of new, independent and high quality ground data to test the quality of the satellite observations and to investigate how information from space and ground gravity can be combined and optimally used to assess and improve the quality of the hydrology model. 20

To perform this intercomparison, we propose two experiments: • periodic absolute gravity measurements (every 2 months, to adequately sample the seasonal signal) along a north-south monsoonal gradient of rainfall in West Africa, going from Tamanrasset (20 mm) in southern Algeria to Djougou (1200 mm) in central Benin (Fig. 6). This allows to cover a wide range of hydrological contexts from an arid region with almost no hydrology signal where a ‘null test’ will be performed, to more humid monsoonal zones with larger changes in water storage. This profile has been chosen to include a few well studied sites in hydrology for recent years, including two sites investigated within the framework of the AMMA program (http://amma.mediasfrance.org/) ; • at the southern part of the profile, continuous measurements at Djougou (Benin) with a superconducting gravimeter to monitor with a higher sampling rate the gravity changes related to an extreme hydrological cycle; Djougou is the location of an existing hydrometeorological environmental Observatory (SO/ORE) called AMMA-CATCH (Couplage de l'Atmosphère Tropicale et du Cycle Hydrologique) (http://www.lthe.hmg.inpg.fr/catch/) with a very dense network of hydrological, geophysical and meteorological data. The teams involved in this federating project, namely IPGS (Strasbourg), Géosciences and Hydrosciences (Montpellier), IPGP (Paris) and DTP/CNES and LMTG/IRD (Toulouse), have developed complementary expertises in field work, ground and space data processing and geophysical interpretation. The multidisciplinary aspect of the project will benefit to the whole gravimetry community. We also need to combine gravity data with precise positioning (GPS) at every measurement point; wich involves a close collaboration between the gravimetry and geodesy communities. We will set up on every station of the gravity profile permanent GPS receivers complementary to the existing ones managed by the AMMA geodesists who are partners of the project. The space geodesy team of Toulouse has a leading role in satellite-derived gravity studies and is one of the principal investigators of the ESA GOCE mission about to be launched. Their ability to generate variable gravity fields with a high space and time resolution, in addition to the competence of the partners in gravimetry and GPS and in the modelling of geophysical loading processes (atmosphere, oceans, hydrology) (e.g. Boy & Chao 2005; Boy et al. 2002; 2003; de Viron et al. 2004) make us confident that we will reach the goals of our proposal. The participation of hydrologists belonging to the ORE/SO AMMA-CATCH further strengthens the multidisciplinary approach of the project. Their expertise in field measurements and hydrology modelling, as well as the numerous hydrological data they will provide in several sites, will be essential. Our project will partly mobilise for 2 years the two FG5 absolute gravimeters available in France which belong to the national instrumentation of INSU-CNRS, the absolute gravimeter A10 recently acquired by 3 French institutions (IGN, IRD, IPG Paris) and the relative Scintrex gravimeters of INSU-CNRS. The project has also a European dimension as it involves several European gravity teams (Luxemburg, Belgium, Finland) and their FG5 absolute meters for field measurements and data analysis; however, they do not appear, strictly speaking, as partners because of the ANR budgetary choices. The discussion related to the new results will generate a scientific emulation far beyond the initial objectives. A primary goal of the proposal is to set up new constraints to the problem of the monsoon cycle in Africa since our measurements (ground and space) are sensitive to the total variation of stored water, which is an additional independent information on the internal state of an hydrosystem. This new type of data sets will benefit directly to the studies related to the AMMA environmental observatory (ORE/SO); conversely the density of hydrological in situ measurements available and the precise knowledge of the local hydrology context will be essential to separate local effects from regional ones. This ambitious multidisciplinary project requires the most accurate ground instruments (FG5 absolute gravimeter and GWR superconducting gravimeter) with strong needs in terms of manpower and logistics. It is a totally innovative project in size and in the expected scientific outcome for the knowledge of the water cycle in Africa as well as for the confrontation of ground data with the ones from space gravity missions. 21

B-2 – Description du projet et résultats attendus (8 pages maximum en Arial 11, simple interligne) L’originalité et le caractère ambitieux du projet devront être explicités. L’interdisciplinarité et l’ouverture à diverses collaborations seront à justifier en accord avec l’orientation du projet. La capacité de ou des équipes « porteuse(s) » devra être attestée par la qualification et les productions scientifiques antérieures de leurs membres. Leurs rôles dans les différentes phases du projet devront être précisés et la valeur ajoutée des collaborations entre les différentes équipes sera argumentée. On décrira le déroulement prévisionnel et les diverses phases intermédiaires ainsi que les méthodologies employées. Les moyens demandés devront être en accord avec les objectifs scientifiques du projet. Uniquement dans le domaine des sciences humaines et sociales, les projets de recherche peuvent impliquer la production de données statistiques. Dans ce cas l'accès au financement de l'ANR implique l'obligation de déposer ces données, documentées, dans un centre d'archivage et de diffusion auprès des chercheurs, et de les mettre à disposition de la communauté scientifique (éventuellement au terme d'un embargo de durée déterminée).

1. Introduction Various applications, covering a broad spectrum of scientific fields, are expected from the use of gravity data derived from satellites CHAMP, GRACE and GOCE, which will provide global coverage data both on the oceans and on land. These gravity fields are also, for the first time, variable in time (e.g. monthly solutions are available for GRACE). These time-variable gravity fields need a validation to be fully used. The first objective is to compare the most recent hydrology models for continental water storage to ground and satellite data. To do so, we will combine both the effects in ground displacement, separated from the other effects by using GPS data, and gravity changes induced by the hydrological loading process. The second objective is to provide a set of ground-based gravity measurements to test the quality of the satellite observations. Among the possible geophysical signals that might be used to perform such a validation, the continental hydrological cycle is ideal. Indeed, the dominant periods of this signal are long enough to be well sampled with a few regular measurements per year, a higher sampling with absolute gravimetry being, anyway, difficult for logistic reasons. Moreover these periods are short enough to be observable in the time frame of the present proposal. We will perform our validation experiment in Africa where we can take advantage of a complete climatic profile from the desert zone (Sahara) to a humid zone in the equatorial band submitted to the monsoon cycle. 2. Observations and models A major effort to determine the temporal changes in the Earth’s gravity field was initiated with CHAMP and GRACE missions (Tapley & Reigber, 2000). The analysis of the first GRACE data after correction for the tides (solid Earth + oceans), barotropic oceanic response to air pressure, 3D mass redistribution in the atmosphere and polar motion, has revealed a clear annual signal connected to continental hydrology (soil moisture + snow coverage) (Tapley et al. 2004 ; Wahr et al. 2004; ; Ramillien et al. 2004, 2005). In addition to the land water storage studies on the global scale, we can also mention comparisons between GRACE estimates and in situ hydrological observations for some large river basins (Chen et al. 2005; Syed et al. 2005; Han et al. 2005; Swenson et al. 2006; de Viron et al. 2006). Figure 1 from Andersen et al. (2005a) shows, on the left panels, the global gravity signal in amplitude (top) and in phase (bottom) derived from the GRACE products (truncated at harmonic degree n = 10 equivalent to a spatial resolution of l = 20 000 km/n = 2000 km) and, on the right panels, the predicted signal from a ‘mean’ hydrological model taking into account 5 recent models: CPC (Climate Prediction Center) of Fan & Van den Dool (2004); LADWorld of Milly et Shmakin (2002); GLDAS (Global Land Data Assimilation System) of Rodell et al. (2004), NCEP Reanalysis (Kalnay et al. 1996) and Au et al. (2003). 22

Figure 1. Seasonal changes in gravity as seen by GRACE (truncated at n = 10) and predicted from a mean hydrology model (from Andersen et al. 2005a), unit of the amplitude is μGal (= 10-8 m s-2) unit of the phase is days wrt January first. One can easily recognise in the observations and models the strong signals related to the largest basins (South America and Africa) showing a fair agreement in amplitude and phase. However, as indicated in Figure 2, the hydrology models exhibit a large variability in many regions.

Figure 2. Standard deviation (in μGal) of the annual changes from 5 different hydrology models (from Andersen et al. 2005a). The mean standard deviation is about 1.6 μGal and the regions with higher variability clearly appear especially in the equatorial band in Africa where the standard deviation reaches 2 μGal. In addition to these seasonal components, interannual changes have also been found in GRACE data (Andersen & Hinderer 2005) in particular in Europe where these changes seem to be related to the heat wave and the inferred dryness that occurred in summer 2003 (Andersen et al. 2005b). In summary, one can say that GRACE data do generally agree with hydrological models but it is almost impossible to conclude whether the discrepancies arise from the model deficiencies or from errors in the GRACE solutions. Therefore the need for independent data allowing a real validation is obvious. 23

3. Ground-satellite comparison 3.1. Differences and similarities The problem we face here is to compare a gravity field, on the one hand, retrieved from orbiting satellites and, on the other hand, directly measured by ground-based instruments. Note that, in the case of the gravity field, the experiment is an intercomparison or validation process rather than a calibration in the sense that the measurement principles are completely different. Any load phenomenon at the Earth’s surface leads to an elastic deformation of the Earth (Farrell 1972) and consequently to a change in the gravity. In general, the surface gravity variation is the sum of 3 terms (Hinderer & Legros 1989): • a direct gravitational effect (Newtonian) • an effect related to the vertical motion of the gravimeter in the Earth’s gravity field • an effect caused by the mass redistribution inside the Earth. Ground-based instruments are sensitive to all three components whereas a satellite does not feel the second effect since it does not move with the crust. This explains the satellite/ground gravity ratio shown in Figure 3 as a function of the harmonic degree. Satellite/ground gravity due to hydrology 1,0

0,9

Ratio

0,8

0,7

0,6

satellite/ground 0,5 5

10

15

20

25

30

Harmonic degree

Figure 3. Ratio of the satellite/ground gravity due to hydrological loading. This ratio exhibits the largest discrepancies from 1 for low degrees; for large degrees it approaches 1, which means that the elastic deformation does no longer play any role (case of short scale loading). It is noticeable that this ratio is always smaller than 1, indicating that ground measurements always see a hydrological gravity signal larger than the satellites do; the reason is twofold: more underground water below the instrument increases the downward gravity and the elastic flexure of the crust (subsidence) also increases gravity. 3.2.

Ground-based instruments

The reference signal to be used for validating the satellite gravity observations is the seasonal signal from continental hydrology. It reaches several µGal in regions like Europe and can even be as large as 20 µGal in specific points in Africa like the Djougou site in Benin (Fig. 10). To detect this signal we need instruments that are both precise and stable. Consequently, we propose to make all our regular gravity measurements along the profiles with FG5 ballistic absolute gravimeters (Micro-g Solutions Inc.) (http://www.microgsolutions.com/) which have the required accuracy (1 µGal) and which are time invariant (Niebauer et al. 1995; Van Camp et al. 2005). Many of us have already deployed this type of instruments on the field in difficult climatic conditions, in Chile and Iran for instance (see e.g. Hinderer et al. 2003). Figure 4 shows at the left a FG5 gravimeter operating in field environment. In addition to the FG5 measurements we also plan to use an A10 absolute gravimeter. This instrument, which is easily transportable and allows for quicker measurements of gravity, although less accurate, will help to reach a dense measurement coverage for control purpose on some sections of the profile. 24

Figure 4. FG5 absolute gravimeter of Micro-g Solutions Inc. in field conditions on the left and et GWR ‘field` superconducting gravimeter on the right. Finally, we will also use the Scintrex CG3-M (or CG5-M) of INSU-CNRS to measure the vertical gradients at every site of the profiles, and to perform gravity links between our AG points and geodetic benchmarks. In addition to the episodic absolute gravity measurements on the two profiles, we need to have, in the investigated zone, a continuous monitoring of the gravity changes in one reference station. A recent study using collocated superconducting gravimeter and GPS data at Medicina (Italy) clearly proved the interest of this approach in the investigation of the seasonal gravity signal (Zerbini et al. 2001). The appropriate model for our proposal is the field superconducting gravimeter built by GWR Instruments (http://www.gwrinstruments.com/). Cryogenic gravimeters have been used worldwide in the frame of the GGP international network (http://www.eas.slu.edu/GGP/ggphome.html) (Crossley et al. 1999). This device (see Figure 4) is conceived to operate in remote places without heavy maintenance. This instrument, of reduced size, is running alone (there is an initial liquid helium load in the dewar and all evaporated helium is then reliquified by a compressor) and can be remotely controlled. The very low drift of this instrument will be assessed by regular AG measurements and we will benefit from its high sensitivity which is noticeably better than the FG5 (Lambert et al. 1995; Crossley et al. 2001; Van Camp et al. 2005) to follow not only the annual cycle (see Boy & Hinderer 2006) but also the transient sub-annual changes known to be present in this region with high weather variability. 3.3.

Previous studies

Only a few comparisons of satellite-derived gravity data with ground data are available. Methodological investigations (Crossley & Hinderer 2002, Crossley et al. 2003, 2004) have shown the interest to use regional networks of superconducting gravimeters for validation purpose. For instance, the analysis of the European GGP network (see Hinderer & Crossley 2004) has evidenced, with the help of empirical orthogonal functions, the presence of a coherent seasonal signal in surface gravity highly correlated to continental hydrology (Crossley et al. 2005). Most of these studies were made anticipating the GRACE data but, recently, a preliminary comparison between SG data, hydrology model predictions and real GRACE data was achieved (Andersen et al. 2005b ; Hinderer et al. 2006b); note that the first ground/satellite comparison was made by Neumeyer et al. (2004) on CHAMP data. Figure 5 shows the results of the intercomparison between SGs, hydrology and GRACE for two stations in Europe (Wettzell in Germany and Medicina in Italy).

25

Figure 5. Comparison of surface gravity changes by SGs (in blue) at Wettzell (Germany) (left) and at Medicina (Italy) (right) with GRACE monthly observations (n = 10) (in red) and predictions from GLDAS hydrology model (raw in green and smoothed to simulate GRACE data in black) (Andersen et al. 2005b). All these studies involving SGs at the ground are limited by the quite small amplitude of the seasonal gravity changes due to hydrology in most of the GGP stations. Moreover the only fairly dense network of SGs is located in Europe where the amplitudes reach only a few µGal (Boy & Hinderer 2006). There is presently no GGP station installed in a zone with strong hydrological signal or, on the contrary, in a zone with no signal at all (appropriate for the ‘null test’). 3.4.

Proposed methodology

The proposed methodology takes advantage of a simultaneous use of satellite-derived gravity observations (presently GRACE and in the near future GOCE) and ground data (repeated FG5 absolute gravity measurements on profiles, permanent observations of ground motion by GPS and continuous monitoring of gravity with a GWR superconducting gravimeter). The first step is to obtain temporal variations of surface gravity corrected for the same geophysical effects as the GRACE data. These corrections are for the solid Earth tides, ocean tide loading, 3D atmospheric loading, barotropic response of the oceans to air pressure and polar motion. This will lead to a residual gravity signal which is highly dominated, on land areas, by the hydrological contribution. The second step is to determine, with GPS data, the vertical component of the motion of the gravity stations also related to hydrological loading. After subtracting the free air effect from our surface gravity residuals, it is then possible to directly compare ground gravity data to the ones inferred from the monthly coefficients of the geopotential (GRACE level 2 products) and to other time variable gravity solutions generated by alternative methods (e.g. Rowlands et al. 2005; Luthcke et al. 2006) with higher time and space resolutions than GRACE solutions. Ground gravity is sensitive to the large scale hydrological load but also to more local effects close to the gravimeter (Llubes et al. 2004; Amalvict et al. 2004), We plan to compute precisely the local Newtonian effect by using a detailed topography and estimates of the in- situ hydrological parameters (underground water, soil moisture, rainfall, run-off); in some cases, the local gravity contribution related to the ground deformation (compaction) can also be derived from hydrogeological parameters and poro-elastic properties of the aquifers. These parameters will be combined with local models of underground fluid flow in order to constrain the space and time distribution of water masses around the gravimeter. If necessary, complementary measurements using subsurface geophysics will be made to control by an independent method the apparent changes of water distribution. Subsurface geophysics can be used to better constrain changes in water storage. In the selected sites, RMS (Resonance Magnetic Sounding) surveys will be used to estimate changes occurring in groundwater during the rainy season by estimating the vertical distribution of water contents. For two of the selected sites (Niamey and Djougou), preliminary investigations in 2005 and 2006 showed that this methodology is well adapted to West African aquifers (Vouillamoz et al., 2006; Descloitres et al., 2007).

26

All these measurements will allow a confrontation between satellite-derived, ground (gravity + ground motion) and hydrology methods. The impact will be a better understanding of the seasonal cycle of underground water storage with a double specificity since ground observations are sensitive to variations of all scales (including the very local ones) on the contrary to GPS and satellite observations which are only sensitive to large-scale variations. It will also build bridges between the hydrology and geodesy communities, allowing to each of them a better understanding of the possibilities and challenges of the other. This should result in innovative methods for combining hydrology, gravity and deformation measurements, in order to improve the monitoring of the Earth, and more particularly the lesser known hydrology part, mandatory task for the study of the global change. We propose in this project to set up two original and ambitious experiments: • •

Absolute gravity measurements 6 times per year on a profile sampling both the desert Sahara zone and the humid monsoon zone of equatorial Africa with FG5 absolute gravimeters (+ complementary A10 and Scintrex measurements); Continuous monitoring with a GWR superconducting gravimeter at the Djougou (Benin) site where large gravity signals are expected from the hydrology models.

The profile goes from the arid Sahara region (Tamanrasset, Algeria) to a low latitude zone in Africa (Djougou, Benin) where a strong monsoon signal can be observed (see Figure 6); the colored lines show the isohyet distribution (in mm) after L'Hote & Mahé (1996) and point out the strong north-south gradient of rainfall in this region. Other planned sites are Diffa (Niger) close to Lake Chad and Niamey (Niger). Niamey and Djougou are located in the investigation zone of the AMMA program where an important international effort is made to better understand the African monsoon and its impact on the physical, chemical and biological environment (Lebel et al. 2003a; Lebel & Vischel 2005). These two sites are also part of the ORE/SO AMMA-CATCH with a very dense network of in-situ hydrological measurements.

Figure 6. Location of the study sites in western Africa along the monsoonal rainfall gradient (in mm/yr, period 1950-1989). 27

How did we select these stations? The first answer is given in Figure 7 that shows the impact in gravity and vertical displacement of GLDAS hydrological model for March and September 2003. We represent the hydrological load (in mm of equivalent water in the soil) and the predicted gravity changes (in µGal) and vertical displacement of the ground (in mm). The seasonal changes may reach amplitudes as large as 15 µGal in gravity and 10 mm in displacement, which are much larger than the precision of gravity and GPS observations.

Figure 7. Hydrological load (in mm of water equivalent) from the GLDAS model (left) and induced gravity changes (in µGal) (center) and ground vertical displacement (in mm) (right) for March and September 2003.

28

An example of unexplained gravity differences (in m.s-2) between models and GRACE observations is given in Figure 8 for the months of March and September 2003 (1 µGal = 10-8 m.s-2). The upper left part shows the gravity changes induced by the raw hydrological LadWorld of Milly & Shmakin (2002) for our zone of interest; this corresponds in fact to a truncation at degree n = 180 since the model is available on a 1° x 1° grid. The upper right part is the gravity when the model is truncated at degree n = 15 i.e. a length resolution of about 1300 km. Finally the central lower part depicts the GRACE observations truncated at the same degree. If the patterns between model and observations are similar for a given truncation, one can notice that the anomalies of the equatorial band (in blue for March and red for September) are slightly stronger in the GRACE data than the ones predicted by LadWorld.

Figure 8. Differences for March and September 2003 of the gravity field (in m.s-2) between hydrological models and GRACE observations; upper left: raw LadWorld model corresponding at a truncation of degree n = 180 (1° x 1°); upper right same but truncated at n = 15 and lower center GRACE observations truncated at n = 15. Moreover, although the raw LadWorld model predicts almost no hydrologically induced gravity change in the ground water content in Tamanrasset, GRACE observations indicate a non negligible change, especially in March 2003. The second reason to select our four gravity points is that the stations already exist, with manpower, logistics help and researchers (mainly from IRD) involved in our project.

29

3.4.1. Absolute gravity measurements on a repetition profile in Africa The first point of our profile (see Table 1) is Tamanrasset (Algeria) in the arid Sahara region where an Observatory with a permanent GPS belongs to CRAAG (Centre de Recherche en Astronomie, Astrophysique et Géophysique, Alger). We will have two measurement sites in Niger: Diffa, close to Lake Chad and Niamey which are both in the Sahelian zone and, therefore, intermediary between the arid point in the North and the monsoon point in the South. The choice of Tamanrasset with almost no hydrological change is justified because this location will allow to perform the ‘null test’. Two other stations are in the AMMA investigation zone and some of them are already equipped with permanent GPS receivers (see section 3.4.3). Location Tamanrasset Diffa Niamey Djougou

Country Algeria Niger Niger Benin

longitude 5.52 E 12.62 E 2.17 E 2.62 E

latitude 22.78 N 13.32 N 13.48 N 9.35 N

code TAM DIFF NIAM DJOU

Rainfall (mm) 20 300 560 1200

Table 1. Location of the stations of absolute gravity profile and mean annual rainfall (in mm).

Figure 9. Gravity changes and vertical displacements due to the hydrological load (GLDAS model) for the stations of the absolute gravity measurements. 30

The gravity changes (in µGal) and vertical displacement (in mm) due to the hydrological load (GLDAS model) for the time span 2002-2006 are computed for the stations of Table 1 and shown on Fig. 9 respectively in red and blue. One notices that, as expected, there is almost no gravity change in Tamanrasset (less than 1 µGal) and that, on the contrary, gravity varies strongly (more 15 µGal peak to peak) in Djougou. The hydrological cycle of the three sites of Diffa (300 mm /yr), Niamey (560 mm/yr) and Djougou (1200 mm/yr) (cf. Table 1) has been studied since the 90s, mostly by IRD hydrologists and hydrogeologists working in collaboration with local institutions. These three sites were chosen for (i) the good knowledge of the local hydrological response to monsoonal rainfalls and (ii) because they represent a natural geometric suite of the monsoonal rainfall gradient, in complement to the Tamanrasset site where the monsoon effect is null. These three sites constitute priority topic for the HydroSciences Montpellier (HSM) team. Thus, the present project will lead to the convergence of the gravimetry and hydrology communities. The Djougou and the Niamey sites are the meso-scale sites of the ongoing international AMMACATCH SO experiment (2003-2010). The Diffa site is located in the Lake Chad basin where a research program is already scheduled and involves 3 researchers of this project. Since it is at the northern edge of the monsoon area, it amplifies the variability of the monsoon. A description of these sites and of the studies planned there is provided below. In the middle of a large sedimentary basin (2.5 Mkm2), the Lake Chad is an endoreic shallow freshwater lake, only a few meter deep and therefore sensitive to climatic changes (Lemoalle 2004), which is topping the Quaternary upper aquifer of the Chad lake basin. Due to the large scale of the basin it cannot be covered by conventional hydrological observatories. Thus satellite gravity data provide a unique opportunity to constrain the large scale and long term evolution of the freshwater resources at the basin scale. This basin has been explored by hydrologists since the 50’s (Olivry et al., 1996). Since the 90's, it has been subjected to numerous modelling efforts, mostly performed by (or in collaboration with) HSM (Leduc et al. 2000; Massuel 2001; Leblanc, 2002, Boronina et al., 2005, for groundwater modelling; Delclaux et al. 2005 for surface water). IRD is planning to allocate GF and PG in the Chad area to work mainly on the Chad basin. Two main challenges arise in the water budget of the basin: the first arises from the memory of a few thousands years of the aquifer (Leblanc et al. 2007), and the second one from the surface water inputs, particularly from the rivers and from the lake (Delclaux et al. 2005). The long-term climatic component of the groundwater and of the lake fluctuation is one of the topics of the ANR SAHELP project. Monitoring of the seasonal changes of surface water and groundwater performed since 2004 in the Niger part of the basin (ECCO-PNRH funding, ongoing surveys by local authorities) will help to constrain the distribution of water mass in the representative region of the sahara sahel transition (Diffa, 300 mm/yr). Immediately South of Diffa, the Komadougou river shows large seasonal variations and will be used as a key area to test the recharge of the aquifer by superficial rivers. To the North of Diffa, the Kadzell area is subject to very little recharge (Leblanc et al., 2003; Gaultier et al., 2003) and its piezometric surface does not present any seasonal signal (Leduc et al., 1998).This best known area of the lake Chad Basin will be used as a feature of the desert area of the basin, which is devoid of any permanent water surface. Within the framework of this project, a densification of the current monitoring network will make possible a decomposition of the gravimetric signal. Infiltration of surface waters will be computed with the TMHB code which will be built and calibrated. More local studies are proposed immediately near the location of the absolute gravimeter in order to assess the porosity (RMS) and water content of the sedimentary level surrounding the gravimeter (direct sampling of the sediment layer by drilling with a motored auger). So this site will both provide to the GHYRAF project the near northern limit of the monsoon domain, and introduce constraints from satellite and surface gravimetry to the water budget of the Chad quaternary aquifer. An additional constraint to the Lake Chad height is also provided by satellite radar altimetry (TOPEX/POSEIDON-JASON 1) as shown by Coe & Birkett (2004) (see also http://www.legos.obs-mip.fr:80/en/soa/hydrologie/hydroweb/). The Sahelian mesoscale site is a 1° x 1° site close to Niamey (Niger) and the Soudanian site is the upper Ouémé catchment in Bénin (14600 km2, centred on 9,5°N, 2°E, including the Djougou site), with average yearly rainfall of 1200 mm (one single season)). The SO AMMA-CATCH is the core of the water cycle surface studies in the AMMA project. Started in 2000, water cycle observations are planned to last until 2010. One of the goals is to document processes involved in the surface 31

redistribution of water (runoff, infiltration, evapotranspiration) and to quantify the different contributions to the surface water budget (Braud et al., 2005; Varado et al., 2005, 2006). Observation of the continental water cycle is based on a multi-scale (spatial and temporal) approach (Le Lay and Galle, 2005), associating local sites (transects in Benin and small watersheds in Niger), super-sites (Donga Watershed in Benin and Dantiandou Kori in Niger) embedded in the mesoscale site, and combines long-term (LOP) and enhanced (EOP) observation periods. Local scale observations are dedicated to elementary processes studies. Detailed measurements of the water cycle components are performed on three transects in Benin (Kamagate et al. 2007). In Niger, intensive observations are undertaken on elementary watersheds. These sites include soil water monitoring stations, piezometers, runoff on small gullies, vegetation monitoring and fluxes stations. These instrumentation device deployed for the AMMA EOP (2005-2007) will be kept until 2008. The local-scale observation strategy is adapted to the super-site scale (Donga catchment and Kori Dantiandou), with the documentation river runoff (Benin), pond levels (Niger) and water table levels (Niger, Benin). These data, associated to knowledge and processes captured at local scale, are used in a hydrologic modelling framework to test and validate water cycle processes, characterize the water cycle compartments and quantify the water balance components, at intra-seasonal to inter-annual time scales. One main interest of the Niamey site is that, in addition to seasonal changes in water storage in response to monsoonal rainfalls, a long – term rise in the water table dating back to the 1960s was shown to occur in response to land cover changes that promote infiltration of rainwaters (Leduc et al., 2001; Seguis et al., 2004). The observed rise in the water table is about 0.2 m/yr and represents an increase in recharge of one order of magnitude for the past 5 decades (Favreau et al., 2002), with a present recharge rate over 30 mm/yr (Vouillamoz et al., 2006). This water table rise is assumed to occur at the scale of the whole sedimentary aquifer (Continental Terminal, 150 000 km2) so that the signal should be easily recorded by GRACE, as demonstrated by recent studies (e.g. Syed et al. 2005; Han et al. 2005). The sedimentary formations are made up mostly of silts and sandstone (Lang et al., 1990). This implies that the permeability of the basin is heterogeneous so that piezometric measurements at the scale of the basin are required to assess the basin scale water table rise. This is proposed as part of the present project. In Benin the meso-scale observations consist in river flow rates and water table levels. Based on processes identified at the super-site scale, meso-scale hydrologic data combined with satellitederived vegetation maps (land cover, LAI dynamics) will be used in a modelling framework to validate the continental water cycle processes and calculate the water budget components. Observations at the super site and meso-scale scales will be maintained until 2010. In Benin, the bedrock is metamorphic and groundwaters are located in the weathered layers above. Groundwater is the main source of domestic water for the rural population. Piezometric levels are more or less parallel to the topography. There is not one regional groundwater but many hill slope groundwaters with similar behaviors where a yearly recharge occurs during the rainy season. The water table peak is reached in August-September (2-m depth); then the level decreases until May (10m depth). Considering that the mean porosity in the aquifer is 5%, this corresponds to a 0.4 m pure water thickness, to which should be added the 0.25 m thickness which is estimated to be present in the unsaturated soil. This leads to a predicted effect in gravity exceeding 25 μgal, which will be easily detected both by the superconducting gravimeter in Djougou and by the repeated absolute gravity measurements there. Above this permanent groundwater, a perched groundwater in superficial clayed layers appears during the rainy season. This subsurface flow drains into the river and it is the main component of the river flow. On this zone, the elementary hydrologic element is the hill slope. Three catena characterized with an increasing part of the woody layer (herbaceous fallow, fallow bush and forest) are instrumented. In 2006, 13 Magnetic Resonance Soundings (MRS) have been performed particularly on the 3 catena to give an estimate of the aquifer parameters (water level, porosity, hydraulic conductivity) when the water table is the highest. But the MRS parameters need to be validated by comparison with hydraulic parameters that could be measured with other methods. This has not been done yet. It is hence proposed here to evaluate 2 issues for the Djougou site: A/ Regional hydrological modelling: the objective is to better constrain the modelling of the hydrologic behaviour of this region by adding external information given by gravimetry measurements. For the Benin site, hydrological modelling based on Topmodel concept has been developed (Lelay, 2006) according to the processes identified at the local scale. In this model, all the components of the water budget (evapotranspiration, subsurface flow, recharge of the groundwater, stream flow) are calculated. Model is calibrated (and validated) against stream flow discharge because it is the only 32

integrated component known at the watershed scale, which can be easily measured. To fill the gap between the small watershed (10 km²) to the regional scale, one needs a dense network of instruments, but practically there are only about fourty of hand-drilled wells monitored on the whole Upper Ouémé catchment. A satellite evaluation of the groundwater recharge would be a great help in our effort to fill the gap between the small watershed scale and the regional scale and thus to close the water budget at the mesoscale. Conversely, the results of the regional hydrologic modelling can be used as a validation tool for the satellite data. B/ Local groundwater budget estimate: The objective is here to achieve a good evaluation of the underground storages to explain the gravimetric fluctuations. Due to the need of electrical power, the permanent superconducting gravimeter will be located on the atmospheric chemistry site of the AMMA project (Nangatchouri). On this site which is presently not dedicated to hydrological measurements, we propose to document underground storage by installing a few piezometers and a humidity station. Aquifer storage capacity will be obtained by a pumping test. On the hill slopes dedicated to hydrological studies, we propose to compare underground storage (vadose zone and groundwater) to relative gravimeter measurements realised every 2 months. Comparison will be done by the gravimetric team on underground storage evaluation obtained from observations and hydrological modelling of water flux along the hill slope. On these catena, soil humidity and water table monitoring is already in operation with a high degree of precision. We propose to fill some lack in the aquifer characterisation done for AMMA which will be useful for underground storage evaluations and modelling. At present, only the hydraulic conductivity of the aquifer has been more or less known by slug tests. We propose to characterize precisely the aquifer (porosity and conductivity) by an intercomparison of 2 methods: 1) classical pumping test and 2) sub-surface geophysical characterization. The objective of this geophysical characterization is to get a more integrative measurement of the aquifer properties than those obtained with pumping tests. As a first MRS survey has been already carried out on November 2006 (water table at the highest), new measurements will be performed during a month of lowest water table (May). In addition to the two month repetition of FG5 measurements, we also plan to set up twice per year complementary measurements on the profile with an A10 absolute gravimeter. These field measurements, which are easier – though less precise -- to perform than with the FG5, will have two objectives: •

Repeating measurements of horizontal gradients in a distance range (10 m to 10 km) around the FG5 points in order to detect any temporal variation which may arise from local effects;



Allowing denser absolute measurements on specific segments of the profiles according to the first results and predictions from the hydrology models.

3.4.2. Continuous monitoring of time-variable gravity with a superconducting gravimeter In addition to the absolute gravity campaigns, we plan to install a permanent gravity station at Djougou equipped with a superconducting gravimeter. The reasons are the following: • •

Superconducting gravimeters are more precise, by at least a factor 10, than FG5 absolute gravimeters (Crossley et al. 2001; Van Camp et al. 2005) ; Superconducting gravimeters allow a dense time sampling (1 sec) and allow the investigation of gravity signals on a wide spectrum (Hinderer & Crossley 2000, 2004); in particular the SG monitoring will help detecting, with no aliasing issues, not only the seasonal gravity changes (like GRACE) but also the rapid fluctuations suggested by some models like GLDAS having a high temporal sampling (3 hours). A recent study has shown that SGs are, indeed, capable of retrieving the annual hydrological signal in gravity at the various GGP stations (Boy & Hinderer 2006; Van Camp et al. 2006) and discrepancies in amplitude are often found to be related to topographical attraction effects of nearby water masses in the case of underground stations.

None of the existing stations of the GGP network records strong hydrological effects because of geographical reason (there was a station in Bandung, Indonesia with such strong signal but it stopped operating in 2003).

3.4.3. Continuous monitoring of the ground motion by GPS

33

On the contrary to the gravity changes observed by satellites, ground gravity is sensitive to the vertical motion of the station (free air effect). The comparison of the two types of information requires that the surface measurements are corrected for this contribution. This is why we propose to use permanentGPS receivers of geodetic quality on all the gravity sites. Several of our sites are already equipped with geodetic GPS receivers: Niamey, Djougou in the frame of the AMMA program; Tamanrasset (CRAAG, in collaboration with P. Briole, IPG Paris). We propose to install the same equipment at the station of Diffa (Niger). The precision of the GPS receivers will allow to detect the crustal deformation induced by the surface loads (atmosphere, ocean and continental hydrology) reaching several cm for the vertical component and several mm for the horizontal ones, in a broad spectral range (from hours to years). We will pay a special attention to the terrestrial frame realization and to the duration of the GPS sessions: • GPS satellite orbits are referenced in a frame related to the mass center of the Earth system (solid Earth + fluid envelopes) while the GPS stations are located on the Earth’s surface being hence referenced in a frame related to the Earth’s figure center; • The size, density and distribution of the network for computing the GPS solutions; • Because of the high frequency content of the loading due to the oceans (tides) and atmosphere (rapid atmospheric circulation) we will vary the durations of GPS sessions (3, 6, 12 or 24 hours) in order to determine the optimal duration, especially for separating the tropospheric delay from the ground vertical displacement and contributing to a better estimate of the water content of the atmosphere which is the goal of the GPS in the AMMA project. Recently several studies have shown that GPS ground observations of the hydrological signal (Bevis et al. 2005) can be compared to GRACE data and used as a validation method (Davis et al. 2004; King et al. 2006). For a specific hydrology loading process, there is a precise link between the ground motion, the surface gravity and the satellite gravity (De Linage et al. 2006); we will use these relations in our validation experiment of the GRACE and GOCE data based on ground gravity and GPS. 3.5. High spatial and time resolution of the Earth’s gravity field Recent studies (Han et al. 2005; Rowlands et al. 2005; Luthcke et al. 2006) pointed out the limitation in space and time resolution of the standard GRACE (level 2) monthly solutions. In the frame of the project, we propose to apply to the investigated African zone an alternative processing methodology of the inter-satellites distance in order to determine gravity fields with a space-time resolution which is more realistic and appropriate to the study of underground water storage. This will be the task of the Toulouse space geodesy team. 3.6. Absolute gravimetry, GPS and economic challenges The GHYRAF project emphasizes the use of gravity measurements and its time variability as indicator of the underground water storage changes. Absolute gravity is also a fundamental parameter since it allows to set up reference stations and reference networks. It is then possible to link any kind of relative gravity measurements which were obtained in the past. This project should lead to more harmonisation and homogeneity in the gravity anomaly maps used in various fields like fundamental geology or resources (mines, gas, petrol) exploration. Moreover gravity plays a key role in the knowledge of height references (geoid) and altitudes which are useful to many economic branches (e.g. land use). The collocation of GPS with gravity has another consequence since permanent stations are of primary importance to derive static or dynamic precise positioning of high economical value in the domain of land management and transportation. 3.7. Logistics This project aims to measure changes in gravity due to extreme hydrology conditions (aridity in the Sahara and monsoon in equatorial Africa). We have selected sites taking into account geopolitical constraints. The Tamanrasset station will be repeated separately by flying directly there and local logistics will be provided by CRAAG. The 3 other sites are in Niger and Benin where IRD has been implemented for many years. Several researchers who are partners of our project (P. Genthon, G. Favreau, C. Peugeot) will be expatriate there during our project. 34

3.8. Media It is a highly emblematic research experiment for a broad audience: • •

It is similar to a great scientific expedition; it will help to attract in the frame of environmental questions future students to physical sciences; It shows the investment of the French community in the problem of multidisciplinary approaches of the environmental problem related to the water storage of our planet.

This project should lead, in our opinion, to a scientific document in terms of a movie on a culture channel. Many aspects could be emphasized: the problem of water in Africa, the observation of the planet by satellites, the use of field ground measurements in geophysics. Gravity changes with time often generate curiosity (e.g. the existence of tides of the solid Earth). We will contact a production company (like GEDEON Programs or CNRS Image Media) to investigate this aspect of valorisation.

References Amalvict, M., Hinderer, J., Makinen, J., Rosat, S., & Rogister, Y., 2004. Long-term and seasonal gravity changes and their relation to crustal deformation and hydrology, J. Geodynamics, 38, 343353. Au, A.Y., B.F. Chao, M. Rodell and T.J. Johnson, 2003. Global Soil Moisture Field and the Effects on the Earth’s Gravity. Paper presented at Workshop on Hydrology from Space, http://gos.legos.free.fr/, Toulouse, France, 29 sept-1. Oct. Andersen, O., & Hinderer, J., 2005. Global inter-annual gravity changes from GRACE: early results, Geophys. Res. Lett., 32,L01402, doi:10.1029/2004GL020948. Andersen, O., Hinderer, J., & Lemoine, F., 2005a. 2005. Seasonal Gravity Field Variations from GRACE and Hydrological Models, in (eds) Jekeli, Bastos and Fernandes, Gravity, Geoid and Space Missions. IAG symposia vol. 129, 316-321, Springer Verlag. Andersen, O., Seneviratne S., Hinderer, J., & & Viterbo P., 2005b. Soil moisture depletion from GRACE related to the 2003 European heatwave, Geophys. Res. Lett., 32, L18405, doi:10.1029/2005GL023574. Bevis, M., Alsdorf, D., Kendrick, E., Fortes, L., Forsberg, B., Smalley, R., & Becker, J., 2005. Sesonal fluctuations in the mass of the Amazon river system and Earth’s elastic response, Geophys. Res. Lett., 32, L16308, doi:10.1029/2005GL023491. Boronina, A., Favreau, G., Coudrain, A., Dieulin, C., Zairi, R., 2005. Data scarcity in the large semi arid Lake Chad basin incorporating environmental tracers as a priori information for groundwater modeling, Modelcare05, La Hage, June 2005. Boy, J.-P; Gegout, P., & Hinderer, J., 2002. Reduction of surface gravity data from global atmospheric pressure loading, Geophys. J. Int., 149, 534-545. Boy, J.-P., Llubes, M., Hinderer, J., & Florsch, N., 2003. A comparison of tidal ocean loading models using superconducting gravimeter data, J. Geophys. Res., .108, B4, 2193-2210. Boy, J.-P., & Hinderer, J., 2006. Study of the seasonal gravity signal in superconducting gravimeter data, J. of Geodynamics, 41, 253-258. Boy, J.-P., & Chao, B., 2005. Precise evaluation of atmospheric loading effects on Earth's timevariable gravity field, Journal of Geophysical Research, 110, B08412, doi:10.1029/2002JB002333 Braud I., de Condappa D., Soria J., Haverkamp R., Angulo R., Galle S. and Vauclin M., 2005. Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (Beerkan method). European Journal of Soil Science , 56 : 361-374. Chen, J., Rodell, M., Wilson, C., & Famiglietti, J., 2005. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, doi:10.1029/2005GL022964. Coe, M. T., and C. M. Birkett (2004), Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin, Water Resour. Res., 40, W10205, doi:10.1029/2003WR002543. Crossley, D., Hinderer, J., Casula, G., Francis, O., Hsu, H.-T., Imanishi, Y., Jentzsch, G., Kaarianen, J., Merriam, J., Meurers, B., Neumeyer, J., Richter, B., Shibuya, K., Sato, T., and T. van Dam, 1999. Network of superconducting gravimeters benefits a number of disciplines, EOS, Transactions, AGU, 80, no11, 121, 125-126. Crossley, D., Hinderer, J., & Amalvict, M., 2001. A spectral comparison of absolute and superconducting gravimeter data, J. Geod. Soc. Japan, 47, 373-379. Crossley D. & Hinderer J., 2002. GGP ground truth for satellite gravity missions, Bull. Inf. Marées Terrestres, 136, 10735-10742. 35

Crossley, D., Hinderer, J., Llubes, M., & Florsch, N., 2003. The potential of ground gravity measurements to validate GRACE data, Advances in Geosciences, 1, 1-7. Crossley, D., Hinderer, J., & Boy, J.-P., 2004. Regional gravity variations in Europe from superconducting gravimeters, J. Geodynamics, 38, 325-342. Crossley, D., Hinderer, J., & Boy, J.-P., 2005. Time variation of the European gravity field from superconducting gravimeters, Geophys. J. Int., 161, 257-264. Davis, J., Elosegui, P., Mitrovica, J., & Tamisea, M., 2004. Climate-driven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, L24605, doi:10.1029/2004GL021435. Descloitres M., Seguis L., Wubda M., Legchenko A. (2007) Caractérisation des aquifères de socle par Résonance Magnétique des Protons sur le bassin versant de la Donga (Haut-Ouémé, Bénin). Rapport technique IRD, Grenoble, France. Delclaux, F., Faroux, G., Favreau, G., Lemoalle, J., Ngo-Duc, T., 2005. Sensitivity of hydrological models to land surface model outputs : application to la Chad basin, Central Africa, EGU, Vienna, April 2005 De Linage, C., Hinderer, J., & Boy, J.-P., 2006. A search on the gravity/height ratio induced by surface loading; theoretical investigation and numerical applications, Bull. Inf. Marées Terr., 143, 1145111460. de Viron, O., J.-P. Boy & H. Goosse, 2004. Geodetic effects of the ocean response to atmospheric forcing in an ocean general circulation model, J. Geophys. Res., 109, B03411, doi: 10.1029/2003JB002837. de Viron, O. , I. Panet, & M. Diament, 2006. Extracting low frequency climate signal from GRACE data, e-Earth, Vol.1, pp. 9-14, SRef-ID: 1815-3828/ee/2006-1-9. Fan, Y., and H. van den Dool (2004), The Climate Prediction Center global monthly soil moisture data set at 0.5 degree resolution for 1948 to present, J. Geophys. Res., 109, D10102, doi:10.1029/2003 JD004345. Farrell, W.E., 1972. Deformation of the Earth by surface loads, Rev. Geophys. And Space Phys., 10, 3, 751-797. Favreau, G., Leduc, C., Dray, C., Taupin, J.D., Le Gal, C., Babie, M., 2002. Estimate of recharge of a rising water table in semiarid Niger from 3H and 14C modelling, Groundwater, 40, 144-151. Gaultier, G., Marlin, C., Leduc, C., Filly, A. & Massault, M. (2003) Hydrogéologie isotopique de la dépression piézométrique du Kadzell (Niger Oriental). In: Hydrology of Mediterranean and Semiarid Regions (ed. by E. Servat, W. Najem, C. Leduc and A. Shakeel), 168-173. IAHS Publ. 278, IAHS Press, Wallingford, UK. Han, S.-C., Shum, C. K., Jekeli, C., & Alsdorf, D., 2005. Improved estimation of terrestrial water storage changes from GRACE, Geophys. Res. Lett., 32, L07302, doi:10.1029/2005GL022382. Hinderer, J. & Legros, H., 1989. Elasto-gravitational deformation, relative changes in gravity and earth dynamics, Geophys. J., 97 , 481-495. Hinderer, J., and Crossley, D., 2000. Time variations in gravity and inferences on the Earth’s structure and dynamics, Surveys in Geophysics, 21, 1-45. Hinderer, J., et al. (2003), The absolute gravity network in Iran: An opportunity to analyse gravity changes caused by present-day tectonic deformation, in Proceedings of the Workshop: IMG2002: Instrumentation and Metrology in Gravimetry, October 28 – 30, 2002, Munsbach Castle, Munsbach, Grand-Duchy of Luxembourg, Cah. Cent. Eur. Geodyn. Seismol., vol. 22, edited by P. Francis and T. Van Dam, pp. 137–141. Hinderer, J., & Crossley, D., 2004. Scientific achievements from the first phase (1997-2003) of the Global Geodynamics Project using a worldwide network of superconducting gravimeters, J. Geodynamics, 38, 237-262. Hinderer, J., de Linage, C., & Boy, J.-P., 2006a. How to validate satellite-derived gravity observations with gravimeters at the ground?, Bull. Inf. Marées Terr., 142, 11433-11441. Hinderer, J., Andersen, O., Lemoine, F., Crossley, D., & Boy, J.-P., 2006b. Seasonal changes of the Earth’s gravity field from GRACE: a comparison with ground measurements from superconducting gravimeters and with hydrology model predictions, J. Geodynamics, 41, 59-68. Kalnay, E. , M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, Roy Jenne, & Dennis Joseph, 1996. The NMC/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437-471. Kamagaté B., Séguis L., Favreau G., Seidel J.L., Descloitres M., Affaton P., 2007. Hydrological processes and water balance of a tropical crystalline bedrock catchment in Benin (Donga, upper Ouémé River). C. R. Geoscience (accepted, minor rev.). King, M., Moore, P., Clarke, P., & Lavallee, D., 2006. Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry, Geophys. J. Int., 166, 111. 36

Lambert, A., N. Courtier, and J. O. Liard (1995), Combined absolute and superconducting gravimetry: Needs and results, in Proceedings of the Workshop: IMG-2002: Instrumentation and Metrology in Gravimetry, October 28– 30, 2002, Munsbach Castle, Munsbach, Grand-Duchy of Luxembourg, Cah. Cent. Eur. Geodyn. Seismol., vol. 22, edited by P. Francis and T. Van Dam, pp. 97–107. Lang, J., Kogbe, C., Alidou, S., Alzouma, K.A., Bellion, G., Dubois, D., Durand, A., Guiraud, R., Houessou, A., De Klasz, I., Romann, E., Salard-Cheboldaeff, M., Trichet, J., 1990. The Continental Terminal in West Africa, Journal of African Earth Sciences, 10, 79-99. Lebel, T., Redelsperger, J.-L., & Thorncroft, C., 2003a. African Monsoon Multidisciplinary analysis (AMMA) project, Gewex Newsletter, r, 13(4), 8-9. Lebel, T., Diedhiou, A., & and Laurent, H., 2003b. Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales, J. of Geophys. Res., vol. 108, no. D8, 8389, doi:10.1029/2001JD001580. Lebel, T. & Vischel, T., 2005. Climat et cycle de l’eau en zone tropicale: un problème d’échelle, C. R. Geoscience 337, 29-38. Leblanc, M., 2002. Utilisation de la télédétection et de SIG pour la gestion de la ressource en eau dans les régions semi-arides : le cas du lac Tchad, Thèse Univ. Poitiers et Glamorgan (UK). Leblanc, M., Razack, M., Dagorne, D., Mofor, L. & Jones, C. (2003) Applying Meteosat thermal data to map soil infiltrability in the central part of the lake Chad Basin, Africa. Geophys. Res. Lett. 30(19), art. no.1998, Oct. 9, 2003, doi: 10.1029/2003GL018094, 2003. Leblanc M., Favreau G., Tweed S., Leduc C., Razack M., Mofor L., 2007. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeology Journal, 15, 97-100. Leduc, C., Salifou, O. & Leblanc, M. (1998) Evolution des ressources en eau dans le département de Diffa (bassin du Lac Tchad, sud-est nigérien). In: Water Resources Variability in Africa during the XXth Century (ed. by E. Servat, D. Hughes, J.M. Fritsch & M. Hulme), 281-288. IAHS Publ. 252, IAHS Press, Wallingford, UK. Leduc C, Sabljak S, Taupin JD, Marlin C, Favreau G (2000) Recharge of the Quaternary water table in the northwestern Lake Chad basin (southeastern Niger) estimated from isotopes. CR Acad Sci Paris IIa 330(5):355–361 Leduc, C., G. Favreau, & Schroeter, P., 2001. Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger, Journal of Hydrology, 243, 43–54. Legchenko, A., Baltassat, J.M., Beauce, A., Bernard, J., 2002. Nuclear magnetic resonance as a geophysical tool for hydrogeologists. Journal of Applied Geophysics 50(1-2), 21-46. Le Lay, M. and S. Galle, 2005. How changing rainfall regimes may affect the water balance. A modelling approach in West Africa. in « Regional hydrological impacts of climatic changesHydroclimatic variability » IAHS Publ. n°296: 203-210. Lemoalle, J. (2004) Lake Chad: a changing environment. In: Dying and Dead Seas: Climatic versus Anthropic Causes (ed. by J. C. J. Nihoul, P. O. Zavialov & P. P. Micklin), 321-329. Proceedings of the NATO advanced workshop on dying and dead seas, May 2003, Liege, Belgium. NATO Science Series VI, Earth and environmental sciences, vol. 36. Kluwer Academic Publishers, Dordrecht, The Netherlands. L'Hote et Mahé, 1996. Afrique centrale et de l'Ouest : carte des precipitation moyennes annuelles (période 1951-1989) - IRD (ORSTOM) Bondy, France. Llubes, M., Florsch, N., Hinderer, J., Longuevergne, L., & Amalvict, M., 2004. Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies, J. Geodynamics 38, 355–374. Luthcke, S., Rowlands, D., Lemoine, F., Klosko, S., Chinn, D., & McCarthy, J., 2006. Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone, Geophys. Res. Lett., 33, L02402, doi:10.1029/2005GL024846. Massuel, S., 2001. Modélisation hydrodynamique de la nappe phréatique quaternaire du bassin du lac Tchad, Master report, Montpellier, 2001. Milly, P. C. D., & A. B. Shmakin, 2002. Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model, Journal of Hydrometeorology, 3(3), 283-299. Neumeyer, J., Schwintzer, P., Barthelmes, F., Dierks, O., Imanishi, Y., Kroner, C., Meurers, B., Sun, H.-P., Virtanen, H., 2004. Comparison of Superconducting Gravimeter and CHAMP Satellite derived Temporal Gravity Variations, in Earth Observations with CHAMP Results from Three Years in Orbit Eds.: Reigber Ch., Lühr, H., Schwintzer, P., & Wickert J., 31-36. Niebauer, T., G. Sasagawa, J. Faller, R. Hilt, and F. Klopping (1995), A new generation of absolute gravimeters, Metrologia, 32, 159– 180. Olivry, J.C., Chouret, A., Vuillaume, G., Lemoalle, J., Briquet, J.P., 1996. Hydrologie du lac Tchad, Orstom, Paris. 37

Ramillien, G., Cazenave, A., & Brunau, O., 2004. Global time variations of hydrological signals from GRACE satellite gravimetry, Geophys. J. Int., 158, 813-826. Ramillien, G., Frappart, F., Cazenave, A., & Güntner, A., 2005. Time variations of land water storage from an inversion of 2 years of GRACE geoids, Earth Planet. Science Lett., 235, 283-301. Ritz M., Robain H., Pervago E., Albouy Y., Camerlynck C., Descloitres M. and Mariko A. (1999) Improvement to resistivity pseudosection modelling by removal of near surface inhomogeneity effects : application to a soil system of southern Cameroon. Geophysical prospecting, vol.47, 85101 Robain H., Descloitres M., Ritz M. & Yéné Atangana, Q. , 1999. A multiscale electrical survey of a lateritical soil system in African rain forest. Journal of Applied Geophysics, vol.34, 237-253. Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B.Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, & D. Toll, 2004.The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85 (3), 381–394. Rowlands, D., Luthcke, S., Klosko, S., Lemoine, F., Chinn, D., McCarthy, J., Cox, C., & Andersen, O., 2005. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements, Geophys. Res. Lett., 32, L043110, doi:10.1029/2004GL021908. Schmidt, R., Schwintzer, P., Flechtner, F., Reigber, C., Güntner, A., Döll, P., Ramillien, G., Cazenave, A., Petrovic, S., Jochmann, H., & Wünsch, J., 2006. GRACE observations of changes in continental water storage, Global and planetary Changes, 50, 112-126, doi:10.1016/j.gloplacha.2004.11.018 Séguis, L., Cappelaere, B., Milési, G., Peugeot, C., Massuel, S., & Favreau, G., 2004. Simulated impacts of climate change and land-clearing on runoff from a small Sahelian catchment, Hydrol. Process. 18, 3401–3413, DOI: 10.1002/hyp.1503. Swenson, S., Yeh., P., Wahr, J., & Famiglietti, J., 2006. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois, Geophys. Res. Lett., 33, L16401, doi:10.1029/2006GL026962. Syed, T., Famiglietti, J., Chen, J., Rodell, M., Seneviratne, S., Viterbo, P., & Wilson, C., 2005. Total basin discharge for the Amazon and Mississippi river basins from GRACE and a land-atmosphere water balance, Geophys. Res. Lett., 32, L24404, doi:10.1029/2005GL024851. Tapley, B. D. & Reigber, C., 2000. The GRACE mission status and future plans, EOS Trans., 81, F311. Tapley, B., Bettadpur, S., Ries, J., Thompson, P. & Watkins, M., 2004. Grace measurements of mass variability in the Earth system, Science, 305, 503-505, doi:10.1126/science.1099192 Van Camp, M., Williams, S., & Francis, O., 2005. Uncertainty of absolute gravity measurements, J. Geophys. Res., 110, B05406, doi:10.1029/2004/JB003497. Van Camp, M., M. Vanclooster, O. Crommen, T. Petermans, K. Verbeeck, B. Meurers, T. van Dam and A. Dassargues, Hydrogeological investigations at the Membach station, Belgium and application to correct long periodic gravity variations, J. Geophys. Res. 111, B10403, doi:10.1029/2006JB004405, 2006. Varado N, Braud I, Galle S, Le Lay M., Seguis L, Kamagate B, Depraetere C, 2006. Multi-criteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin) using a downward approach of model complexity. Hydrology and Earth System Sciences 10, 427-442. Varado, N., Ross, P.J., Braud, I., Haverkamp, R., 2005. Assessment of an efficient numerical solution of the Richards' equation for bare soil, J. Hydrology :1-14. Vouillamoz, J.M., Favreau, G., Massuel, S., Boucher, M., Nazoumon, Y., 2006. MRS contribution to a better knowledge of an unconfined aquifer in Niger, 3rd MRS Workshop, a Reality in Applied Geophysics, Madrid. Wahr, J., Molenaar, F., & Bryan, F., 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE, J. of Geophys. Res., 103, B12, 3020530229. Wahr, J., Swenson, S., Zlotnicki, V. & Velicogna, I., 2004. Time-variable gravity from GRACE: First results, Geophys. Res. Lett., Vol. 31, No. 11, L11501, doi:10.1029/2004GL019779. Watkins, M., Bettadpur, S., Gruber, T., Romans, L., Velicogna, I., & Zlotnicki, V., 2001. Time and space validation of the new gravity missions, EOS, AGU, 82 (47), Fall Meet. Suppl. Zerbini, S., B. Richter, M. Negusini, C. Romagnoli, D. Simon, F. Domenichini, and W. Schwahn (2001), Height and gravity variations by continuous GPS, gravity and environmental parameter 38

observations in the southern Po Plain, near Bologna, Italy, Earth Planet. Science Lett., 192, 267– 297.

39

B-3 – Justification scientifique des moyens demandés pour chaque équipe partenaire impliquée dans le projet On présentera ici une justification scientifique des moyens demandés pour chacun des partenaires impliqués dans le projet, en distinguant les demandes en équipement, fonctionnement, personnels. Pour les demandes d’équipement, préciser si les achats envisagés doivent être complétés par d’autres sources de crédits, si tel est le cas, indiquer le montant et l’origine des crédits complémentaires qui seront utilisés.

Planned schedule Year 1 The site of Tamanrasset (TAM) in the southern part of Algeria (geophysical observatory managed by CRAAG) will be measured separately from the 3 other stations of the profile (Diffa, Niamey, Djougou) since it is easy to fly regularly there and since the crossing of the border between Algeria and Niger is almost impossible according to information from expatriated IRD people. The ‘null test’ point (TAM) and the profile (DIFF-NIAM-DJOU) are repeated every two months, in order to provide adequate sampling for the seasonal effects in gravity. To minimize the freight costs, the AG measurements on the African profile done with FG6#206 (Strasbourg) are indicated in yellow and the ones with FG5#228 in blue.

Year 2 and 3

Month 1

TAM

Team 3 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people) + Team 6 A10 (2 people)

Month 2 Month 3

TAM

Team 4 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people)

TAM

Team 5 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people)

Month 4 Month 5

Month 6

Partner meeting in France

Month 7

TAM

Team 2 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people)

TAM

Team 1 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 2 FG5 (2 people) +

Month 8

Month 9

Team 6 A10 (2 people) Month 10 Month 11

Month 12

TAM

Team 3 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 2 FG5 (2 people)

Partner meeting in France

40

Month 13

TAM

Team 1 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 2 FG5 (2 people) + Team 6 A10 (2 people)

Month 14 Month 15

TAM

Team 4 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 2 FG5 (2 people)

TAM

Team 5 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people)

Month 16 Month 17

Month 18

Partner meeting in France

Month 19

TAM

Team 2 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people)

TAM

Team 3 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people) +

Month 20

Month 21

Team 6 A10 (2 people) Month 22 Month 23

Month 24

TAM

Team 4 FG5 (2 people)

profile DIFF-NIAM-DJOU

Team 1 FG5 (2 people)

Partner meeting in France

41

Partner 1 (Project leader) (J. Hinderer, IPG Strasbourg) Partner 1 will be in charge of the purchase and installation of the GWR superconducting gravimeter at the Djougou (Benin) site. One part (46 %) is requested in this ANR project and the remaining cost (100 000 €) will be asked to INSU (Equipements Mi-Lourds Géophysiques) in October 2007. This equipment is important since it will allow to monitor the temporal changes in gravity continuously at a location where a large hydrological signal is expected. During the first year, we will prepare the installation of the superconducting gravimeter at Djougou by selecting the site and preparing the station (power supply, AC and construction of a pillar). Partner 1 is also in charge of the field reconnaissance missions on all four AG measurement points; the first year will be devoted to a first series of reconnaissance missions on the field along the profile, in collaboration with the French IRD researchers working presently in this region (Niger, Benin). The contact with local authorities and institutions, French delegations and researchers has already started. In many of the selected locations, the precise choice for the absolute gravity points will be decided according to several criteria (security, availability of local people, infrastructure, availability of in-situ measurements of hydrological interest). For Niamey and Djougou sites, we rely for this choice on the local expertise of the ORE/SO AMMA-CATCH hydrologists and geodesists. A second series of missions during year 1 will be devoted to the installation of pillars on all the selected sites for absolute gravity measurements. Partner 1 will perform the AG missions devoted to team 1 (FG5#206); the Strasbourg instrument will operate in Niger and Benin at the beginning (Months 1 to 7) and at the end (Months 17 to 23) of the observing period (see table above). Note that the high density of AG measurements require a strong manpower provided by IPGS (2 engineers). Partner 1 will also cover the expenses of team 3 as service provider. A one year post-doctoral grant is solicited for the analysis of the collected gravity data and their interpretation in terms of hydrology (see B-4-2). Equipment costs

(all taxes included)

1 ‘field’ GWR Instruments superconducting gravimeter (SG) (including data acquisition system )

84 821

Manpower cost 12 months of post-doc

39 480

Functionning costs ¾ Installation of the SG at Djougou (Benin)

11 725

¾ Reconnaissance field missions (year 1)

22 746

¾ AG missions (team 1): 2 x TAM = 10800 8 x P* = 62400

85 827

¾ AG missions (team 3 as Service provider) 3 x TAM = 19800

23 215

¾ Overheads

14 712 Total

* P is the profile (DIFF-NIAM-DJOU)

42

282 526 €

Partner 2 (R. Bayer, Geosciences Montpellier) Partner 2 is responsible fort the purchase and installation of the permanent GPS receiver planned in Diffa (Niger). Partner 2 will perform the AG missions devoted to team 2 (FG5#228); the Montpellier instrument will operate in Niger and Benin in the central period (Months 9 to 15) of the observing period (see table above). Partner 2 will also cover the expenses of team 4 as service provider. Equipment costs •

Purchase of 1 GPS receivers (TRIMBLE NETRS model)

11 725

Functionning costs •

• •

AG missions (team 2): 2 x TAM = 10800 4 x P = 31200

49 245

AG missions (team 4 as Service provider) 3 x TAM = 19800

23 215

Overheads

3 367 Total

87 552 €

Partner 3 (M. Diament, IPG Paris) Partner 3 will perform the AG missions devoted to team 6 (A10). Partner 3 will also cover the expenses of team 5 as service provider. Functionning costs • •



AG missions (team 6): 4 x P(A10) =39200

45 962

Service Providing (Team 5) 2 x TAM (FG5)= 13200

15 477

Overheads

2457 Total

63 896 €

Partner 4 (G. Balmino, DTP Toulouse) Partner 4 will be in charge of the coordination and science meeting of the project; in the initial phase the organisation of the project requires several meetings among French partners and European colleagues who have been contacted to perform the absolute gravity field campaigns (FG5, A10). Functionning costs • •

6 coordination meetings in France (2 per year for 5 partners)

35 175

5 international meetings (one per partner)

11 725

43



Overheads

1 876 Total

48 776 €

Partner 5 (P. Genthon, Hydrosciences Montpellier) Partner 5 is responsible for the purchase and installation of hydrology equipment on the Niger and Benin sites. A 6 month post-doc salary is solicited which come in addition to 6 months already supported by ANR SAHELP (Vulnérabilité) (see B-4-2). Equipment costs • 3 multiparameter sensors • 2 piezometers • 2 barometers • 1 humidity measurement station

3*2300 2*750 2*500 8000 = 17 500

20 518

Manpower cost • 6 months of post-doc

19 740

Functionning costs • •

4 subsurface geophysical missions (2 people ) Overheads

75 040 4 612 Total

119 910 €

List of absolute gravity measurement teams Team 1

Strasbourg (FG5#206)

Team 2

Montpellier (FG5#228)

Team 3

ECGS (Luxemburg)

Team 4

ORB (Belgium)

Team 5

FGI (Finland)

Team 6

Paris (IPGP) or Toulouse (DTP/IRD) (A10)

PS. Note that ECGS (O. Francis), FGI (J. Mäkinen), and ORB (M. Van Camp) have all given their agreement to take part to our project with their instruments as service providers.

44

Budgetary appendix (tax free prices)

I/ Cost estimate of absolute gravity repetitions at station TAM (12 FG5 missions) 2 FG5 missions by Team 1 ƒ ƒ ƒ

air transportation of 2 people freight per diem (2 people x 7 days)

1500 x 2 = 2500 x 2 = 1400 x 2 = =

3000 5000 2800 10 800 € *

1500 x 2 = 2500 x 2 = 1400 x 2 = =

3000 5000 2800 10 800 € *

2 FG5 missions by Team 2 ƒ ƒ ƒ

air transportation of 2 people freight per diem (2 people x 7 days)

* missions with FG5#206 or 228 do not require any insurance 3 FG5 missions by Team 3 ƒ ƒ ƒ ƒ

air transportation of 2 people freight per diem (2 people x 7 days) insurance

1500 x 3 = 2500 x 3 = 1400 x 3 = 1200 x 3 = =

4500 7500 4200 3600 19 800 €

1500 x 3 = 2500 x 3 = 1400 X 3 = 1200 x 3 = =

4500 7500 4200 3600 19 800 €

1500 x 2 = 2500 x 2 = 1400 x 2 = 1200 x 2 = =

3000 5000 2800 2400 13 200 €

3 FG5 missions by Team 4 ƒ ƒ ƒ ƒ

air transportation of 2 people freight per diem (2 people x 7 days) insurance

2 FG5 missions by Team 5 ƒ ƒ ƒ ƒ

air transportation of 2 people freight per diem (2 people x 7 days) insurance

Total cost of 12 missions in TAM = 74 400 € II/ Cost estimate of absolute gravity repetitions on profile (DIFF-NIAM-DJOU) (12 FG5 missions + 4 A10 missions) 8 FG5 missions by Team 1 ƒ ƒ ƒ ƒ

gas for 1 vehicle air transportation of 2 people freight FG5 per diem (2 people x 14 days)

1000 x 8 = 3000 x 8 = 4000 x 2 = 2800 x 8 = =

8000 24 000 8 000 22 400 62 400 € *

1000 x 4 = 3000 x 4 = 4000 x 1 = 2800 x 4 = =

4000 12 000 4 000 11 200 31 200 € *

4 FG5 missions by Team 2 ƒ ƒ ƒ ƒ

gas for 1 vehicle air transportation of 2 people freight FG5 per diem (2 people x 14 days)

* missions done with FG5#206 or 228do not require any insurance

45

4 A10 missions by Team 6 ƒ ƒ ƒ ƒ

gas for 1 vehicle air transportation of 2 people freight FG5 per diem (2 people x 14 days)

1000 x 4 = 3000 x 4 = 3000 x 4 = 2800 x 4 = =

4000 12 000 12 000 11 200 39 200 €

Total cost for 12 FG5 and 4 A10 missions on profile = 132 800 € Total budget for absolute gravimetry (FG5 + A10) in GHYRAF= 207 200 € III/ Field reconnaissance missions (year 1) 2 missions on profile DIFF-NIAM-DJOU ƒ ƒ ƒ

gas for 1 vehicle air transportation of 2 people per diem (2 people x 14 days)

1000 x 2 = 3000 x 2 = 2800 x 2 = =

2000 6000 5600 13 600

1500 x 2 = 1400 x 2 = =

3000 2800 5800

2 missions in TAM for 2 people ƒ ƒ

air transportation of 2 people per diem (2 people x 7 days)

Total cost = 19 400 € IV/ Subsurface geophysical missions 4 RMS missions on (DIFF-NIAM-DJOU) profile ƒ ƒ ƒ ƒ

gas for 1 vehicle air transportation of 2 people freight and custom clearance per diem (2 people x 40 days)

1000 x 4 = 3000 x 4 = 4000 x 4 = 8000 x 4 =

4000 12 000 16 000 32 000

Total cost = 64 000 €

46

B-4 – Pièces à joindre 1) Devis pour l’équipement (coût unitaire ≥ 4 000 €) demandé Partenaire 1 •

superconducting gravimeter GWR ‘Field model’

Partenaire 2 •

GPS permanent receiver TRIMBLE NETRS

Partenaire 6 •

Humidity measurement station (Datalogger Campbell + sensors)

2) Profil des postes à pourvoir pour les personnels à recruter (1/2 page maximum par type de poste) 1 year Post-doctoral grant for Partner 1 (IPG Strasbourg) The aim of the post-doctoral work will be to analyze the surface gravity (Absolute gravity campaigns + permanent Superconducting gravimeter series) and GPS measurements collected during the project on the 4 selected sites (Tamanrasset, Diffa, Niamey, Djougou) and to compare them both to existing global scale hydrology models (e.g. LadWorld, GLDAS, WGHM) and to GRACE (and GOCE) satellite observations. This work will first need a close collaboration with the hydrologists involved in the modeling of the sites in Benin and Niger at local scale (partner 5) to isolate the local gravity contribution. In particular, the constraints brought by the gravity measurement as an independent integrated information on the water density changes in the immediate vicinity of the instrument will be investigated. A second part will be to correct the surface gravity measurements from the contribution due to the instrument motion in the existing field using the vertical displacement measured with GPS. This step is essential before comparing the surface gravity signal to the satellite-derived gravity observations. A third part will be done with the space geodesy group of Toulouse (partner 4) to have access with reduced delay to the best time and space resolution of the satellite-derived gravity field solutions. A regional inversion of the water content from GRACE inter-satellite range rates will be attempted and compared to the global spherical harmonic solutions. Special attention will be devoted to the results of our null test in the Sahara (Tamanrasset) with almost no hydrological signal predicted by the models. 6 month Post-doctoral grant for Partner 5 (Hydrosciences Montpellier) The aim of the post-doctoral work is to compute with a spatially distributed model the contribution of the surface water reservoir in the overall water balance of the western part of Lake Chad basin, near the Diffa site. The contribution of infiltration will be explicitly accounted for. In this area, the Komadougou-Yobé river is the most important contributor to the local surface water resources. The proposed study will extend the studies of Delcaux et al. (2005) and of Le Coz (2006). The spatially distributed model, THMB (formerly HYDRA) will be carried out. This model has been already used in an overall study of Lake Chad hydrology by Coe and Foley (2001). It was forced by Land Surface Models outputs. We will modify the THMB code in order to directly compute runoff and infiltration fluxes in the model itself. The model will be calibrated against the monthly discharge of the Komadougou-Yobé and piezometric data gathered on the Komadougou Kadzell profile of the Diffa site. The 6-month grant applied for here will add up a 6-month grant already provided by the SAHELP project (ANR Vulnérabilité) to constitute a full one year post-doc position. The applicant will have to build the model and to apply it at large scale on the whole lake Chad basin and at a smaller scale near Diffa. Coe M.T. And Foley J.A. (2001) Human and natural impacts on the water ressources of Lake Chad basin. J. Geophys. Res., 106, D4, 3349-3356. 47

Delclaux F., Faroux C., Favreau G., Lemoalle J. and Ngo-Duc T. (2005) Sensitivity of hydrological model to land surface model outputs: application to lake Chad basin, Central Africa. EGU Vienna, Geophysical Research Abstracts, 7, 06717, 2005. Le Coz M. (2006) Modélisation hydrologique distribuée de dynamiques lacustres: application au Lac Tchad. Institut EGID, Bordeaux University, Master Report. B-5 - Propositions d’experts 1) Possibilité de fournir une liste de 3 à 5 noms d’experts français ou étrangers (avec coordonnées complètes : adresse postale et adresse électronique) susceptibles d’évaluer le projet avec lesquels les équipes participant au projet n’ont ni conflit d’intérêt, ni collaborations en cours. La saisie doit être faite sur le site de soumission Jalios à la rubrique Experts

David J. Crossley

Professor of Geophysics Responsable du réseau international de gravimètres cryogéniques GGP

Department of Earth and Atmospheric Sciences Saint Louis University, 3507 Laclede Avenue St. Louis MO 63049, 314-977-3153 [email protected] Nicolas Florsch

Professeur de Géophysique

Expert en gravimétrie/hydrologie

UMR 7619 Sisyphe (Structure et fonctionnement des systèmes hydriques continentaux) Université Pierre-et-Marie Curie Paris VI Boite 123, 4 place Jussieu, Tour 56, Couloir 46-56, 3° étage 75252 PARIS Cedex 05 [email protected] Fréderic Delay

Professeur

Expert en hydrologie

UMR 6532 : Hydrogéologie, Argiles, Sols et Altérations (HYDRASA) Université de Poitiers 40, avenue de Recteur Pineau 86022 Poitiers Cedex [email protected]

Ghislain de Marsily Professeur

Académicien Expert en hydrologie

Laboratoire de Géologie appliquée Université Pierre et Marie Curie Case 105 4, place Jussieu F-75252 Paris Cedex 05 [email protected]

Frank Lemoine

Senior Research Scientist

Expert en gravimétrie spatiale

Goddard Space Flight Center NASA Greenbelt MD 20771 USA [email protected] 48

2) Possibilité éventuelle de fournir une liste de 5 noms max. d’experts auxquels les participants au projet ne souhaitent pas que le projet soit envoyé s’il y a risque de conflits d’intérêts.

49

Programme blanc 2007 C - Moyens financiers et humains demandés par chaque équipe partenaire du projet

Chaque équipe partenaire remplira une fiche de demande d’aide selon les modèles proposés ci-dessous (laboratoire public/fondation, ou entreprise ou TPE/association) en fonction de son appartenance.

50

Programme blanc 2007 Fiche de demande d’aide – Laboratoire public / Fondation

Acronyme ou titre court du projet : GHYRAF

Partenaire 1 - Coordinateur (nom, prénom) : HINDERER Jacques

Calcul de l’aide demandée à l’ANR et estimation du coût complet du projet pour le laboratoire du partenaire Avant de remplir ce tableau il vous faut décider quel sera votre établissement gestionnaire. Nbre Homme .mois

Total des dépenses en ÉQUIPEMENT (coût unitaire ≥ 4 000 €) détail § B-3 FONCTIONNEMENT Dépenses de personnel (1) Ingénieur Chercheur Enseignant-chercheur Doctorant Dépenses de personnel non permanent à financer par l’ANR (2)

36 18 14.4 18

12

Coût Homme.mois (salaire chargé et taxé)

Nombre de personnes impliquées

3 2 4 1

4436 7581 5164 2208

3290 1

Post-doc Frais de missions si montant > 5% de la somme demandée, justification § B-3 Petits matériels, consommables, fonctionnement, etc.

Euros HT

Taux spécifiques à chaque établissement

157 630

0.1725

184 821

410 288

0.8

738 518

39 480

0.8

71 064

108 573

Prestations de service externes, sous-contractant (3)

10 000

0.1725

11 725

19 800

0.1725

23 215

Total des dépenses de fonctionnement

182 993

Frais généraux (assistance, encadrement, coût de structure) (max 4 % du coût total des dépenses de fonctionnement et d’équipement)

14 712

Coûts éligibles (4)

382 256

Aide demandée ≥ 15 000 € ≤ Z (5)

282 256

1 151 049

Coût complet du projet

51

Programme blanc 2007 Fiche de demande d’aide – Laboratoire public / Fondation

Acronyme ou titre court du projet : GHYRAF

Partenaire 2 - Coordinateur (nom, prénom) : BAYER Roger

Calcul de l’aide demandée à l’ANR et estimation du coût complet du projet pour le laboratoire du partenaire Avant de remplir ce tableau il vous faut décider quel sera votre établissement gestionnaire. Nbre Homme .mois

Total des dépenses en ÉQUIPEMENT (coût unitaire ≥ 4 000 €) détail § B-3 FONCTIONNEMENT Dépenses de personnel (1) Ingénieur Chercheur Enseignant-Chercheur Doctorant Dépenses de personnel non permanent à financer par l’ANR (2) Ingénieur Post-doc etc. Frais de missions si montant > 5% de la somme demandée, justification § B-3 Petits matériels, consommables, fonctionnement, etc.

16.2 12.6 8.1 10.8

Coût Homme.mois (salaire chargé et taxé)

Nombre de personnes impliquées

3 2 2 1

4362 5746 5922 2208

Euros HT

Taux spécifiques à chaque établissement

10 000

0.1725

11 725

214 903

0.8

386 826

49 245

Prestations de service externes, sous-contractant (3)

19 800

0.1725

Total des dépenses de fonctionnement

23 215

72 460

Frais généraux (assistance, encadrement, coût de structure) (max 4 % du coût total des dépenses de fonctionnement et d’équipement)

3367

Coûts éligibles (4)

87 552

Aide demandée ≥ 15 000 € ≤ Z (5)

87 552

474 378

Coût complet du projet

52

Programme blanc 2007 Fiche de demande d’aide – Laboratoire public / Fondation

Acronyme ou titre court du projet : GHYRAF

Partenaire 3 - Coordinateur (nom, prénom) :DIAMENT Michel

Calcul de l’aide demandée à l’ANR et estimation du coût complet du projet pour le laboratoire du partenaire Avant de remplir ce tableau il vous faut décider quel sera votre établissement gestionnaire.

Total des dépenses en ÉQUIPEMENT (coût unitaire ≥ 4 000 €) détail § B-3 FONCTIONNEMENT Dépenses de personnel (1) Ingénieur Enseignant-Chercheur

Nbre Homme .mois

Coût Homme.mois (salaire chargé et taxé)

Nombre de personnes impliquées

12.6 8.1

4455 7412

2 2

Euros HT

Taux spécifiques à chaque établissement

116 187

0.8

Dépenses de personnel non permanent à financer par l’ANR (2) Ingénieur Post-doc etc. Frais de missions si montant > 5% de la somme demandée, justification § B-3 Petits matériels, consommables, fonctionnement, etc.

209 137

45 962

Prestations de service externes, sous-contractant (3)

13 200

0.1725

Total des dépenses de fonctionnement

15 477

61 439

Frais généraux (assistance, encadrement, coût de structure) (max 4 % du coût total des dépenses de fonctionnement et d’équipement)

2458

Coûts éligibles (4)

63 896

Aide demandée ≥ 15 000 € ≤ Z (5)

63 896

273 033

Coût complet du projet

53

Programme blanc 2007 Fiche de demande d’aide – Laboratoire public / Fondation

Acronyme ou titre court du projet : GHYRAF

Partenaire 4 - Coordinateur (nom, prénom) : BALMINO Georges Calcul de l’aide demandée à l’ANR et estimation du coût complet du projet pour le laboratoire du partenaire Avant de remplir ce tableau il vous faut décider quel sera votre établissement gestionnaire.

Total des dépenses en ÉQUIPEMENT (coût unitaire ≥ 4 000 €) détail § B-3 FONCTIONNEMENT Dépenses de personnel (1) Ingénieur Chercheur

Nbre Homme .mois

Coût Homme.mois (salaire chargé et taxé)

Nombre de personnes impliquées

21.6 23.4

5867 7705

3 3

Euros HT

Taux spécifiques à chaque établissement

307 037

0.8

Dépenses de personnel non permanent à financer par l’ANR (2) Ingénieur Post-doc etc. Frais de missions si montant > 5% de la somme demandée, justification § B-3 Petits matériels, consommables, fonctionnement, etc.

552 667

46 900

Prestations de service externes, sous-contractant (3) Total des dépenses de fonctionnement

46 900

Frais généraux (assistance, encadrement, coût de structure) (max 4 % du coût total des dépenses de fonctionnement et d’équipement)

1876

Coûts éligibles (4)

48 776

Aide demandée ≥ 15 000 € ≤ Z (5)

48 776

601 443

Coût complet du projet

54

Programme blanc 2007 Fiche de demande d’aide – Laboratoire public / Fondation

Acronyme ou titre court du projet : GHYRAF

Partenaire 5 - Coordinateur (nom, prénom) : GENTHON Pierre Calcul de l’aide demandée à l’ANR et estimation du coût complet du projet pour le laboratoire du partenaire Avant de remplir ce tableau il vous faut décider quel sera votre établissement gestionnaire. Nbre Homme .mois

Total des dépenses en ÉQUIPEMENT (coût unitaire ≥ 4 000 €) détail § B-3 FONCTIONNEMENT Dépenses de personnel (1) Ingénieur Chercheur Technicien Doctorant Post-doctorant

Coût Homme.mois (salaire chargé et taxé)

Nombre de personnes impliquées

Euros HT

17 500

Taux spécifiques à chaque établissement 0.1725

20 518

18 43.2 9 10.8 5.4

6126 5840 3988 2208 3290

3 7 1 1 1

440 103

0.8

792 186

6

3290

1

19740

0.8

35 532

Dépenses de personnel non permanent à financer par l’ANR (2) Post-doc Frais de missions si montant > 5% de la somme demandée, justification § B-3 Petits matériels, consommables, fonctionnement, etc.

75040

Prestations de service externes, sous-contractant (3) Total des dépenses de fonctionnement

94 780

Frais généraux (assistance, encadrement, coût de structure) (max 4 % du coût total des dépenses de fonctionnement et d’équipement)

4612

Coûts éligibles (4)

119 910

Aide demandée ≥ 15 000 € ≤ Z (5)

119 910

927 887

Coût complet du projet (1)

Il s’agit du personnel qui serait affecté au projet mais qui est présent dans le laboratoire indépendamment de la réussite de l’appel de l’agence. Salaire mensuel chargé (charges salariales et patronales) et taxé. Pour les enseignants-chercheurs ne compter que la part salariale correspondant à la part recherche (50% du salaire pour 100% de temps consacré à la recherche).

55

5 grandes catégories (CDD ou CDI) : Ingénieur, chercheur, enseignant chercheur, technicien, autres. Lorsque dans une même catégorie, plusieurs personnes de salaire différent sont mentionnées indiquer la valeur moyenne. (2)

Personnel non statutaire à recruter pour le projet exprimé en hommes mois. Les dépenses éligibles se limitent aux salaires chargés et taxés. Exemple : post-doc, ingénieur, technicien, autre.

(3)

Propriété intellectuelle, location de matériel, service, etc. Le total des dépenses de prestations de service pour le projet doit être inférieur ou égal à 50% du montant de l’aide demandée par partenaire.

(4) L’aide demandée doit correspondre au montant HT augmenté éventuellement de la TVA non récupérable. La TVA non récupérable est actuellement, par exemple, de 88% pour le CNRS. En conséquence pour une demande qui sera gérée par le CNRS, le taux de TVA non récupérable est 0,88 x 0,196 = 0,1725, ce qui conduit à inscrire dans la colonne de droite pour une demande HT de 10 000 euros, 10 000 x (1 + 0,1725) soit 11 725 euros soit une demande d’aide de 11 725 euros si le partenaire veut disposer de 10 000 euros dans la réalisation de son projet. En cas d’aide accordée par un autre financeur sur les mêmes dépenses que celles listées dans le tableau, il peut y avoir une diminution de l’aide accordée par l’ANR pour rester conforme à la réglementation. (5)

Pour le calcul en coût complet, il faut augmenter le salaire chargé d’un taux d’environnement, qui tient compte des conditions d’environnement des personnels (infrastructure, par exemple). EXEMPLE : Le partenaire A est géré par une délégation régionale du CNRS, le taux d’environnement de cet établissement est de 80% (soit 0.8). On veut calculer le coût environné d’un ingénieur de recherche 2ème classe (salaire chargé et taxé, selon grille du CNRS = 4 626 €) pour 3 mois de travail à 100% sur le projet. Pour le partenaire A, le calcul se fera ainsi : 4 626 * 3 = 13 878 €. Coût environné : 13 878 * (1+0.8) = 24 980,4 €

56

Programme blanc 2007 D - Récapitulatif global de la demande financière pour le projet Acronyme ou titre court du projet : GHYRAF

a-Estimations du coût complet et de l’aide demandée pour ce projet (en €) (reporter les valeurs « CC » et « Aide demandée » des fiches des différents partenaires) Coordinateur J. Hinderer Partenaire 2 R. Bayer Partenaire 3 M. Diament Partenaire 4 G. Balmino Partenaire 5 P. Genthon Total Les totaux obtenus doivent être identiques à ceux calculés par le logiciel de soumission.

Coût complet 1 151 049 474 378 273 033 601 443 927 887 3 427 790

Aide demandée 282 526 87 552 63 896 48 776 119 910 602 660

b- Détail de l’aide demandée (en €) FONCTIONNEMENT ÉQUIPEMENT

Coordinateur Partenaire 2 Partenaire 3 Partenaire 4 Partenaire 5 Total Les totaux obtenus doivent être identiques à ceux calculés par le logiciel de soumission.

Prestations de service

Autres dépenses

Frais généraux

TOTAL

Personnel

Missions

84 821 11 725

39 480

23 215 23 215 15 477

11 725

20 518

19 740

108 573 49 245 45 962 46 900 75 040

14 712 3367 2458 1876 4612

241 468 87 553 63 897 48 776 119 911

117 064

59 220

325 720

61 907

11 725

27 025

602 660

c- Effort en personnel demandé à financer par l’ANR (reporter les valeurs des fiches des différents partenaires)

12 6

Coût (salaires chargés et taxés) (en €) 39 480 19 740

18

59 220

en homme. mois Coordinateur Partenaire 5 Total Les totaux obtenus doivent être identiques à ceux calculés par le logiciel de soumission.

RAPPEL sur les modalités de versement de l’aide (cf. Règlement relatif aux modalités d'attribution des aides de l’Agence Nationale de la Recherche).



Organismes publics et fondations de recherche : les versements sont effectués sous forme d'avances (jusqu’à 90% de l’aide), par tranches annuelles de montant égal réparties 57

sur la durée de l'opération, sauf exception motivée par les caractéristiques d’un projet. Lorsque l’opération est menée en collaboration, les tranches correspondant aux diverses avances sont calculées à l’échelle de l’ensemble des financements accordés aux différents bénéficiaires participant au projet. Le règlement du solde (généralement 10% de l’aide) est effectué après expertise favorable du compte rendu scientifique de fin d’opération.



Autres bénéficiaires : L’avance éventuelle est versée dès la notification de l’acte attributif et peut être déduite à tout moment des sommes à payer. Les acomptes sont versés une fois par an au fur et à mesure de l’avancement de l’opération, sur présentation de relevés des dépenses réalisées (cf. § 5.2), dans la limite d’un montant annuel fixé par l’échéancier et sous réserve, le cas échéant, de la production par le bénéficiaire des rapports scientifiques intermédiaires prévus. Le règlement du solde est effectué après expertise favorable du compte rendu scientifique de fin d’opération visé au § 6.2, au vu du relevé déclaratif de dépenses (cf. § 5.2) produit et certifié par le bénéficiaire, signé par son représentant légal et visé par le commissaire aux comptes ou, à défaut, par l’expert comptable et des documents justificatifs de dépenses prévus à l’article 5.2. Le montant du solde est ajusté pour tenir compte de la dépense réelle, dans la limite du montant de l’aide.

58

Contrats publics et privés sur les trois dernières années (effectués et en cours) n° du Nom du membre % Intitulé de l’appel à projets partenaire participant à d’implication Source de financement cette demande Montant attribué N°1 Hinderer 20 Dyeti INSU-CNRS

10 k€ N°1

Hinderer

15

N°1

Hinderer

10

N°2

Bayer

25

N°2

Bayer

10

N°2

Bayer

10

Programme polaire IPEV 10 k€/an ECCO-PRNH 192 k€ en 2005 Dyeti INSU-CNRS Dyeti INSU-CNRS

Titre du projet

Contraintes gravimétriques et géodésiques à la dynamique du noyau terrestre

Hinderer

2003-2005

Gravimétrie absolue en Antarctique et Iles subantarctiques

Hinderer

2004-2006

Hydrologie et Géodésie

Florsch N. Sysiphe Paris

2005-2007

Hatzfeld

2003-2005

Contraintes gravimétriques et géodésiques sur la déformation tectonique actuelle en Alborz

5 k€/an ECCO-PRNH 192 k€ en 2005

Hydrologie et Géodésie

ANR Catastrophe Tellurique et Tsunami

Aléa sismique en Iran

Bock

40%

N°2

Bock

20%

N°2

Bock

40 %

API-AMMA Mise en place d'un réseau GPS et exploitation des Inter-organismes observations pour l'étude de la Mousson Africaine * 160 K€ volet EOP (projet AMMA). (2005-2007) dont achat de 3 stations GPS * 86 K€ volet SOP (2006) PNTS Campagne d’inter-comparaison de mesures de la 15 K€ (2004) vapeur d’eau atmosphérique à partir d’instruments de télédétection au sol et embarqués sur satellite : VAPIC1 PNTS 60 K€ (2001-2003)

LGIT Grenoble

Florsch N. Sysiphe Paris

2005-2007

Hatzfeld

2005-2007

LGIT Grenoble

6 k€/an N°2

Nom du coordinateur Date début Date fin

Développement de méthodes d’estimation du contenu intégré et du champ tri-dimensionnel de vapeur d’eau atmosphérique par GPS: Exploitation des campagnes ESCOMPTE, IHOP et OHM-CV. Préparation du projet

59

2005-2007 pour AMMA: - J.L. Redelsperger (Météo-France) - T. Lebel (LTHE) volet GPS: - O. Bock (SA) - M.N. Bouin (IGN) M. Haeffelin (LMD) 2004-2005

O. Bock (SA) E. Doerflinger (LDL)

2001-2004

AMMA. N°4

Bonvalot

20

FONDECYT (Chile) 10 k€

N°4

Bonvalot

50

INSU GDR G2 10 k€ (2004)

N°5

Genthon

50

N°5

Favreau

N°5

N°5 N°5 N°5 N°5

D. Legrand (Dept. Geofisica, Univ. du Chili)

2003-2005

Mouvements verticaux associés au cycle sismique dans les Andes centrales (lacune sismique du Nord Chili) : Gravimétrie absolue, GPS permanent, INSAR

Bonvalot

2004-2005

ECCO-PNRH 200 k€/ an

Transferts Complexes en Milieux Poreux et Ressources en Eaux : thème karstogénèse

Delay F. Hydrasa Poitiers

2004-2006

50

ECCO-PNRH 32 k€

Impacts de la variabilité climatique et des activités anthropiques sur le fonctionnement hydrologique dans le Bassin du Lac Tchad

Favreau G.

2003-2005

Delclaux

60

ECCO-PNRH 32 k€

Impacts de la variabilité climatique et des activités anthropiques sur le fonctionnement hydrologique dans le Bassin du Lac Tchad

Favreau G.

2003-2005

Favreau

30

ANR Vulnérabilité 325 k€ ANR Vulnérabilité 325 k€ ANR Vulnérabilité 325 k€ ARC Discovery project 200 kAUS$ = 120 k€ API-AMMA (2005-2007) 15 k€ Insu 24k€

SAHELP Sahara and Sahel vulnerability : lessons from the past

Lezine A.M.

2007-2009

Delclaux Genthon Favreau

50 20 20

N°5

Galle

20

N°5

Galle

20

Insu (2005-2007) 35 k€ Amma-EU 15 k€

Analysis of the seismic coupled region along the interplate contact in northern Chile using seismology, permanent GPS and absolute gravity data

SAHELP Sahara and Sahel vulnerability : lessons from the past SAHELP Sahara and Sahel vulnerability : lessons from the past Effective Management of Water Resources in Semarid Regions using Remote Sensing Mise en place d’un réseau de station d’humidité et exploitation des observations pour l'étude de la Mousson Africaine (projet AMMA).

LSCE Saclay Lezine A.M.

2007-2009

LSCE Saclay Lezine A.M.

2007-2009

LSCE Saclay Leblanc M.

2006-2008

Monash University pour API-AMMA: - J.L. Redelsperger (Météo-France)

2005-2008

Mise en place d’un réseau de station de flux et exploitation Amma-EU 2005-2008 des observations pour l'étude de la Mousson Africaine (projet J. Polcher (LMD) AMMA).

60

N°5 N°5 N°5

Séguis Séguis Peugeot

20 20 20

N°5

Gosset, Peugeot, Séguis

20

N°5

Cappelaere

50

N°5

Favreau

15

Amma-EU 36 k€ (2005-2007) Amma-EU 23 k€ (2005-2007)

Mise en place d’un réseau de piézomètres et exploitation des observations pour l'étude de la Mousson Africaine (projet AMMA). Suivi géochimique des différents compartiments du cycle de l’eau (Bassin de la Donga)

Amma-EU 23 k€ (2005-2007)

Suivi hydrodynamique des différents compartiments du cycle de l’eau (Ouémé à l’exclusion de la Donga)

SO Amma-Catch (2002-2010) 40 k€/an INSU SO AMMA-Catch 50 k€ INSU SO AMMA-Catch 50 k€

Réseau long terme d’observation pluie-débit-nappe (Ouémé)

T. Lebel LTHE

2002-2010

Zone non saturée SW Niger

T. Lebel

2002-2010

Amma-EU

2005-2008

J. Polcher (LMD) Amma-EU

2005-2008

J. Polcher (LMD) Amma-EU

2005-2008

J. Polcher (LMD)

LTHE Zone saturée SW Niger

T. Lebel LTHE

61

2002-2010

CNRS - IPGS - EOST 5 rue René Descartes 67084 STRASBOURG

le 20 février 2007

Station GPS Permanente

Récepteur GPS Trimble NetRS CORS (garantie de 1 an sur le hardware et sur le firmware du récepteur NetRS) Conditions de prix spéciales membres UNAVCO - CNRS / INSU

N° de référence

48648-11

Tarif / unit HT

Description

qté

Prix net HT

7 200.00 €

1

7 200.00 €

495.00 €

1

495.00 €

Station de référence TRIMBLE NetRS avec antenne Zephyr Geodetic NetRS

Station de référence NetRS (1 Gbyte mémoire interne) avec antenne Zephyr Geodetic

comprenant 45905-00

Récepteur GPS NetRS

1x

48164

Adaptateur 26-pin MultiPort

1x

48800-00

Alimentation universel AC

1x

48600

Câble d'alimentaion DC

1x

19309-00

Câble RS6232 (9-pin M to 9-pin F) 6ft

1x

50150-00

Câble CAT5 Ethernet 6ft

1x

11517

Câble BNC M/BNC M de 5ft

1x

50657-00

CD NetRS V1.0

1x

41249-00

Antenne GPS Trimble Zephyr Geodetic

1x

47019-30

Câble de 30 m LMR400 N - TNC

1x

46291-00

Radome

Radome de protection pour antenne Zephyr Geodetic

3402.17

Lightning Protector

Protection foudre de type Huber+Suhner

1x

190.00 €

1

190.00 €

Kit Alimentation

Batterie de secours avec chargeur

1x

290.00 €

1

290.00 €

POW2

MONTANT TOTAL

8 175.00 €

Option : EWNETRS

Garantie GPS NetRS

Extension de garantie de 1 an pour récepteur GPS NetRS

1x

800.00 €

1

800.00 €

Support technique

: assistance technique gratuite (et illimitée dans le temps) par téléphone, courrier ou mail auprès de Geotopo ou par internet auprès du support Trimble ([email protected])

Maintenance :

la société Geotopo (69760 Limonest) est SAV homologué Trimble depuis 1999 possibilité d'intervention sur site et/ou de dépannage par du matériel équivalent en cas de panne

GWR INSTRUMENTS, Inc. PRICE QUOTATION Date:January 15, 2007 Quote To: Jacques Hinderer Ecole et Observatoire des Sciences de la Terre 5, rue René Descartes 67084 Strasbourg Cedex France Tel: (+ 33) 3 90 24 01 17 Fax: (+ 33) 3 90 24 02 91

Quote Provided by: GWR Instruments, Inc. Richard J. Warburton 6264 Ferris Square Suite D San Diego CA 92121 USA Phone: 858. 452.7655 FAX: 858.452.6965

QUOTE#: France_Hinderer_2007_03_qte.doc Item #

Description

1

GWR FSG: Field SG with single sphere and 4 Kelvin refrigeration system, including: GSU-4A: Field Superconducting Gravity Sensing Unit (GSU) with single sphere; TM-7B: GWR Cryogenic Tiltmeters (with magnetic damping); TCS-6: Automatic Tilt Compensation System; GEP-4: Field Gravimeter Electronics Package with PC-only remote control interface. Integrated Heater Pulser system. Integrated centering coil power supply. Interfaces with Agilent current supply (included); HTK-4R: Helium Transfer Kit; FSG-35L-S: .Field SG Liquid Helium Dewar, .Zero-Boiloff while refrigeration system is operating; FSG-35-REF: 4 Kelvin Refrigeration System and Vibration Isolation system. Includes the SHI Cryocooler Model SRDK-101E-A11E, manufactured to GWR specifications. Helium Compressor is air-cooled. Vibration isolation assembly design allows easy removal of cryocooler for service. Gas-scrubbing getter included to minimize coldhead icing. Dewar Pressure controller maintains constant Dewar pressure while refrigeration system operates. 3-meter compressor hoses are included; DDAS-4: Field Data acquisition Package PRE-5: Paroscientific Met-3 Meteorological Measurement System.

Total (EXW GWR Instruments, San Diego)

Page 1 of 2

US$ 203,700

Terms and conditions: • All Prices in US dollars. • Total Price quoted at bottom is EXW GWR Instruments Inc. San Diego. • Shipping, Insurance and Installation are not included in price., and • Delivery –6 to 9 months. • Quote valid for 6 months. • Payment terms: 50% down payment at time of order. Balance by irrevocable letter of credit payable at time of shipment. • All taxes, duties, VAT or other expenses are the responsibility of the purchaser. Authorized by:

Richard Warburton

Page 2 of 2